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Fourier analysis of gridfunctions, prolongations and restrictions 

by 

P.W. Hemker 

ABSTRACT 

In this report we present in some detail the elementary Fourier analysis 

of gridfunctions. These gridfunctions are functions defined on an n-dimen­

sional, rectangular, regularly spaced and infinite grid. We consider the 

effect of operators of a general convolution type; in particular we study 

prolongations and restrictions. These are operators which transform func­

tions on coarse to functions on fine grids, vice versa. Special attention 

is payed to the combination of particular restrictions and prolongations. 

KEY WORDS & PHRASES: Fourier Transformation, gridfunctions, prolongation, 

restriction 
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(i) 

'.ACE 

This report is meant as a general introduction to the Fourier analysis 

·ridfunctions. Fourier transforms (FT) are a part of mathematics of which 

xnay suppose that every mathematician is familiar with. Many texts are 

].able and the approach to FT may range from very applied to really 

ract. Hence, much material on the FT is available and almost all prin­

es that are used in this report are well known i.n one form or another. 

ver, no text is known to the author, in which the theory of FT of grid·­

tions is analysed in detail. Moreover, the implications of the theory 

not always immediately clear and, in particular for numerical analysts, 

od understanding of this theory and its implications may be really 

ful in different areas of their interest. 

The motive for us to consider Fourier transforms of gridfunctions-is 

din our need to avail of the elementary material to give solid 

a.ments to the local mode analysis of the behaviour of multigrid algor­

s. This kind of analysis of multigrid algorithms is already found in 

OT [1977] where it is one of the essential justifications for the multi­

approach. 
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0. FOURIER TRANSFORMS OF CONTINUOUS FUNCTIONS 

In this section we collect well-known results with respect to Fourier 

transforms of functions that are defined (almost everywhere) on domains in 

the real n-dimensional space. 

All results mentioned in this section can be found in general texts 

as e.g. KATZNELSON [1968], LIONS and MAGENES [1968], PAPOULIS [1962], 

RUDIN [1973]. 

1 

Let u be a real or complex valued function defined (almost everywhere) 

on the real n-dimensional space ]Rn and let u be square integrable: 
2 n 

u EL (JR), then its Fourier transform u is defined by 

-ixy 
e u(x)dx. 

Furthermore, a back-transformation formula is available 

u(x) = (2n)-n/2 f JR:1 e+ixy u(y)dy, 

n 
such that u (x) = u (x) almost everywhere on JR • Moreover, we know 

2 n 
U E L (JR ) 

In words we can express this by saying that the Fourier transformation is 

. . b. . . 2 ( n) 2 ( n) a norm-invariant iJection L JR _.., L lR • The above definition of a 

Fourier transform can be generalized to more general functions than just 
2 n 

L ( JR ) - functions. The same definition applies to the set of "tempered 

distributions" (see e.g. RUDIN [1973]), in this case -again- the back­

transformation is available. 

A number of useful relations is known when operations are performed 

on functions or their Fourier transforms. In table I we mention a number of 

these relations for the case n = 1. Most relations are easily generalized 

to then-dimensional case. 

REMARK. From the definition of a FT it is clear that the FT of a symmetric 

real function is again symmetric and real. For these functions the Fourier 
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transformation is identical with the Fourier back-transformation. A few 

examples of such functions and their FT are given in table II. 

u u Remark 

1. u(AX) 1 cX.> A J-. :/ 0 TTT u A 
€. ]R 

2. u(x+J-.) Hy - ( ) e u y A E ]R 

3. 
L\x 

u(x) u (y- J-.) J-. E e ]R 

4. Du(x) iy u (y) D = (~) 
dx 

5. xu(x) iD u (y) D = (~) 
dy 

6. p(D) u(x) p (iy) -a (y) 
} p(x) 

n 

= I k 
ck X 

7. p (x) u(x) p(iD) u (y) 0 

8. ulu2 - * -ul u2 (u1 *u2) (x) = 

I 
9. ul * u2 

I 
f\ 112 (21T)-n;2 I u1 (x-y)u2 (y)dy 

]R 

Table I. The effect of operations on the Fourier transform of a function. 
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1. 2 2 2. 
-(x/b) /2 -(by) /2 

e be 

~ ~ 
-b 0 b -1/b 0 1/b 

3. 

I¾ 
4. 

sin by 
piecewise constant block 

y 

- Ll / 1 ! I I I 

-b 0 b 'C?' "C.7 
-TI/b 0 TT/b 

5. 6. 
piecewise linear (sin(by/2))2 2 1-cos(by) 

b by/2 = -
b y2 hat-function 

on [-TI/b,TI/b] 

1 I 6 ~I 
-b 0 b -TT/b 0 TT/b 

7. 8. 
unit function Dirac delta-function 

1 8 

Table II. Some symmetric functions and their mutual Fourier transforms 
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.REMARK. Above we saw that the FT of a function defined on ~n itself is a 
n 

function defined on~. It is also well-known that a Fourier transformation 

is defined for a finite set of equally spaced data (Finite Fourier Transform). 

