AN ALGOL 68 ROUTINE FOR THE APPROXIMATION OF PARTIAL DERIVATIVES ON A TWO-DIMENSIONAL GRID
Printed at the Mathematical Centre, 413 Kruislaan, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

An ALGOL 68 routine for the approximation of partial derivatives on a two-dimensional grid *)

by

J. Kok

ABSTRACT

The documentation is given of an ALGOL 68 routine. This routine computes weights matrices for the finite difference approximation of first and second order partial derivatives on a specified, two-dimensional grid.

KEY WORDS & PHRASES: Partial differential equations, Finite difference methods, Software

*) This paper consists of the proposal for a contribution to the NAG-ALGOL 68 library.
CONTENTS

Documentation of the ALGOL 68 routine DØ3ZZB 1

Source Text .. 15
DOCUMENTATION OF THE ALGOL68 ROUTINE D03ZZB

1. Purpose

The routine d03zzb computes weights matrices for approximating first and second order partial derivatives of 2-dimensional functions using finite difference formulas on a specified, not necessarily rectangular grid.

IMPORTANT: before using this routine, read the appropriate implementation document to check implementation-dependent details.

2. Specification (Algol 68)

MODE VEC = REF [] REAL;

MODE MAT = REF [,] REAL;

MODE WMAT = REF [,] MAT;

MODE POINT = STRUCT (REAL xc, yc);

MODE TRIO = STRUCT (POINT p00, p10, p01);

MODE DEFGRID = STRUCT (
 UNION (REF [,] POINT, PROC (INT, INT) POINT, TRIO) gr,
 REF [] INT ex, ey);

MODE DSCRR = STRUCT (
 BOOL uniform, INT numgp,
 REF [,] INT position,
 REF [,] POINT grid,
 WMAT mastor, snstor,
 REF FILE dataf, REF [,] INT cposmas, cpossn);

MODE DISCARR = REF DSCRR;

PROC d03zzb = (DEFGRID cg, STRING lfn, PROC INT available,
 NAGFAIL fail) DISCARR ;
3. Description

a) Statement of the problem.

The routine d03zvb computes weights matrices which can be used for the finite difference approximation of two-dimensional space derivatives appearing in partial differential equations (PDEs) and in accessory boundary conditions. By use of these weights the PDE can be transformed to a system of algebraic equations or a system of ODEs (see ref. [2]).

To this aim the domain of the solution of the PDE must be replaced by a grid consisting of rows of grid points in two directions. The domain \(D \) is a two-dimensional connected set, and its boundary \(\partial D \) consists of one or more closed curves.

b) Properties of the grid

A grid \(R \) must be imposed on the domain \(D \) in such a way, that \(R \) can be mapped on a rectangular grid (or: each grid point lies on exactly one "horizontal" and one "vertical", but not necessarily straight, grid line).

\(R \) is allowed to be non-uniform, which means that the elementary quadrangles formed by 4 grid points may possess any shape and that they need not to be congruent. The grid may have any number of holes provided that it does not consist of boundary points only. (A grid is defined to be uniform, if all elementary quadrangles are congruent and equally oriented parallelograms).

The boundary \(\partial R \) of \(R \) is replaced by the boundary of \(R \). In this way the boundary \(\partial D \) of \(D \) consists of one or more closed polygons.

c) Method

The particular method used for the discretization of space derivatives is described in [1]. In summary, a derivative at a certain point is approximated using a general 9 point discretization.

Let \(x \) and \(y \) be the space variables, and let \(u = u(x, y) \) be a given function. For the approximation of the derivatives \(u_x, u_y, u_{xx}, u_{xy} \) and \(u_{yy} \) at an interior point, weights are delivered using the nine points of the \(3 \times 3 \) subgrid with this point as its center.

For the approximation of the derivatives \(u_x \) and \(u_y \) at a boundary grid point, weights are delivered for each \(3 \times 3 \) subgrid with an interior grid point as its center and containing the boundary point. Thus, derivatives can be approximated using several sets of grid points.
4. References

[1] DEKKER, K.
Semi-discretization methods for partial differential equations on non-rectangular grids.

[2] EOK, J.
A package for the solution of initial-boundary value problems on a two-dimensional domain.
Mathematisch Centrum, Amsterdam (to appear).

5. Parameters

\(\text{dg} \) - a DEFGRID value.
The STRUCT \(\text{dg} \) serves to define the grid. Its components have to be used to define the set of all grid points and to indicate the subset of boundary grid points. \(\text{dg} \) is unchanged on exit.

Its components have the following meaning:

\(\text{gr} \) - a UNION(REF[,]POINT, PROC(INT, INT)POINT, TRIO) value, defines the coordinates of all grid points.
Let \(x(k,r), y(k,r) \) denote the \(x \)- and \(y \)-coordinates of the \([k, r]\)-th grid point. The coordinates of all grid points can be given in 3 ways:
1) in an array \([\text{kmin} : \text{kmax}, \text{rmin} : \text{rmax}] \) POINT gr, where \(\text{gr}[k, r] \) contains \((x(k,r), y(k,r))\),
2) by a routine PROC \(\text{gr} = (\text{INT} k, r) \) POINT : <unit>, where \(\text{gr}(k, r) \) delivers \((x(k,r), y(k,r))\),
3) in case that the grid is uniform by a TRIO of POINTs:

\[
\text{TRIO}((x(\text{kmin}, \text{rmin}), y(\text{kmin}, \text{rmin})), (x(\text{kmin}+1, \text{rmin}), y(\text{kmin}+1, \text{rmin})), (x(\text{kmin}, \text{rmin}+1), y(\text{kmin}, \text{rmin}+1))).
\]
(These three POINTs should be the points with subscripts \([\text{kmin}, \text{rmin}], [\text{kmin}+1, \text{rmin}] \) and \([\text{kmin}, \text{rmin}+1] \), respectively. They define one elementary parallelogram, and by translation the whole uniform grid.)

