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Numerical solution of the Navier-Stokes equations by means of a multigrid

*)

method and Newton-iteration

by
W.J.A. Mol
ABSTRACT

In this report a multigrid method for the solution of elliptic boundary
value problems in a rectangle is considered. A 7-point restriction and pro-
longation operator is introduced, with which a Galerkin approximation can be
defined as coarse grid operator. A 7-point incomplete LU-decomposition is
chosen as smoothing operator. It is shown that the method is fast and robust
for a large variety of problems. Especially some numerical experiments on the
Navier-Stokes equations are reported: the driven cavity and the flow around

a cylinder.
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1. INTRODUCTION

Multigrid methods have been investigated by BRANDT (1977, 1979),
FREDERICKSON (1975), HACKBUSH (1978), NICOLAIDES (1979), WESSELING and
SONNEVELD (1980) and WESSELING (1980).

In this report a multigrid method is described with some novel features:
a 7-point prolongation and restriction and a 7-point incomplete LU-decompo-
sition as smoothing operator.

In Section 2 we give a description of a large class of multigrid me-
thods. Our algorithm is obtained by special choices of some parameters and
the prolongation, restriction, coarse-grid and smoothing operators.

In Section 3 we give some arguments why a 7-point incomplete LU-decom-
position as smoothing operator is used.

In Section 4 some numerical experiments are reported on the Navier-

Stokes equations.

2. MULTIGRID METHODS

We consider a linear elliptic partial differential equation denoted by:

(2.1) Au

i
Hh

and valid in the unit square Q = {(x,y) | O0<x<1, 0<y<1}. Boundary condi-
tions are defined on the boundary 92 of Q. A computational grid QK and a
corresponding set of grid-functions UK are defined by:

£ . L -£ £ . £
Q= {(xi,yj) [xi=1.2 , y.=3.2, i=0(1)27, §=0(1)2"},
(2.2)

ot = b ot 5wy

After discretization of (2.1) and the boundary conditions we obtain an alge-

braic system of equations denoted by:

(2.3) Azuﬂ = fﬂ,



with AK: Ut > Uz.

The multigrid method makes use of a hierarchy of computational grids
Qk and corresponding sets of grid-functions Uk, k = £-1(-1)1, defined by
(2.2) with £ replaced by k. On the coarser grids (2.3) is approximated by:

(2.4) Akuk = fk, k = £-1(-1)1,

k . . . s
with A" some suitably chosen coarse grid operator. A restriction operator

k
R and a prolongation operator Pk are introduced:

(2.5) Rk: Uk N Uk_l, Pk: Uk—1 N Uk.
Finally, we define a smoothing operator on each reduction level k:
(2.6) & = sk,aK,dE, £ .

A class of multigrid methods can be described in quasi-Algol as follows:

procedure multigrid (k,u,f); integer k; array u,f

begin integer qg;

if k=1 then u":=(@") 1€
else

k k k

begin for g:=1(1)qgalk] do =S (k,A ,u ,fk);

u s
fk—l'"Rk(fk—Akuk), uk 1 :=0;
for g:=1(1)gclk] do multigrid (k-1,u,f);

"k  k _k k-1
u :=u +P u ;

for g:=1(1)gblk] gg_uk:=s(k,Ak,uk,fk);
end;
One execution of multigrid (£,u,f) will be defined as one multigrid itera-
tion.
Most multigrid strategies described in the literature can be obtained
as cases of the foregoing algorithm for special choices of the parameters
qgalkl, gblk], gclk] and the operators Pk, Rk, Ak and S(k, A ,u ,fk) our

multigrid strategy will be described for the case that (2.3) is a 7-point



finite difference approximation to a
general second order elliptic partial
differential equation (2.1) containing
mixed derivatives. The difference mol-
ecule is given in the accompanying

figure.

Finite difference molecule of (2.3)

Furthermore, the

Parameters:

following choices are made (k=£-1(-1)2):

(2.7) galkl =0, gblk]l =1, qgclk]l =1.
Restriction:
k k 1k 1 k X X
= = = +
(RuD); 5 =7 %4,29 ¥ 8M2141,29 T %21-1,25 T Y21, 29-1
(2.8)
K K
FUoit1,29-1 T Y211, 2441
Prolongation:
K k-1 k-1 K k-1 1 k-1, k-1
(Bru Dos 05 = %,57 B Doiig,05 72 O 54,5
k k-1 1 k-1 k-1
(2.9) Brus Voi,0941 =2 M4, 57, 54107
k k-1 1 k-1 k-1
(Bu ) oiit, 2941 =2 Mia1,57 %, 541
Coarse grid operator:
(2.10) a7 o gRakpk,

Smoothing operator:

k k

(2.11) s,aF o5, 5 = o 4+ B¥

(£ -2,



with Bk the 7-point incomplete LU-decomposition (ILU-7) of Ak

(2.12) X = (kg5 L.