In this case the FT of a set of N data is again a set of N coefficients 

(see e.g. HAMMING [1977]). 

The FT of a periodic function (or, what is the same, the FT of a 

function defined on a torus) is a countable infinite set of coefficients. 

Analogously, in the following sections we shall introduce the Fourier 

transformation on an infinite set of equally spaced data. In this case the 

FT of such a "gridfunction" will be a periodic function (which is the same 

as a function defined on a torus). 

The periodization of a function. 

DEFINITION. Let h E JRn be given, then the h-periodization of a function 

u: JRn ➔ a: is defined by 

u(x) = 

we notice that u(x) is a periodic function on JRn with period h; it is 

completely defined by a mapping [O,h) +~.where [O,h) is defined by 

The FT of a function u(x) defined on a torus [O,h) is (cf. KATZNELSON 

[1968]) a sequence {ck}kE:?Z:n defined by 

h 

1 I -21rikx/h ~ ( ) d 
ck = hn (27T) n/2 0 e u x x . , 

from which it is clear that ck= u(21rk)/hn. Also the Fourier transformation 

on the torus [O,h) has its back-transformation. From this we see that the 

knowledge of u(y) only at certain equally spaced points is enough to 

restore a periodization of the original function u, whereas the complete 
n 

definition of u(y) (almost everywhere on JR) is necessary to find the 
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function u(x) itself. 

1. BASIC DEFINITIONS 

For a fixed "mesh" h = (h1 ,h2 , ..• ,hn) with hj > 0, j = 1,2, ... ,n, the 

regular infinite n-dimensional grid Z'.:~ is defined by 

For h E JR: and j E !!Zn the expressions jh E JR.n , h/j E JR.n and hj E JR are 

defined by 

jh 

= Ch/j 1 ,h/j 2, .•. ,hn/jn) ' 

=hj1hj2 .hjn 
1 · 2 n 

n 
We define then-dimensional torus [2TT/h] by 

2. SPACES OF GRIDFUNCTIONS 

A complex or a real gridfunction is defined as a mapping 

respectively 

where dis the dimension of the image space. 

In this report we mostly restrict ourselves to the scalar real grid­

function 
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:?Zn + JR 
h 

and, unless stated otherwise, we shall use the word gridfunction for this 

kind of gridfunction exclusively. 

It is immediate that, with the usual addition and scalar multiplication, 

the set of all gridfunctions is a vector space. This vector space we denote 

by 

or, shortly, by~-

For any p ~ 1 or p = 00 the space ~ (2Z~) can be provided with a norm 

II .II , which is defined by 
p 

or 

llu II = 
hp 

1 < p < oo, 

p = 00 

For a fixed p, 1 ~ p ~ 00 , all gridfunctions with a finite norm !! • II form 
p 

a subspace of lh (2Z~) , which is denoted by 

It is obvious that for any p, 1 ~ p ~ 00 , l~ (2Z~) is a Banach space (cf. 

YOSIDA p.35). Moreover, for p = 2, l~(:?Z~) is a Hilbert space with the 

inner product 

3. THE FOURIER TRANSFORM OF A GRIDFUNCTION 

We define 1\i: [2,r/h]n + <t, the Fourier transform of ~ :2Z~ -+ a: by 



°n (w) = ( ___E_) n l e -ijhw uh (jh). 
& je::?Zn 

The backtransformation formula reads 

REMARK 1. °ii can also be considered as a [2n/h]n- periodic function 
- n uh::R ➔ <I:. 

REMARK 2. The back transformation formula is easily derived from the usual 

Fourier-transformation theory for periodic functions. 

REMARK 3. By the Parseval equality we have 

NOTE. For this equality we need the special balancing of the transformation 

and its back transformation by the scalar factor (2n)-n/2 ! 

In the backtransformation formula we see that any gridfunction ~• for 

which °n exists, can be considered as a linear combination of gridfunctions 

u. of the form 
n,w 

uh (jh) ,w 
ijhw = e , 

2n 
i.e. a periodic gridfunction with period • The parameter w is called the 

hw 
frequency of the gridfunction u. • 

n,w 

7 

We see that for a given "mesh width" h the range of w is limited to the 

halfopen interval [-n/h,n/h) or to the interval [0,2n/h). The equivalence 

of both intervals as the range of definition of w is caused by the fact 

that 

~,w - ~,w + 2nk/h 
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~ . I~ 
h, 
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for all k € ~n. This phenomenon, that gridfunction with a frequency w can 

be identified with a gridfunction with a gridfunction with frequency 

w ~ 21r/h is known as aliassing. 