\(\text{ex} \) - a REF[]INT array variable, contains the \(k \)-indices (first subscripts) of consecutive end points of the grid lines forming the boundary polygon(s) (see description of \(\text{ey} \)).
ey - a REF[]INT array variable, contains the r-indices (second subscripts) of consecutive end points of the grid lines forming the boundary polygon(s) (in the same order as in ex). A pair (ex[i], ey[i]) contains the pair of subscripts of a corner of the boundary polygon. The sequence of pairs (k, r) is such that one or more closed polygons are formed along grid lines. The polygon closes when a new pair equals the first pair of the polygon, the following pair (if any) begins another polygon. Except for this first point a polygon may not intersect itself or another polygon.

Additional description.

It is not necessary that the bounds of a given array of grid points are equal to the minimum and maximum of the indices given in the arrays ex OF dg and ey OF dg. Actually, the lower bounds of the array of grid points are allowed to be less, the upper bounds are allowed to be greater than the corresponding minima and maxima. When a PROC or a TRIO is used for the definition of the grid point coordinates, the index bounds kmin, kmax, rmin and rmax will be the minima and maxima of the values given in ex OF dg and ey OF dg.

Examples:

1) The definition of a full rectangle with straight equidistant grid lines with subscript bounds [kmin : kmax, rmin : rmax] (fig. 1.A):
 The grid point coordinates are delivered by a PROC:

 DEFGRID dg =
 # gr # (INT k, r)POINT : (k * delta, r * delta),
 # ex # HEAP[1:5]INT := (kmin, kmax, kmax, kmin, kmin),
 # ey # HEAP[1:5]INT := (rmin, rmin, rmax, rmax, rmin)
)

2) A better way for the definition of this particular grid is by defining the grid point coordinates by a TRIO, since in that case the grid is recognized to be uniform, thus allowing more efficient computation and storing of the weights matrices. A possible definition is:

 PROC grd = (INT k, r) POINT : (k * delta, r * delta);
 DEFGRID dg =
 (TRIO (grd(kmin, rmin), grd(kmin+1, rmin),
 grd(kmin, rmin+1)) ,

HEAP[1 : 5]INT := (kmin, kmax, kmax, kmin, kmin),
HEAP[1 : 5]INT := (rmin, rmin, rmax, rmax, rmin)
).

3) A grid over the semi-ring
 \[y \geq 0, \ 0 < r_1 \leq \sqrt{x^2 + y^2} \leq r_2 \]
with an equidistant subdivision of \([r_1, r_2]\) and also of every arc (see fig. 1.B), is defined by:

\[
\text{DEFGRID dg} =
\{(\text{INT } i, j)\text{POINT}:
\begin{align*}
\text{REAL arc} &= p_i * j / m, \\
r &= r_1 + i * (r_2 - r_1) / n; \\
(r * \cos(\text{arc}), r * \sin(\text{arc}))
\end{align*}
\}\),
HEAP[1 : 5]INT := (0, n, n, 0, 0),
HEAP[1 : 5]INT := (0, 0, m, m, 0)
).

fig. 1.A

fig. 1.B

lfn - a character string, viz. the identifying string of a FILE variable.

(i) If the file, identified by lfn, is empty, then
d03zzb will write on this file information about
the grid (coordinates of each point and indication
of the subset of boundary grid points) and all
computed weights. After termination this file will
still exist for further handling by the user (the
file will have been opened as standby channel).

(ii) If the file with identification string lfn is not
empty, then it must contain all information about a
grid including the discretization weights. This file
can only have been created by an earlier call of
d03zzb. In this case the weights are read from the
file without further computing effort and a grid
definition by the parameter dg is ignored.
(iii) If the character string is empty (= ""), no file is
supplied nor used.

available - a routine supplied by the user with specification
INT : # an integral value # .
The routine must deliver the value of the amount of
central memory available for the declaration of REAL
variables. If a weights matrix has been computed and the
amount of its components exceeds available, then it will
not be stored in central memory (see section 11.1.).

fail - the failure routine (see section 6). Users unfamiliar with
the use of this parameter should use naghard.

d03zzb delivers an object of mode DISCARR containing all weights
matrices. It consists of the following fields:

uniform - a BOOL variable containing TRUE if the grid is
uniform, otherwise FALSE.

numgp - an INT variable, containing the number of (interior
and boundary) grid points.

position - an array [kmin : kmax, rmin : rmax]INT,
containing the representation of the state of each
grid point, viz. inside not near border, inside near
border, normal border point, corner point of border,
or outside (values are 1, 2, 0, -3, -1 respectively).

grid - an array [kmin : kmax, rmin : rmax]POINT,
containing all grid point coordinates.

mastor - an array [kmin+1 : kmax-1, rmin+1 : rmax-1]MAT,
contains all weights matrices for approximating
partial derivatives at interior grid points.
For an interior grid point grid[i, j], the correspon-
ding array element mastor[i, j] refers to a 5 * 8 -
matrix of weights. This matrix contains the weights
for the approximation of the derivatives ux, uy, ux,
uxy and uyy (rows 1 to 5 of the matrix, respective-
ly) at the (i, j)-th grid point using the subgrid
grid[i-1 : i+1, j-1 : j+1]. The 8 weights in each row
correspond with the grid points

grid[i-1, j+1], grid[i , j+1], grid[i+1, j+1],
grid[i-1, j], grid[i+1, j],
grid[i-1, j-1], grid[i , j-1], grid[i+1, j-1],
respectively.
Let function values in these grid points be given by
\(u[1], \ldots, u[8]\), assuming the same correspondence,
and let \(u_0\) be the function value at \(grid[i, j]\). Then
a derivative approximation is obtained by
\[
\text{SUM (weight[i] * (u[i] - u0), i = 1 . . . 8).}
\]
See the description of \text{dataf} if \text{masto}\(r[i, j]\)
delivers NIL for an interior grid point (for boundary
points and exterior points \text{masto}[i, j] is always
NIL).