The matrices Ek and Gk are constructed as described by WESSELING and
SONNEVELD (1980) with whom the use of ILU-decomposition for smoothing in
the multigrid method originates.

Another novel feature in the present method is the use of 7-point re-
striction (2.8) and prolongation (2.9) operators. The use of Galerkin approxi
mations for the coarse grid operators according to (2.10) has been considered
by FREDERICKSON (1975). HACKBUSH (1978), WESSELING and SONNEVELD (1980) and
WESSELING (1980). BRANDT (1977, 1979) takes for Ak, k = £-1(-1)1 finite dif-
ference approximations: (2.3) with £ replaced by k.

3. SMOOTHING ANALYSIS AND SOME NUMERICAL EXPERIMENTS

For smoothing analyses based on Fourier mode analysis, I refer to BRANDI
(1977) . He found for point and line Gauss Seidel applied to the usual 5-point
descretization of the Poisson equation smoothing factors p = 0.50 and | =
1/V/5 = 0.447 respectively. In the same way, we can find smoothing factors for
5-point and 7-point incomplete LU-decomposition. Using his notation we obtair
as convergence factor u(0) for the ILU-5.

a.cos(el—G )

(3.1) H(®) = 2—cosel—cosez+a.ios(91—62)
mu1a=1f% 2 and for the ILU-7:
b.cos(261—62)
(3.2) HiO) = 2-cos€1—cosez+b.cos(261—62)
with b = 0.11181. The corresponding smoothing factors for ILU-5 and ILU-7

are 1 = 0.204 and u = 0.126 respectively. In the following table we assume

that these smoothing factors are representative for the general cases: the



5-point and 7-point discretization of a general elliptic equation with vari-
able coefficients of the same order of magnitude. The table gives smoothing
factors, factors j, numbers of operations per grid point per iteration step
(ni, i =1,2,3) and numbers of operations per grid point for 10—1 reduction

of the error (ni/llog ul, i =1,2,3).

Poisson General 5-point|General 7-point
Method u n, nl/llog ul n, n2/llog ul ng n3/llog ul
Point Gauss-Seidel 0.50 5 16.6 9 29.9 13 43.2
Line Gauss-Seidel 0.447 8 22.9 14 40.1 18 51.5
ILU-5 0.204 | 11 15.9 14 20.3 14 20.3
ILU-7 0.126( 15 16.7 18 20.0 18 20.0

Table 3.1. Smoothing factors and estimate of the number of operations per
grid point for 10-! reduction of the error.

On the basis of this table ILU-5 and ILU-7 are better than the two Gauss-
Seidel methods for the general cases. In the case of singularly perturbed
problems smoothing analysis demonstrates that incomplete LU-decomposition is
less sensitive to ordering of grid points and other directional effects than
Gauss-Seidel (see HEMKER (1980)).

The number of operations in one multigrid iteration with the adépted

strategy in Chapter 2 is

Poisson: 27%-operations/gridpoint

General 5- or 7-point case: 31%-operations/gridpoint.

Results of numerical experiments with this multigrid method will be given.

The multigrid iterations are terminated when the maximum of the difference

between two iterands is smaller than 10_6

6

(3.3) 12,7 = | wh O _ (b @ 078,

Furthermore, we define the average reduction factor:



|Z(c)| 1

_ 1 o

(3.4) rav = (T) g 7é 0
1z, |

where 0 is the smallest integer such that (3.3) holds.

Table 3.2 gives the average reduction factors for some elliptic problems
The functions f and the boundary conditions are chosen so that the exact solu
tion in column 2 is approximated. The problems are valid in the unit square.
The mesh width of the finest grid is h = 1/32. All problems are discretized
by means of central differences, except dw/3x and dw/dy in problem 4. They

are discretized with upwind differences.

Equation‘ Exact solution raV

i. Aw = £ w=sin (x) ~e¥ 0.018

2. Aw =0 w=4 cos (x) *sinh(y) 0.017
AY = w P=2x sin (x) *sin h(y)

3. 3/3x{(1+sin x)wx}+3/3y{(1+xy)wy}—w=f w=y (x+cos (x) ) 0.015

4. 3w/3% - 3w/dy = Aw/Re; Re =104 w=(1-e"%) _ (1-e"RY) / (1-R%)2|0.073

Table 3.2. r v for some problems

Note that the - for the last, singular perturbed problem, is not much
greater than for the other problems.
We can make an estimate of the number of operations for 10-1 reduction

of the error for the Poisson equation:
27%* 1/]log 0.018| = 15.9 operation/gridpoint

Compare with BRANDT (1977): =~ 28 operations/gridpoint and NICOLAIDES (1979):
30-35 operations/gridpoint:

4. APPLICATION: THE NAVIER-STOKES EQUATIONS

Consider the driven square cavity flow with the Navier-Stokes equations

in (w,y)-formulation:



3(p,w) 1
Qlv,0) 2 py

(4.1) o(y,x)  Re }(x,y>esz,
AY = w

with boundary conditions
)
(4.2) v=0, X._g4

with g = 0 on F1, T4, 3

V.,
Z . >n
g 4
T, Q T
3 1
7 7
/
/
I'4
Fig. 4.1.