REMARK 4. In the above formulation of the Fourier transform, where we carry 

on the meshwidth has a parameter, we see that the range of frequencies that 

can be represented on a fine grid (small h) is larger than the range of 

those which can be represented on a coarser grid (large h). 

4. THE RELATION BETWEEN THE FT OF A CONTINUOUS FUNCTION AND THE FT OF ITS 

RESTRICTION TO A GRID 

In this section we describe the relation between the FT of a continuous 

function defined on ]Rn and the FT of its restriction to a regular infinite 
n 

n-dimensional grid ~h. 

TFIEOREM. 

Let u: :JR.n ➔ <t be a continuous function with FT u. Let ~ be defined 

by 

then 

uh (w) = I u (w+2irk/h) • 
k€~n 

PROOF. 

i\ (w) = (-E_)n I e -ijhw ~ (jh) 
& j 

( _E__) n l 
-ijhw 

u (jh) = e 
& j 

(-h-)n I e-ijhcp .( . 1 ) n J . 'h 
= el.J Y G.(y) dy 

& j ✓21r ]Rn 

= (_!;_)n I e-ijhwl f,r/h eijh(y-21rk/h) G.(y)dy 
2h j kc~n 

-1r/h 



= 

= 

(..E_) n I e-ijhwl J1r/h . "h 
eiJ z u(z+21rk/h)dz 

2rr j k -1r/h 

(..E_) n I 
. "h J1r/h ijhz I e-iJ w 

e u(z+21rk/h)dz 2rr 
j -1r/h k 

l u (z+2TTk/h) . 
k 

REMARK. We see that uh is the [21r/h] - periodization of u. 

5. OPERATORS DEFINED ON GRIDFUNCTIONS AND q-CONVOLUTIONS 

□ 

In this section we introduce the notion of a q-convolution. This is a 

generalization of the usual convolution. 

DEFINITION. Let q E 2Zn (q. > 0, j = 1, 2, ... ,n) then [O ,q) is defined by 
J 

[O,q) = {m E ?Zn I 0 :,; m. 
J 

< q., 
J 

j = 1,2, ... ,n}. 

9 

DEFINITION. Let ah,~ E lh be two gridfunctions, then the¾- q-convolution 

of ~ is denoted by ah ; ~ E 72:~ and defined by 

for all m E ?Zn and p· E [ 0 ,q) . 

DEFINITION. The ah-convolution of~ is defined by 

REMARK 1. We see that the ah-convolution of uh is simply given by 
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NOTATION. Given a gridfunction ~,by~ we denote the linear convolution 

mapping lh (;;z~) ➔ £.h (72:~) defined by 

moreover, we denote 

is a linear operator. 

REMARK 3. A large number of well known difference operators on a regular 

rectangular mesh and with constant coefficients, yield mappings of the form 

A~. If the same difference equation is applied at each gridpoint then the 

mappings are of the form~- If, in a periodic way, different difference 

equations are used at different points of the mesh (such as e.g. in regular 

finite element discretizations) the the discretized operator is of the 

form ~, q > 1. 

n 
DEFINITION. A gridfunction with a finite support is a function~ on (ZZ:h) 

for which a M > 0 exists that 

~ (jh) = 0 for all j with ljj > M. 

DEFINITION. A smoothing operator is a convolution operator~* where ah 

has a finite support and satisfies 

DEFINITION. A special case of an operator¾ is the translation operator 
n 

T qh, q E zz; , which is defined by 

For this translation operator the generating gridfunction ah is given by 

ah(jh) = o. (with Kronecker symbol o. ). 
Jq Jq 



REMARK 4. Clearly the inverse operator of Tqh is 

-1 
= Tqh = T -qh 

DEFINITION. A special case of an operator~, 

restriction operator RO which is defined by q' 

if j mod q = O, 

if O mod q =f. 0. 

is the flat q-

For this restriction operator the generating gridfunction ¾ is given by 

'\, (jh) - { 1 

0 

if j = 0, 

if j =f. 0. 

REMARK 5. [Translation decomposition]. 

With the translation operator and the flat q-restriction we can construct 

a partition of the identity operator 

I T Ro T ~­
pE[O,q) -ph q ph 

6. CONVOLUTION OR TOEPLITZ OPERATORS 

Let A:£.h (:i'Znh) ➔ lh(:i'Zhn) be a linear operator. What eigenvalues A 
. "h w 

correspond with eigenfunctions v of the form v (jh) = e1 WJ , if any? 
w w 

In other words: 
n 

can we find A Ea, w E [2TI/h] such that 
w 

Av = A v ? w w w 

If it would be the case, then, with A = (a . ) , 
ID] 

11 
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I a v (jh) = A V (mh) 1 

j 
mj w w w 

I iwjh 
A 

iwmh 
a e = e 

j 
m, j w 

;\ I iw(j-m)h I = a e = a w 
j 

m, j 
j 

m,m+k 

should be independent of m. 