\text{snstor} - an array \([kmin+1 : kmax-1, rmin+1 : rmax-1]\)\text{MAT},
contains all weights matrices for approximating
boundary derivatives.
For an interior grid point \(grid[i, j]\) with \(bp\)
neighbouring boundary grid points, the corresponding
array element \text{snstor}[i, j] refers to a
\((2 \times bp) \times 9\) - matrix of weights. This matrix contains
the weights for the approximation of the derivatives
\(ux\) and \(uy\) at these boundary points. The 9 weights in
each row correspond with the grid points

\[
\begin{align*}
grid[i-1, j+1], & \quad grid[i, j+1], \quad grid[i+1, j+1],
grid[i-1, j], & \quad grid[i, j], \quad grid[i+1, j],
grid[i-1, j-1], & \quad grid[i, j-1], \quad grid[i+1, j-1],
\end{align*}
\]
respectively.
The rows with indices \((2k-1)\) and \((2k)\) contain the
weights for approximating the derivatives \(ux\) and \(uy\),
respectively, at the \(k\) - th boundary point among the 9
grid points, counted in the above used order.
For example, when \(grid[i-1, j+1],\ grid[i, j+1]\) and
\(grid[i+1, j+1]\) are the boundary points of these 9
grid points, then \(grid[i+1, j+1]\) is the third
boundary point, and the weights for approximating \(ux\)
and \(uy\) at this point are found in the 5 - th and 6 - th
row of \text{snstor}[i, j].
Let function values in the 9 grid points be given by
\(u[1], \ldots, u[9]\), assuming the above used order.
Then a derivative approximation is obtained by
\[
\text{SUM (weight[i] * u[i], i = 1 . . . 9).}
\]
See also section 11.11. for some details.
See the description of \text{dataf} if \text{snstor}[i, j]
delivers NIL for an interior point near the boundary
(for other grid points \text{snstor}[i, j] is always NIL).

\text{dataf} - a REF FILE variable, referencing the external file
containing the weights matrices. If the weights
matrices are not available in central memory, i.e. if
for the (i, j)-th grid point mastor[i, j] or snstor[i, j] contains NIL, then a weights matrix is obtained in the following way:

if (mastor[i, j] IS NIL) for an interior point:

(set(data f, 1, 1, cposmas[i, j]);
 MAT w = HEAP[1 : 5, 1 : 8]REAL;
 getbin(data f, w); w
)

delivers the intended weights matrix,

if (snstor[i, j] IS NIL) for an interior point near the boundary:

(set(data f, 1, 1, cpossn[i, j]);
 INT upb; getbin(data f, upb);
 MAT sxy = HEAP[1 : upb, 1 : 9]REAL;
 getbin(data f, sxy); sxy
)

delivers the matrix of weights for approximating the first order derivatives at the boundary points neighbouring the (i, j)-th grid point.

cposmas - NIL if no file is supplied, otherwise an array [kmin+1 : kmax-1, rmin+1 : rmax-1]INT, containing keys for finding the weights matrices in the file (see data f for use of these keys).

cpossn - NIL if no file is supplied, otherwise an array [kmin+1 : kmax-1, rmin+1 : rmax-1]INT, containing keys for finding the matrices of weights for the boundary point derivatives in the file (see data f for use of these keys).

The routine d03zzb delivers NIL if an error is detected.

6. Error Indicators

In the event of an error condition being detected, the error routine is called with the parameters listed below. These are printed and execution terminated if the standard failure routine maghard is used (see the document on the Algol 68 error mechanism).

<table>
<thead>
<tr>
<th>parameter</th>
<th>message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INSUFFICIENT CENTRAL MEMORY</td>
</tr>
</tbody>
</table>
BACKGROUND MEMORY EXHAUSTED

DATA FILE NOT CORRECTLY AVAILABLE
PREMATURE END OF DATA FILE
NO GRID DEFINITION AND NO DATA FILE
NO GRID DEFINITION WHILE DATA FILE GIVEN IS EMPTY

SINGULAR MATRIX
In the subgrid of three rows and three columns more
than 3 grid points are collinear, or 2 points coincide.

UNEQUAL LENGTHS OF EX AND EY OF DEFINED GRID
ex OF dg and ey OF dg must have corresponding lower and
upper bounds.

SUCCESSIVE (EX[I], EY[I]) NOT ALONG GRID LINE
Two successive corners (of the same boundary polygon)
should lie either on the same row or on the same column
INTERSECTING BORDER LINES
NON-CLOSING BORDER
GRID DOES NOT CONTAIN INTERIOR POINTS
This error is only signaled if kmax < kmin + 2 or
rmax < rmin + 2.
SUCCESSIVE CORNERS COINCIDE
SUCCESSIVE EDGES IN SAME DIRECTION

BOUNDARY GIVEN DOES NOT FIT IN ARRAY OF GRID POINTS
A subscript given in ex OF dg or ey OF dg exceeds the
bounds of the given array of grid points.

ILLEGAL POSITION OF
GRID POINT IN ELEMENTARY QUADRILATERAL
The orientation of the vertices of some elementary
quadrilateral is differing (should be either clockwise
or counterclockwise for all quadrilaterals). This
occurs when two parallel rows or columns of the grid
intersect each other.

Since computations cannot proceed if errors in the parameters of
d03zvb are met, in most cases the standard failure routine
naghard is used.
7. Auxiliary Routines None.

8. Timing

For a first call of the routine d03zzb the computation time depends linearly upon the number of grid points.

9. Storage

The number of memory places required by internally declared arrays, including those of auxiliary routines, is (approximately):

If the grid is uniform:
\[8 \times (\# \text{ of columns of grid}) \times (\# \text{ of rows of grid}) + 500 \]
REAL variables, else:
\[8 \times (\# \text{ of columns of grid}) \times (\# \text{ of rows of grid}) + 40 \times (\# \text{ of interior grid points}) + 60 \times (\# \text{ of boundary grid points}) \]
REAL variables.

(It depends upon the availability of storage in central memory whether this space is used as direct access storage or only on the supplied FILE, see section 11.i.).

10. Accuracy

The order of accuracy of the underlying finite difference technique equals 2. For details see ref. [1].

11. Further Comments

(i) Use of d03zzb with a file has the following side effect:
If space is lacking in central memory for storing all weights matrices, then the part that could not be stored can be retrieved from the given file each time it is needed for discretization. This will slow up the computations of a process for solving a discretized PDE, in which the discretization weights are used at all grid points, alternatingly. Otherwise, if no data file were given and space was lacking, then the calculation of discretization weights is stopped.