An equidistant computational frid QK is chosen:
L , £ - . £ . -1
(4.3) o = Ly | % = (141) (2542) L, vy = G+D @27,

i=om2t, 3=0m2b

There is a slight difference with (2.2) because the boundary conditions are
substituted in the difference scheme. The equations (4.1) are discretized

centrally except the first derivatives of w, for instance 3Jw/3x:

% (1+ai.)( w.j)+(1—uij)(w..— )

w, .= W, .
(4.4) oW - j i+1,3 i ij "i-1,3
: oxii,j 2h

with h = (2£+2) "} ana o,y the Il'in coefficient

Regy'i 2
(4.5) ;. = -coth( YZ .y 4 501 .
] Re—|..h
dy(ij




The boundary conditions for w are found by combining Ay = w and 93y/9n = g:

_ 3 1 3
(4.6) “w T 2 Yurt T2 Yt TR e
w is a point of 99, w+l indicates its nearest neighbour in QK in the direc-
tion of the normal.

The difference equations are Newton-linearized and the (linear) system
in each Newton iteration is solved by the multigrid method. The termination

criterium for the multigrid iterations is (3.3) and for the Newton iterations:

(p)

; Wby D _ & )

(4.7) lz,"" | < | < 1074,
Experiments have been made for Reynolds numbers Re = 10, 50, 150. At Re = 10
we start with the zero solution, at the other Re-numbers with the solution

of the preceding lower Re-numbers. The Table 4.1 gives n(p{ the number of

multigrid iterations and rgs), the average reduction factor in the pth Newton
iteration.

Note that r v does not increase as h + 0 and is insensitive to changes
in the coefficients induced by Newton iteration. Furthermore, v is compara-
ble to L. for the Poisson equation.

Another example is the flow around a cylinder with radius R and a uni-
form flow with velocity u_ at infinity. The non-dimensional Navier-Stokes

equations are given in (4.8).

Re h (1) 2 ) L (2 3
av av av
10 1/6 4 2 - 0.027 0.026 -
1/10: 5 2 - 0.059  0.033 -
1/18 5 2 - 0.056 0.034 -
1/34 5 2 - 0.056 0.034 -
50 1/6 5 4 2 0.031 0.042 0.049
1/10 5 4 1 0.052 0.061 0.056
1/18 6 4 2 0.082 0.056 0.051
1/34 6 4 2 0.083 0.062 0.052
150 1/6 7 6 3 0.099 0.092 0.079
1/10 6 5 3 0.083 0.084 0.078
1/18 6 5 2 0.080 0.083 0.064
1/34 6 5 2 0.081 0.082 0.063

Table 4.1. Results for square cavity flow.



o(Y,w) _ 1
a(n,¢&) Re AEnw1

(4.8) 2 I
Agnw =e w

with polar coordinates x = egcosn, y = egsinn. The Reynolds number is defined

by:

(4.9) Re = .

The boundary conditions are:

(4.10) n

I
(@]
3
[}
a
oy
v
o
£
I
<
I
o
Y

Fig. 4.2

The computational region is Q = {(E,n)l 0<E<w, 0<n<7}. The calculation
is analogous with the calculation for the driven square cavity flow, so with

I1'in upwind discretization. The results are presented in the following table:

Re h v @ 1) e 2 3)
av av av

10 /6 7 5 1 0.140 0.110 0.034
m/10 7 5 1 0.139 0.120 0.053

/18 7 5 1 0.141 0.119 0.064

/34 8 5 1 0.170 0.100 0.029

50 /6 8 5 1 0.178 0.106 0.042
m/10 8 6 2 0.180 0.150 0.063

m/18 8 6 3 0.175 0.153 0.068

/34 8 6 3 0.185 0.154 0.092

150 m/6 8 7 4 0.180 0.201 0.105
m/10° 8 6 4 0.185 0.160 0.105

m/18 8 7 4 0.186 0.200 0.108

/34 8 7 4 0.187 0.195 0.110

Table 4.2. Results for the flow around a cylinder.
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Although still fast, the average reduction factors are greater than in
the previous cases, but they are still insensitive to h and to changes in

the coefficients induced by Newton iteration.

5. CONCLUSION

A multigrid method has been presented that is fast and robust in the
sense that it works for a large variety of elliptic problems without needing
tuning or special modifications. The use of incomplete LU—decomposition makes
it possible to treat uniformly elliptic and singularly perturbed problems by
one and the same method. The combination of incomplete LU smoothing and

Galerkin coarse grid approximation looks very promising.
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