That is the case if {a .} is such that 
m, J 

a = a for all m E zz;n . 
m,m+k -k 

n 
CONCLUSION. If the linear operator A:lh(?Zh) 

matrix elements {a .} satisfy 
m, J 

iwkh e 

is such that its 

[ 2 / Jn , _, a eiwkh then, for any w E TI h , ~ l is an eigenvalue corresponding 
w k -k 

to the eigenfunction v of the form 
w 

v (jh) 
w 

= iwjh e • 

DEFINITION. A linear operator A:lh (:;z~) + .tn (?Z~) of which the matrix 

{a . } satisfies a 1,- = a 'v'm E :;zn is called a Toeplitz or convolution 
m, J m,m+.. -k 

operator or matrix. 

DEFINITION. The function ;\:[2n/h]n ➔ ~n is called the spectrum of the 

Toeplitz operator. 

REMARK. A Toeplitz or convolution operator A can be defined by means of 

convolution with a grid function~ if the element am,m+k = a_k is identi­

fied with ~(-kh), Vk E :;zn. 



or 

~ (h) 

Auh =Ia . uh(jh) =ah* uh. . m, J 
J 

The spectrum of this operator is given by 

\(w) = l ah(kh) 
kEZl 

-iwhk 
e = 12; 

T ~ <wl. 

~ (-2h) ..• = (a .) 
m, J 

EXAMPLE. An infinite tridiagonal matrix with constant coefficients on the 

diagonals is a Toeplitz matrix 

('~~y ·)~• a1 = 13 ' a = a, a = Y; 0 -1 
a. = o, if l j I > 1. ¢~~"' J 

iwh -iwh 

13 

A = a e + ao + w -1 a1 e = a = ( y+S) cos(wh) + i(y-13) sirnuh, 

I\ 12 = a. 2 + s2 + y 2 + 2a(S+y) cos(wh) + 2Sy cos(2wh). w 

EXAMPLE. The translation operator Tqh is a convolution operator ah* with 

~ such that ¾{jh) = ojq" Its spectrum is 

\(w) = e-iwqh. 
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EXAMPLE. The forward difference operator: 

a0 = -1/h, a_ 1 = +1/h, 

A(W) = (eiwh_1)/h. 

EXAMPLE. The backward difference operator: 

a+l = -1/h, a 0 = 1/h, 

-iwh 
A(W) = (1-e )/h. 

7. THE RELATION BETWEEN '¾ AND ~ 

In table I we saw that - for functions defined on JR - a simple relation 

exists between the FT of a convolution product and the function product of 

two FTs. In this section we show that a similar relation exists for 

convolutions of gridfunctions. 

THEOREM 

PROOF. 

f 
y 

= <~> n I f 
2,r jk 

y 

\' -ikhw 
= l ¾(kh) e °¾(w) 

k 

= ( ~ ) n ~ (w) i\i (w) D 
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REMARK 1. We see that the result is similar to the result in table 1 except 

for the factor (2TI)n/2/hn. This factor is due to the fact that in table 1 
l 

convolution is defined with a similar factor (2TI)-~. 

REMARK 2. Clearly ah* uh= uh 

iff ~=u 
h h h 

iff (_E__) n ¾ & 

r if j = 0 
iff ah (jh) = 

0 if j :I 0. 

8. THE RELATION BETWEEN THE FOURIER TRANSFORMS OF A GRIDFUNCTION AND ITS 

(CANONICAL) q-RESTRICTION 

DEFINITION. Let uh E .th (LZ~) be a gridfunction defined on LZ~, then its 

canonical q-restriction Ru_, (q E LZn), is the gridfunction u defined on 
q h H 

2ZHn = 2Zn defined by 
qh 

LEMMA. 

If uh E {~ (LZ~) then Rquh E £~ (2Z~) with H = qh. 

PROOF. 

p 

II u II Hn I I UH (jH) Ip 
H ,e_P (LZn) . 2Zn 

H H JE 

= q~n l I (u ( jqh) IP 
. 2Zn n 
JE 

:s: q~n I lu (jh) IP 
. 2Zn n JE 

n llu II = q < 0, 

n ,e::_ (2Z~) 

With 
n 

q = ql ,q2' ••• '~. D 

I 
I 

1 
j 

l 
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COROLLARY. 

Let H = qh and Rq:.t! (72:) + .l:(?Z~) then 

i.e. 