(ii) Usually, weights for approximating boundary derivatives at a given point occur in the weights matrices of several interior points near the boundary, viz. for all overlapping 3 * 3 -
subgrids that contain the given boundary grid point. Thus, when a boundary derivative is required, one can still choose which set of 9 grid points is used for the approximation. In this way the coupling of unknowns appearing in the boundary conditions can be controlled.

12. Keywords

Finite Difference Methods,
Partial Differential Equations.

13. Example

This program may require amendment before it can be used in some implementations. The results produced may differ slightly.

13.1. Program text

The curvilinear grid inside $[-1, +1] \times [-1, +1]$ (fig. 2), example in [1], is defined by the DEGRID parameter of d03zzb.
The discretization weights for the approximation of uxx (= second order partial derivative of u w.r.t. the first space variable) at the POINT $(0, 2/3)$ are found in the third row of the corresponding weights matrix.

These weights are used for calculating the value of uxx for a given function $u = \exp(x + y)$ at $(0, 2/3)$.

The discretization weights for the approximation of ux and uy at the boundary point $(0, 1)$ using the subgrid around the point $(-0.472, +0.555)$ are found in the two rows of the array weights. These weights are used for calculating the values of ux and uy for the given function $u = \exp(x + y)$ at $(0, 1)$:

```
BEGIN INT n = 6;

PROC gr = ( INT k, r) POINT :
( INT i = k, j = n - r;
( ((j * (2 * i - n) / n) - (n - j) * cos (i * pi / n) ) / n,
((n - j) * sin(i * pi / n) - j ) / n
);

DISCARR dc =
    d03zxb ( ( gr,
        HEAP [1 : 5] INT := ( 0, n, n, 0, 0 ),
        HEAP [1 : 5] INT := ( 0, 0, n, n, 0 )
        ),
        "myfile",
        INT : 100000,
        nagfail
    );

PROC u = ( REAL x, y) REAL : exp(x + y);

PROC uu = ( INT i, j) REAL :
( POINT g = gr(i, j); u(xc OF g, yc OF g )
);

VEC xxwghts =
( MAT wm = (msstor OF dc)[3, 5],
    wm ISNT NIL ! wm
! REF FILE locf = data f OF dc,
    MAT w = HEAP [1 : 5, 1 : 8] REAL ;
    set(locf, 1, 1, (cposmas OF dc)[3, 5]);
    getbin(locf, w); w
    ) [3];

INT k:= 0, REAL uxx:= 0.0, REAL u35 = uu(3, 5);
print(\( newline, " xxwghts are :" , newline));
FOR i FROM 6 BY -1 TO 4
DO FOR j FROM 2 TO 4
    DO print( IF i = 5 AND j = 3 THEN 12 * " ")
```
ELSE k := 1; uxx := xxwghts[k] * (uu(j, 1) - u35);
 fixed(xxwghts[k], -12, 6)
FI ;
OE ;
print(newline)
OD ;
print((newline, " uxx at (", fixed(xc OF gr(3, 5), -6, 3),
 ", ", fixed(yc OF gr(3, 5), -6, 3), "): ",
 float(uxx, 16, 10, 2), newline, " (exp(0.667) = ",
 float(exp(2/3), 16, 10, 2), ")", newline));

MAT weights =
(MAT sxz = (sntor OF dc)[2, 5];
 sxz ISNT NIL
! sxz
! REF FILE locf = data f OF dc, INT upb;
set(locf, 1, 1, (cposn OF dc)[2, 5]);
getbin(locf, upb); MAT sn = HEAP [1:upb, 1:9] REAL ;
getbin(locf, sn); sn
)

point [3, 5] is third boundary point of the 3x3-subgrid,
so it corresponds with rows 5 and 6 of weights matrix : #
[5 : 6,];

REAL ux := 0.0, uy := 0.0;
print((newline, " weights around (", fixed(xc OF gr(2, 5), -6,3),
 ", ", fixed(yc OF gr(2, 5), -6, 3), ") are :", newline));
FOR der TO 2
DO VEC wghts = weights[der,], INT k := 0;
 FOR i FROM 6 BY -1 TO 4
 FOR j FROM 1 TO 3
 DO print((
 IF der = 1 THEN ux ELSE uy FI +=:
 wghts[k] * uu(j, i);
 fixed(wghts[k], -12, 6)
)
 OD ;
 print(newline)
OD ;
print(newline)
OD ;
print((newline, " ux at (0, 1): ", float(ux, 16, 10, 2),
 newline, " uy at (0, 1): ", float(uy, 16, 10, 2),
 newline, " (exp(1.0) = ",
 float(exp(1.0), 16, 10, 2), ")", newline))
END

13.2. Data for program

None.
13.3. Results

If myfile was empty, the DEFGRID parameter of d03zzb is analysed and all discretization weights for the approximation of the derivatives are stored in the DISCARR yield of d03zzb, and written on myfile.

The VEC xxwghts declaration finds the 5 * 8 - matrix of weights, its third row is delivered. xxwghts[1 : 8] contains the weights for uxx for the 8 surrounding points. The program prints:

xxwghts are :
1.107726 -0.153416 1.107726
3.544425 3.544425
-0.340789 -0.338515 -0.340789

uxx at (-0.000, 0.667): +2.0071863574e+0
(exp(0.667) = +1.9477340411e+0)

The weights matrix found for the approximation of derivatives at the boundary grid point is a 6 * 9 - matrix (because the subgrid contains 3 boundary points). The MAT weights contains a 2 * 9 - matrix corresponding with the boundary point indicated by (3, 6). The vector wghts refers to the two rows of this submatrix, successively. The program prints:

weights around (-0.472, 0.555) are :
3.937076 -3.229303 1.311667
-2.939585 -3.702999 3.316885
 0.338155 2.545619 -1.577515

-1.198204 1.395958 3.550936
 2.399324 -2.821029 -4.875084
-1.198459 1.421869 0.924679

uxx at (0, 1): +2.4693365991e+0
uy at (0, 1): +2.6168837904e+0
(exp(1.0) = +2.7182818285e+0)
BEGIN
 INT inside = 1, innearb = 2, border = 0, corner = -3, outside = -1;