IIR II < n/p q - q • 

THEOREM. 

p 
for all u · 

h' 

I ~(z + 2,rp/H) 
pdO,q) 

H = qh, q > 0, 

D 

for all z E [2,r/H], 

n 
PROOF. We denote u8 = Rq~, the gridfunction defined on 128 , H = qh). 

J ijH(z-w)_ ( )d 
e ~ z z 

n ze:[2,r/h] 

= c.!i_t I I I ijH(z-w) _ ( )d 
2,r 

jE?Zn pdO,q) 
e ~ z z 

ze:2,rp/H + [2,r/H]n 

= c.!!_) n I I I ijH(z-w) 
¾(z+2,rP/~)dz e 

2,r . 72n pe: [O ,q) J E n 
ze:[2,r/H] 

(]!_) n \' j eijH (z-w) \' 
= 2 l l Q (z+2p,r/H)dz 

,r • 72n [ ) h 
JE ze:[2,r/H]n p€ O,q 

Hence, by Fourier's integral identity, 

uH(z) = l ~ (z+2,rp/H) • 
pe:[O ,q) 

D 
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REMARK. The Fourier transforms of gridfunctions and coarse grid restrictions 

behave similarly to those of continuous functions and their restriction to 

a grid (cf. section 4.) 

DEFINITION. A (weighted) q-restriction of a gridfunction ~ defined on 2Z~ 

to a gridfunction u8 ,H = qh, defined on 2Z~, denoted by Rq(ah)¾, is defined 

by 

It is clear that any weighted q-restriction can be written as 

and therefore the relation between GH and uh is given by 

I a(z+2np/H) uh(z+2np/H). 
pE[O ,q) 

REMARK. As was the case with the canonical q-restriction, the range of defini­

tion (i.e. the range of periodicity) of the Fourier transform of a grid­

function is decreased by a factor q. 

If a significant part of the frequencies available is a fine mesh grid­

function ~ lie in [-n/h,-n/H] or [TI/H,TI/h] (i.e. are high frequencies), 

then by the canonical restriction also the representation of the low 

frequencies is disturbed. 

To get a better representation of the low frequencies on the coarse 

grid, it seems wise to apply a low-pass high-cut filter in the form of an 

operator¾; i.e. a good choice of¾ in Rq(¾) may cause a closer 

representation of the low frequencies on the coarse grid. 

EXAMPLE. [Transposed linear interpolation] 

In one dimension (n=1) we consider the following restriction on a twice 

c~arser grid (q=2). 

u8 (jH) = Rz(¾)uh(jH) = 

= ¼uh((2j-1)h) + ~uh(2jh) + ¼uh((2j+1)h). 
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(By reasons to be explained later this restriction is called transposed 

linear interpolation.) Thus we have 

with 

j = 0, 

Hence 

h 
ah (y) = - ½ (l+cos (hy)) 

& 

and 

This clearly gives a better representation of the lower frequencies than 

the canonical q-restriction where we find 

9. A GRIDFUNCTION AND ITS (FLAT) q-PROLONGATION 

DEFINITION. Let u E: l (?Zn) be a gridfunction defined on l'ZnH' then its 
H H H 

ah-q-prolongation P q (¾) uH, (ah E: lh (l'Z~), q E ?Zn) is the gridfunction 

uh defined on ?Z~ = ?Z~/q' defined by 

n Vm E: l'Z , p E [ 0 , q) • 

REMARK. As a special case we introduce the flat q-prolongation operator 

P~, which is defined by uh= P~uH = Pq(¾)uH with 



fuh(mgh) = UH(rnH), 

luh(mgh+ph) = 0 

This P~ can be written as Pq(~) with 

1 if j = 0 
~(:ih) ={ 

0 if j -f. 0 

if p -f. 0, p E [0,q). 

REMARK. From the definition of PO it is immediately clear that RO 
q q 

PROOF. 

llpo u IIP = q H 

s 

= 

= 

0 0 P n 
then P u E ,t.h (LZh) q H 

hn I l (PO u ) (jh) 
jELZn q H 

hn I 0 
(P u ) (mqh) 

IDELZn q H 

hn l 
mELZn 

uH(mH) Ip 

-n II lip 
q UH < 00 

with h = H/q, and 

IP 

Ip 

□ 

COROLLARY. With the corresponding lemma in section 8 we find 

n P OR II +n/p -n/p s q q = 1 , q q 

HR Poll = ttr H = 1. 
q q H D 

0 = p R • 
q q 

0 
Between the operators Pq, Pq(ah), Tph and the q-convolution we easily 

verify the following relations 

( 9. 1) 

(9. 2) 

q 0 
RT hp (ah)u =RT h(ah * TphPquH), q -p q H q -p 

RqT-ph(ah q* u..) - RT A q -
h - q -ph h Llh -

= (RT ha) * (RT huh), q -p h q -p 

19 
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("9. 3) I Tph Po((R T hah) * (RT huh)), q q -p q -p 
pdO,q) 

(9. 4) RT T PO= o I, 
q -sh ph q p-s 

p,s E [O,q), 

(9. 5) p (ah)u =IT hPO((R T hah) * u). 
q H p p q q -p H 

10. THE RELATION BETWEEN THE FOURIER TRANSFORMS OF A GRIDFUNCTION AND ITS 

(FLAT) q-PROLONGATION 

We first consider 
n 

defined on iZH. Its FT 

the flat q-prolongation. Let uH be a gridfunction 

is denoted by u. Leth= H/q and let uh= PO u , 
H q H 

its FT is denoted by uh; UH 
n 

is defined on [2TI/H]n and uh is defined on 

[2TI/h] • 

The relation between uH and uh is given in the following 

THEOREM. The FT of Pou is a scalar multiple of the periodic continuation of 
qH ~ 

the FT of UH to [2Tiq/H]: i.e. PquH(w) = uh(w) = q-n uH(w) on [2Tiq/H]. 

PROOF. uh (w) = 

= (~ )n I I -i {jq+p) hw ((. ) h) e uh Jq+p 
12-rr jEiZn pdO,q) 

= (~ )n I I -i (jq+p) hw 
UH (jH) e 

[i; jEiZn p=O 

-n (~ ) n I -ijqhw ( 'H) = q e UH ] • 
& j E~n 

Notice that 1½i(w) appears to be a periodic function with period 2TI/(qh) 

defined on [2w/h]n ! 

D 

For a general ~-q-prolongation we find the following relation between 

Fourier transforms. 



21 

THEOREM. 

rROOF. We use relation (9.5): 

---- 0 uh (w) = Pq(~)uH(w} = I T hp ( (R T h~) * UH) (w) 
pE[O,q) p q q -p 

= I -iphw -n ----e q (RT h¾) * u q -p H p 

ilin~-I -iphw -n = e q (8 ) RT hahu 
p q -p H 

□ 

EXAMPLE. In 1 dimension (n=l) we consider the mean-interpolation ~H' which 

is defined by 

{~HuH(2jh) = uh(2jh) = 0 , 

?\HuH(2jh+h) = uh(2jh+h) = ~(uH(jH)+uH((j+l)H)). 

For the FT~ we. easily derive 

EXAMPLE. [Linear interpolation] 

We define the I-dimensional linear interpolation by 

i.e. 

{ uh(2jh) = uH(jH) 

1\i(2jh+h) = ½(uH(jH) + uH(jH+H)) 

then 
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Notice that the 2~/H periodization of~ returns the old function u8 ! 

11. RESTRICTIONS AND PROLONGATIONS AND TRANSPOSED GRIDFUNCTIONS 

The general form of the q-Restriction Rq(ah), formally given by 

(H=qh) 

is explicitly given by ( j E: 2Zn ) 

Representing the linear mapping Rq(\i) :lh (2Z~) -+ l 8 (2Z~) 

the elements of (R. ) are given by 
Jm 

R. = a. (jqh-mh). 
Jm n 

by a matrix (R. ) , 
Jm 

The general form of the q-Prolongation Pq(bh) formally given by (h=H/q) 



P (bh)u = u. = l T hPO((R T hbh) * u ), 
q H n p p q q -p H 

is explicitly given by (m E :zzh, p E [0,q)) 

= l bh(mqh-jqh+ph)uh(jH). 
jE:ZZn 
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Representing the linear mapping 
n O n 

a matrix (P .) : 
mJ 

lH (7ZH) + ,{_,h (7Zh) , the elements 

i.e. the elements P. . are given by 
lJ 

are given by 

DEFINITION. The restriction Rq(ah) and the prolongation Pq(bh) are called 

each others transpose if their corresponding matrices satisfy the 

relation 

i.e. 

n T 
q (Rij) = (P .. ) , 

lJ 

n 
q R .. = P .. 

Jl lJ 
n 

V ij E 7Z • 

From this we conclude that Rq(¾) and Pq(bh) are each others transpose iff 

n 
q ¾(mh) = bk(-mh) 

h 
VmE:?Z. 