 PROC d03zsb = (DBEGRID dq, STRING lfn,
 PROC INT available, NAGFAIL nfail) DISCARR :
 BEGIN
 MODE LSQEPS = STRUCT (REAL prec, max, INT rank);
 BOOL error:= FALSE ;

 NAGFAIL fail = (INT m, STRING txt) VOID :
 BEGIN error:= TRUE ; nfail(m, "d03zsb": " + txt) END ;

 PRIOR ++ := 1;

 # the declarations for genvec, genmat, COPY, * and ++ can be
 # deleted when torrix is used #

 PROC genvec = (INT u) VEC : HEAP [1 : u] REAL ,
 PROC genmat = (INT m, n) MAT : HEAP [1 : m, 1 : n] REAL ,

 OP COPY = (VEC u) VEC :
 IF u IS NIL THEN NIL
 ELSE INT l = LWB u; genvec(UPB u - l + 1)[AT l]:= u FI,

 OP * = (REAL a, VEC b) VEC :
 (VEC c = COPY b;
 FOR i FROM LWB b TO UPB b DO a[i] := a OD ; c
),

 OP * = (VEC a, b) REAL :
 (INT l = LWB a; INT lb = LWB b - l, REAL s:= 0.0;
 FOR i FROM l TO UPB a DO s+:=a[i] * b[i + lb] OD ; s
),

 OP += = (VEC a, b) VEC :
 (FOR i FROM LWB a TO UPB a DO a[i] += b[i] OD ; a
),

 PROC leqdec = (MAT a, VEC aid, REF [] INT ai,
 REF LSQEPS aux) INT :
 IF INT n = 1 UPB a, m = 2 UPB a,
 REF INT r = rank OF aux:= -1;
 UPB aid /= m OR UPB ct /= m THEN r
 ELSE INT pk:= 1, INT minnum = (m < n ! m ! n),
 REAL sigma:= 0.0,

VEC \(\text{sum} = \text{genvec}(m); \ r := 0; \)

FOR \(k \) TO \(m \)
DO IF REAL \(w = (\text{sum}[k]: (\text{VEC} \ a[k] = a[k], ak \ast ak)); \)
\(w > \text{sigma} \) THEN \(\text{sigma} := w; \ pk := k \) FI

OD;

REAL \(w := \max(\text{OF} \ \text{aux} := \sqrt{\text{sigma}}); \)
REAL \(\text{eps} = (\text{prec(OF} \ \text{aux}) \ast w); \)
FOR \(k \) TO \(\text{min}(w) \) WHILE \(w > \text{eps} \)
DO VEC \(\text{ak} = a[k], \ \text{REAL} \ \text{akk} = a[k,pk]; \ r := k; \)
\(\text{IF} \ \text{INT} \ \text{lpk} = (\text{ct}[k] := pk); \ \text{lpk} /= k \)
\(\text{THEN} \ \text{VEC} \ \text{colk} = a[k], \ \text{colpk} = a[lpk]; \)
\(\text{VEC} \ \text{h} = \text{COPY} \ \text{colk}; \ \text{colk} := \text{colpk}; \ \text{colpk} := h; \)
\(\text{sum}[\text{lpk}] := \text{sum}[k] \)
FI;

REAL \(\text{aidk} = (\text{aid}[k]: (\text{akk} < 0.0 \ ? w \ ! - w)); \)
\(\text{ak}[1] := \text{akk} - \text{aidk}; \ \text{REAL} \ \text{beta} = -1.0 / (\text{sigma} - \text{akk} \ast \text{aidk}); \)
\(\text{pk} := k; \ \text{sigma} := 0.0; \)
FOR \(j \) FROM \(k + 1 \) TO \(m \)
DO VEC \(\text{colj} = a[k], \ \text{colj} += \text{beta} \ast (\text{ak} \ast \text{colj}) \ast \text{ak}; \)
\(\text{IF} \ \text{REAL} \ \text{loew} = (\text{sum}[j] := \text{colj}[1] \ast 2); \ \text{loew} > \text{sigma} \)
\(\text{THEN} \ pk := j; \ \text{sigma} := \text{loew} \) FI

OD;

\(w := \sqrt{\text{sigma} := (\text{VEC} \ a[k+1], pk; \ \text{ak} \ast \text{ak})} \)

OD;

FI # end of householder triangularization #,

PROC \text{lsqsol} = (\text{NAT} \ a, \ \text{VEC} \ \text{aid}, \ \text{REF} [] \ \text{INT} \ \text{ci}, \ \text{VEC} \ b) \ \text{VEC} :
BEGIN \text{INT} \ n = 1 \ \text{UPB} \ a, \ m = 2 \ \text{UPB} \ a, \ \text{VEC} \ bb = \text{COPY} \ b;
\text{IF} \ m <= n \ THEN \ FOR \ k \ TO \ m \ DO \ \text{VEC} \ \text{colk} = a[k], \ bb[k] := (\text{aid}[k] \ast \text{colk}[1]) \ast \text{colk} \ OD;
\text{FOR} \ k \ FROM \ m \ BY \ -1 \ TO \ 1 \ DO \ bb[k] := (\text{bb}[k] - a[k,k+1:1] \ast \text{bb}[k+1:m]) / \text{aid}[k] \ OD;
\text{FOR} \ k \ FROM \ m \ -1 \ BY \ -1 \ TO \ 1 \ DO \ \text{IF} \ \text{INT} \ \text{ctk} = \text{ci}[k]; \ \text{ctk} /= k \ THEN \ \text{REAL} \ \text{w} := \text{bb}[k]; \ \text{bb}[k] := \text{bb}[\text{ctk}]; \ \text{bb}[\text{ctk}] := \text{w} \) FI
\text{OD};

\text{FIN} \ b;
END # of computation of least squares solution #,

C9 optimal inverse of non-square matrix routine using least squares solution routines. Part 6 of library of numerical algebra routines. CO
PROC mininverse = (MAT a, INT l) MAT :
BEGIN INT m = 1 UPB a, n = 2 UPB a;

compute w with l rows :

w * a = (i (l * l) _ minimal (l * (n - l)) matrix) #

MAT u = germmat(m, m),
VEC diag = genvect(m),
LSEPS aux := (1.0e-12, 0.0, 0),
[l : m] INT piv;

u[l , l : l] := a[l , 1 : l];
MAT a2 = a[l , l + 1 : n];