DEFINITION. The gridfunction bh is called the transpose of the gridfunction 

¾ if ~ (jh) = bh (-jh) Vj E :zzn. 
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T 
DEFINITION. The transpose of the gridfunction ~ we denote by ah. The 

symmetric part of~, denoted by~, is defined by 

Similarly we define the anti-symmetric part 

ST 
Clearly ah 

□ 

COROLLARY. The restriction Rq(a) and the prolongation P (b,) are called n q a 
each others transpose if 

bT h 
h = q ¾· 

ILLUSTRATION. Here we illustrate for n = 1, q = 2 the matrices corresponding 

¾(ah): 

uo 

ao a_l . ul uo 
al ao a_l u2 Ul 

= 
al ao a_1 u3 u2 

al ao u4 u3 

us 

' 
u6 



J?h (ah): 

ao uo 

al a 
-1 

u1 

ao uo u2 

al a 
-1 

u1 = u3 

ao u2 u4 

al a_l u3 us 

ao u6 

As we mentioned before: for the canonical restriction R 
q 

{ ¾ (jh) 

¾ (jh) 

1 

0 

j = 0, 

j -:/- 0; 

and for the linear interpolation Pq(¾) we have 

¾ (jh) = 1 j = 0 

ah (jh) ½ I j I = 1 , 

ah (jh) = 0 hi > 1. 

We already met its transpose in Section 8. 

12. COMBINATION OF A PROLONGATION AND A SUBSEQUENT RESTRICTION: 

Rq(ah) Pq(bh). 

The following theorem is easily verified. 

25 
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THEOREM. 

COROLLARY. As a direct consequence of the above theorem we find for the FT 

----------Rq (~) P q (bh) uH (w) = 

= (~ )n ~ (w)ilH(w) 

= ( ✓~TI ) n ilH (w) l ~ (w+21rp/H) 
pE:[O ,q) 

= c!;) n ilH {w) L ~ .i\ (w+21rp/H) • 
pE[O,q) . 

EXAMPLE 1. We consider in the one-dimensional case the flat restriction 

R(ah) and the linear interpolation P(bh) (q=2). Then 

~h(w) = 
h 

ili 
and (1+cos (hw)) • 

We find 

= ilH(w) ½ l (l+cos(hw+p1r)) 
p=0,1 

Which is correct, because RP is the identity on lH(2.ZH) ! 

EXAMPLE 2. We now take the transpose of the linear interpolation as the 

restriction operator: R(~bh). (Notice that bh is a symmetric gridfunction!) 

We find 



1 , 1 2 = UH(w) 2 l ~(l+cos(hw+Tip))} 
p=0,1 

= QH(w) l {cos2(hw;Tip)}2 
p=O, 1 

u8 (w) {cos4 (hw/2) + sin4 (hw/2)} 

WE [-1T/H,1r/H]. 

We see that here the operator RP damps the higher frequencies to some 

extent. 
3 1 

The function {4 + 4 cos(wH)} is called the transfer-function of the 

operator RP. 

13. COMBINATION OF A RESTRICTION AND A SUBSEQUENT PROLONGATION: 

Rq (bh) Rq (ah) . 

Using the equalities (9.1) - (9.5), we easily derive 

THEOREM. 

This theorem implies for all m E :;:zn and p E [O ,q) 

L bh(jqh+ph)ah(mqh-jqh-kh)l.\i(kh). 
j , kE:;:zn 

COROLLARY. With the aid of the above theorem we immediately derive ---­Pq(bh)Rq(ah)~(w) = 

□ 

27 
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( ili) n I -iwph -n ------- ----= e q RT hbh Rq(ah*~) (w) 
H q -p 

p 

= (2,r)n bh (w) I ahi\(w-2,rs/H). 
hH sdO,q) 

EXAMPLE. [General three-term P and R, n = 1, q = 2] 

We consider R2 (ah) and P2 (bh) with n = 1 and~ and bh defined by 

{: 
j = 0 

ah (jh) = l j I = 1 

0 I j I > 1 

bh (jh) 

j = 0 

lj I = 1 

I j I > 1 

= J1 
lb 
lo 

j = 
l j I 
I j I 

ili 
>.. (w) = - R (a *b ) = 1 + 2ab (l+cos (wH)) . 

H q h h 

The matrix corresponding with RP has the form 

1+2ab ab 

ab 1+2ab ab 

ab 1+2ab ab 

' ab 

0 

= 1 

> 1 

In order to find the matrix corresponding with PR we have to compute 

p = 0,1. 
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'.;['his yields 

~~ 
~~: ab 

a 0 

ab b 2ab b ab (p=1) 

0 a 1 a 0 (p=O) 

ab b 2ab b ab (p=1) 

0 a 1 a~ (p=O) 

ab b ~ 
~ 

EXAMPLE. [The linear-flat filter] 

Now we want to compute the transfer function of I-PR or PR in the (one­

dimensional) case where Pis linear interpolation and R is the canonical 

2-restriction (cf. example 12.1 for the transfer-function of RP). Application 

of the corollary yields 

----- 27T PRU. (w) = n hH 

This clearly is a low-pass filter which suffers from perturbations in the 

J..ow frequencies due to the high frequencies originally available. The 

corresponding high-pass filter has 

~- By a low(high)-pass filter we denote an operator lh ('.lZ~) ➔ ~ (:?Z~) 

for which in the image-function and in the original function approximately 
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.the same amount of low (high) frequencies is present. 

EXAMPLE. [The linear-transposed filter] 

We compute the transfer-function of I-PR and PR in the (one-dimensional) 

case where Pis again linear interpolation and R is its transpose. (cf. 

example 12.2 for the transfer function of RP). 

Application of the corollary yields 

--- 1 ½ [(l+cos(wh))uh(w) PRuh(w) = ( l+cos (wh)) + 
2 

+ (l+cos(wh+n))~(w+n/h)] 

1 
( l+cos (wh) [(l+cos(wh))uh(w) = + 

4 

+ (1-cos(wh))uh(w+n/h)] 

1 2 
~ (w) + ¼ sin2 (wh)~(w+n/h). = ( l+cos (wh)) 

4 

Clearly this is a low-pass filter again, but we see that in this case the 

low frequency perturbation caused by the high frequencies is considerably 

less, than in the preceding example. 

Here, for the corresponding high-pass filter, we can write 

~ (w) = ½ (1-cos(wh) )~ (w) 

+ ¼ sin2 (wh)[~(w)-t\i(w+n/h)]. 

14. MORE ON NORMS AND HILBERT-SPACES OF GRIDFUNCTIONS 

As we saw in section 2, l 2 <:1i;n) is a Hilbert space with the inner 
h h 

product 

From remark 3.3 it is easily seen that 



and we have also 

T 
y Ax = = hn l (Ax) (jh)y(jh) = 

jE?Z~ 

= {A(w)x(w) ,y(w)) 2 
L [21r/h]n 

( ili)n - - -= h (a (w) x (w) , y {w) ) 2 • 
L [2n/h]n 

The transpose of a mapping: 

Let P hH be a mapping PhH: lH (?Z:) -+ lh (?Z~) then we can define the 

transpose of PhH by 

T 
PhH = RHh' 

such that 

n 
and all uh E ~ (?Zh) • Taking for v8 and ~ the 

i-th and j-th unit-vector respectively, we immediately see that 

P . . = (H/h) n R .. 
J l. l.J 

n 
V .. E ?Z • 

J., J 

Taking H = qh we see that the present definition of PhH and RHh being each 

others transpose is equivalent with the definition given in section 11. 

Difference operators. 

In remark 5.4 we have already defined the translation operator 

Eph :lh (2Z~) -+ lh (?Z~) such that 

Eph ~ (jh) = ~ (jh+ph) • 

31 
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i.e. 

In particular, for 1 ~ k ~ n we define ~k = ~ekh' ek the k-th unitvector; 

thus 

REMARK. Clearly the spectrum of ~k is 

and 

Similarly we can define the backward difference operator Vph 

(I-Tph)/h for which the spectrum is 

( 1-e -iphw) /h. 

Hilbert-space norms. 

= (I-E h)/h = -p 

On the space ~ (:ZZ~) we have introduced a norm II • II 2 , which - in the 

context of Hilbert spaces - we shall denote by 11°11 0 • This norm was defined 

by 

Now we introduce also norms ll 0 llk, that are defined by 



Here a. is a multi-integer a.= (a.1 ,a.2 , ••. ,a.n) with a.i~O and la.I = 
a. 

With~ we denote 
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where~- is the forward divided difference operator in the j-th direction: 
J 

here e. is the j-th unit-vector. 
J 

By the Parseval identity we know 

Moreover, we know 

Hence 

---ll•a. 11 2 
LI Un 2 • 

L (-TF/h,1r/h) 

ie,hw _ = (e J -l)uh(w)e./h. 
J J 

ie.h.w./2 2i 
= ii. (w) e J J J 

n h. 
J 

h.w. 
. ( J J) sin - 2- ej. 

I~. u Cw) I 
J h 

2 h.w. 
= luh(w) I I- sin(_ii) I 

h. 2 
J 

and therefore 

2 h .W. a.j 
I- sin (....J._1_) I 
h. 2 

J 

Thus we find 

11~11! = ' II n 12. . (hjwj) la.jll 2 
l ~ j~l h. sin 2 • 

la.!~k J 

By the usual techniques it can be shown that this is equivalent with 
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R 11 2 
~ k 

n [sin(h.w./212 k/2 ~ I {1+ I J J } Q II 
. l h ./2 h 
]= J 

This gives us the possibility to introduce discrete Sobolev norms of real 

order for gridfunctions by 

for any reals~ 0. 
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