IF leqdec(u[l , : l], diag[l:l], piv[l], aux) /= l
THEN jfail(151, "singular matrix") FI ;

form r(inv) in upper triangle, mind diag
FOR i FROM l - 1 BY -1 TO 1
DO REAL xi = 1 / diag[i], VEC ai = u[i , i + 1 : l];
 FOR j FROM l - i BY -1 TO 1
 DO a[i][j] := -(a[i] : j - 1] * u[i + 1 : j + i - 1 , j + i]
 + a[i][j] / diag[j : j + i]) * xi
 OD
OD

compute r(inv)(m * m) * q(transp)
= r(inv) * q(l) * q(l-1) * ... * q(2) * q(1) #

VEC v = genvect(m); VEC vl = v[l : m] := u[l : m , l];
REAL e = 1.0 / (diag[l] * vl[l])

FOR i TO l
DO REAL aii = (i = l ! 1.0 / diag[l] ! u[i , l])
 u[i , i : m] := (vl[l] * aii * e) * vl; u[i , l]+ := aii
OD
FOR i FROM l + 1 TO m
DO u[i , i : m] := e * v[i] * vl; u[i , i] +/- 1.0 OD

FOR k FROM l - 1 BY -1 TO 1
DO VEC vk = v[k : m] := u[k : m , k];
 u[k , k] := 1.0 / diag[k];
 FOR i FROM k + 1 TO m DO u[i , k] := 0.0 OD
 REAL e := 1.0 / (diag[k] * vk[l])
 FOR i TO m
 DO VEC ui = u[i , k : m]; ui += vk * ui * e * vk OD
OD

back changes (using piv) of first l rows
FOR k FROM l - 1 BY -1 TO 1
DO IF INT cik = piv[k]; cik /= k
 THEN VEC uk = u[k , j]; u[wk = u[cik , j]; VEC h= COPY uk;
uk := ustk; ustk := h

FI
OD;

MAT alinv = w[, l[,]], alorthtmp = u[l + 1 : m[,]
 h = genmat(n - l, m);
MAT h1 = h[, l + 1 : m[, h2 = h[, : l[;

FOR i TO n - l
 DO FOR j TO m DO h[i, j] := a2[*, i] * u[, j] OD OD;
 h1, h2 formed inside h#

IF leqdec(h1, diag[: m-l[, piv[: m-l[, aux] /= m - l
 THEN fail(152, "singular matrix") FI;
 FOR j TO l
 DO h2[, j] := leqsol(h1, diag[: m-l[, piv[: m-l[, h2[, j]) OD;
 MAT x = h2[: m - l[, w = alinv;

 FOR i TO l
 DO FOR j TO m DO w[i, j] := x[, i] * alorthtmp[, j] OD OD;

w

PROC locd03sub = (DEFGRID dg, STRING lfn) DISCARR :
BEGIN DISCARR der = HEAP DSCHR :=
 (TRUE, SKIP,
 NIL, NIL, NIL, NIL, NIL, NIL, NIL),
 BOOL par"file = lfn /= ""
 BOOL get data:= par"file, put data:= FALSE;
 BOOL pargrid =
 IF ex OF dg IS REP [] INT (SKIP) THEN FALSE
 ELSE CASE gr OF dg
 IN (REP [,] POINT) : TRUE,
 (PROC (INT , INT) POINT) : TRUE,
 (TRIO) : TRUE
 OUT FALSE # in this case SKIP given #
 ESAC
 FI;
 IF parfile
 THEN INT kmin, kmax, rmin, rmax,
 REP FILE locfile = data f OF der := HEAP FILE ;
 IF IF open(locfile, lfn, stand back channel) /= 0
 THEN INT es= establish(locfile, lfn, stand back channel,
 1, 1, 131071); NOT (es = 0 OR es = 2)
 ELSE FALSE FI # error = file was already opened #
THEN fail(40, "data file not correctly available"); fin FI;
#
then test if file is not empty
#
on logical file end(locafile, (REPEAT FILE f) BOOL :
 (IF NOT pargrid
 THEN fail(44, "empty data file given"); fin FI;
 get data := FALSE ; put data := TRUE ; continue
)
 getbin(locafile, numgp OP dnr); getbin(locafile, kmin);
 getbin(locafile, kmax); getbin(locafile, rmin);
 getbin(locafile, rmax);
 position OF dnr := HEAP [kmin : kmax, rmin : rmax] INT;
 grid OF dnr := HEAP [kmin : kmax, rmin : rmax] POINT;
 INT aid; IF getbin(locafile, aid); aid < 0
 THEN uniform OP dnr := FALSE FI;
 continue := SKIP
ELSE IF NOT pargrid
 THEN fail(43, "both no definition of grid and no data file"
 "given"); fin FI;

IF pargrid AND NOT getdata
 THEN tfm grid(dg, numgp OP dnr, uniform OP dnr,
 position OF dnr, grid OF dnr, fail);
 IF erron THEN fin FI
FI;

RSP [: ,] INT positn = position OF dnr,
RSP [: ,] POINT grid = grid OF dnr;

INT kmin = 1 LWB positn, kmax = 1 UPB positn,
 rmin = 2 LWB positn, rmax = 2 UPB positn,
 numgp = numgp OP dnr,
BOOL uniform = uniform OP dnr,
RSP FILE locafile = data f OP dnr;
INT lwkmas = kmin + 1, upkmas = kmax - 1,
 lwpmas = rmin + 1, upwpmas = rmax - 1;
HEAP [lwkmas : upkmas, lwkmas : upkmas] MAT mastor, enstor;
mastor OF dnr := mastor; enstor OF dnr := enstor;
FOR i FROM lwkmas TO upkmas
 DO FOR j FROM lwkmas TO upkmas
 DO mastor[i, j] := NIL OD
 OD;
enstor := mastor;

the discretisation weights are either computed by compute data
and possibly written (with other information) to a data file,
or read from a data file. depending on the available space the
weights can be kept in central memory or left on the data file
till they are needed for actual discretisation.
#

```
INT cpos cposmas;

IF get data OR put data
THEN cposmas OF dcr:= HEAP [lw1mas:up1mas,lw2mas:up2mas] INT;
    cposen OF dcr:= HEAP [lw1mas:up1mas,lw2mas:up2mas] INT
FI;
REF [,] INT cposmas = cposmas OF dcr,
    cposen = cposen OF dcr;
INT avail := available;
IF INT border = (kmax - kmin + rmax - rmin + 2) * 2;
    INT needed = ( uniform ! 1 ! numgp - border )
         * 44 + (border - 4) * 59 + 100 - avail; needed > 0
THEN print((newline, " ===== d03zrb : insufficient field len"
    "ght, needed about ", whole(needed OVER 100 + 1, -5),
    "00 (decimal) words more.", newline));
    IF get data OR put data
THEN print((8"", "data kept on file, no abort.", newline))
ELSE fail(1, "insufficient central memory"); fin
FI;
FI;
IF put data
THEN putbin(locfile, numgp); putbin(locfile, kmin);
    putbin(locfile, kmax); putbin(locfile, rmin);
    putbin(locfile, rmax);
    putbin(locfile, INT (uniform ! 1 ! -1 ));
    putbin(locfile, positn); putbin(locfile, grid);
    opos cposmas:= char number(locfile); putbin(locfile, cposmas);
    putbin(locfile, cposen)#to reserve space for cposmas and /en#
FI;
IF NOT get data
THEN compute data(mastor, ensior, grid, positn, uniform,
    put data, locfile, cposmas, cposen, avail);
    IF erron THEN fin FI;
FI;
THEN set(locfile, 1, i, opos cposmas);
    putbin(locfile, cposmas); putbin(locfile, cposen)
FI
ELSE BOOL start:= TRUE , getthem:= TRUE , MAT w,
INT nsti:= 0, [1 : 60] INT situation, kstt, rstt,
[1 : 60] MAT sxy;
on logical file end(locfile,
    ( REF FILE f) BOOL :
    ( fail(42, "premature end of data file"); fin )
);
getbin(locfile, positn); getbin(locfile, grid);
    opos cposmas:= char number(locfile);
    getbin(locfile, cposmas); getbin(locfile, cposen);
    POR i FROM lw1mas TO up1mas
    DO REF [ ] INT positni= positni[i, ];
```
FOR j FROM lwa TO uwa
DO IF postn[i, j] >= inside
THEN IF start
THEN IF get them
THEN mator[i, j] := genmat(5, 8); avail := 44;
getbin(locfile, mator[i, j]);
get them := avail > 0
FI;
IF uniform
THEN w := mator[i, j]; start := FALSE FI
ELSE mator[i, j] := w
FI;
IF postn[i, j] = in nearb AND get them
THEN enator[i, j] :=
IF INT recog =
IF uniform THEN recognise sit(
postn[i-1:i+1, j-1:j+1], situation, nsit)
ELSE -1 FI ;
IF recog = 0
THEN kiset[nsit] := i; nsit[nsit] := j FI;
recog > 0
THEN sxy[recog]
ELSE INT nrow; getbin(locfile, nrow);
MAT losszy = genmat(nrow, 9);
avail := nrow * 9 + 4; get them := avail > 0;
getbin(locfile, losszy);
IF recog = 0 THEN sxy[nsit] := losszy FI ;
losszy
FI
FI
OD
FI;
end
END # end of generation weights by locd0izab #,

external for computation of grid from the user supplied information in dgrid.

PROC check coord = (REF [, ,] POINT grid, REF [,] INT pos,
NAGTAIL fail) VOID:
mlm 790521
BEGIN INT sign;

PROC det = (REF POINT p1, p2, p3) REAL :
((xc OF p2 - xc OF p1) * (yc OF p3 - yc OF p1) -
(xc OF p3 - xc OF p1) * (yc OF p2 - yc OF p1)) ;
PROC check two lines = (REP [] POINT gr1, gr2,
REP [] INT pos1, pos2) VOID :
BEGIN
 INT nsucc := 0, REP POINT p11, p12, p21, p22;
PROC check orientation = VOID :
BEGIN
 IF REAL area1 = det (p21, p12, p11);
 SIGN (area1) /= sign
 THEN fail(231, "grid point out of position")
 ELIF REAL area2 = det (p21, p22, p12);
 SIGN (area2) /= sign
 THEN fail(232, "grid point out of position")
 ELIF REAL area3 = det (p11, p21, p22);
 SIGN (area3) /= sign
 THEN fail(233, "grid point out of position")
 ELIF SIGN (area1 + area2 - area3) /= sign
 THEN fail(234, "grid point out of position")
 PI
END # check orientation #;
FOR j TO UPB gr1 DO
 IF pos1[j] /= outside AND pos2[j] /= outside
 THEN nsucc +:= 1
 ELSE nsucc := 0
 PI;
 CASE nsucc
 IN (p11 := gr1[j]; p21 := gr2[j]),
 (p12 := gr1[j]; p22 := gr2[j];
 check orientation),
 (p11 := p12; p21 := p22;
 p12 := gr1[j]; p22 := gr2[j];
 check orientation; nsucc :=2)
 OUT SKIP
 ESAC
OD
END # check two lines #;
REP [] POINT gr1, REP [] INT pos1;
REP [] POINT gr2 := grid[1,];
REP [] INT pos2 := pos[1,];
sign := (INT j := 0;
 WHILE pos2[j+:=1] /= corner DO SKIP OD ;
 SIGN (det (grid[2,j], gr2[j+1], gr2[j]))
)
FOR i FROM 2 TO 1 UPB grid DO gr1 := gr2; pos1 := pos2;
 gr2 := grid[i,]; pos2 := pos[i,];
 check two lines (gr1, gr2, pos1, pos2)
OD
PROC tfm grid = (DEFGRID dgrid, REF INT numgp,
 REF BOOL uniform, REF REF [], INT position,
 REF REF [], INT POINT grid, NAGFAIL fail) VOID :
 CO values of position[i, j] signify :
 -1 (= outside) : outside grid,
 0 (= border) : point on boundary grid,
 -3 (= corner) : corner point of boundary grid,
 1 (= inside) : point lying inside grid,
 2 (= innerab) : point lying inside grid but neighbouring
 boundary point(s).
 BEGIN
 IF numgp = 1 THEN fail(201, "unequal length of ex and ey of dgrid"); fin
 FI ;
 INT kmin := ex[0], rmin:= ey[0]; INT kmax := kmin, rmax:= rmin;
 FOR i TO upb ex DO IF INT ex[i] = ex[t]; kmin > ex[i] THEN kmin:= ex[i]
 ELIF kmax < ex[i] THEN kmax:= ex[i]
 FI ;
 IF INT ey[i] = ey[t]; rmin > ey[i] THEN rmin:= ey[i]
 ELIF rmax < ey[i] THEN rmax:= ey[i]
 FI
 OD;
 IF INT kmax = kmin - kmin + 1, jmax = rmax - rmin + 1;
 numgp:= (kmax * jmax); imax < 3 OR jmax < 3
 THEN fail(207, "grid does not contain interior grid points"); fin
 FI ;
 position := HEAP [kmin : kmax, rmin : rmax] INT ;
 REF [], INT position = position;
 FOR i FROM kmin TO kmax
 DO FOR j FROM rmin TO rmax DO position[i, j] := inside OD
 OD ;
 # grid preset on inside #
 INT i0 := ex[0], j0 := ey[0]; INT outi= kmin-1, outj= rmin-1;
 INT dir:= 0, in:= i0, jn:= j0, BOOL error:= FALSE;
 NAGFAIL nf = (INT m, STRING txt) VOID :
 BEGIN error:= TRUE ; fail(m, txt) END ;
 FOR i TO upb ex DO IF INT ti = ex[i], fj = ey[i];
 PROC trace = (REF [] INT loop) VOID :
 FOR k TO UPB loop
 DO IF loop[k] = border
THEN nf(205,"interesting border lines")
ELSE loop[k]:= border
FI

OD;

IF i1 = i0 AND j1 /= j0 THEN
 IF dir = 1 THEN
 THEN nf(209, "successive edges in same direction") FI ;
 trace(posn[i0, (j1 > j0 ! j0 ! j1 + 1) :
 (j1 > j0 ! j1 - 1 ! j0)]; dir:= 1
 ELIF i1 /= i0 AND j1 = j0 THEN
 IF dir = -1 THEN
 THEN nf(209, "successive edges in same direction") FI ;
 trace(posn[i1 > i0 ! i0 ! i1 + 1) :
 (i1 > i0 ! i1 - 1 ! i0)]; dir:= -1
 ELIF dir:= 0; i0 /= outi AND j0 /= outj THEN
 IF i1 = i0 AND j1 = j0 THEN
 ! nf(208, "successive corners coincides")
 ! nf(208, "successive corners not along grid line")
 ELIF posn[i1, j1] = border
 THEN nf(208, "successive corners coincide")
 ELSE in:= i1; jn:= j1
 FI;
 IF posn[i1, j1] = border THEN
 THEN if i1 = in AND j1 = jn THEN i0:= outi; j0:= outj
 ELSE nf(206, "non-closing border") FI
 ELIF i = upb ex THEN
 THEN nf(206, "non-closing border")
 ELSE i0:= i1; j0:= j1
 FI
ON;
IF error THEN fin FI;
FOR i FROM kmin TO kmax DO INT last:= outside, allast:= outside,
 REP [i INT loop = posn[i,];
 FOR j FROM kmin TO kmax DO loop[j]:=
 REP INT present = loop[j];
 CASE allast + 2
 IN IF last = outside THEN present:= - present FI ,
 CASE last + 2
 IN present:= - present,
 IF present /= border THEN
 THEN IF i = kmin THEN present:= outside
 ELSE REP [j INT lcg = posn[i-1,j-2 : j];
 INT temp = lcg[3];
 temp /= border THEN present:= temp
 ELSE INT tmp1 = lcg[3];
 ELSE present:= - present Fi
tmp1 /= border THEN present := tmp1
ELIF icg[1] = inside THEN present := outside
FI,
SKIP
ESAC,
IF last = border THEN present := - present FI
ESAC;
allast := last; last := present;
IF present = outside THEN numg := 1 FI
OD
OD;

copy coordinates

CASE gr OF dgrid IN
 (REF [,] POINT ar);
 IF i LWB ar > kmin OR 2 LWB ar > rmin OR
 1 UPP ar < kmax OR 2 UPP ar < rmax
 THEN fail(220, "array bounds for grid do not fit in"
 "boundary given"); fi
 ELSE grid := ar[kmin : kmax AT kmin, rmin : rmax AT rmin];
 uniform := FALSE
 FI,
 (PROC (INT, INT) POINT pr);
 BEGIN grid := HEAP [kmin : kmax, rmin : rmax] POINT ;
 uniform := FALSE ;
 FOR i FROM kmin TO kmax
 DO REF [,] POINT locg = grid[i, ,],
 REF [,] INT loop = positn[i, ,];
 FOR j FROM rmin TO rmax
 DO IF locg[j] = border THEN locg[j] := pr(i, j) FI
 OD
 OD
 END ,
 (TRIO tr);
 BEGIN grid := HEAP [kmin : kmax, rmin : rmax] POINT ;
 POINT p00 = p00 OF tr, p10 = p10 OF tr,
 p01 = p01 OF tr;
 REAL ox := xc OF p00, oy := yc OF p00;
 REAL dxk = xc OF p10 - ox, dyk = yc OF p10 - oy,
 dmr = xc OF p01 - ox, dyr = yc OF p01 - oy;
 grid[kmin, rmin] := p00;
 FOR i FROM kmin TO kmax
 DO REF [,] POINT locg = grid[i, ,];
 BEGIN POINT p1 = locg[1];
 IF i > kmin
 THEN xc OF p1 := (ox + := dxk);
 yc OF p1 := (oy + := dyk)
 FI;
 REAL px := xc OF p1, py := yc OF p1;
 FOR j FROM 2 TO UPP locg
 DO xc OF locg[j] := (px + := dmr);
yc OF logl[j] := (py := dyr)
OD
END
ESAC;

* compute near border elements of grid *
i0 := ex[0]; j0 := ey[0]; positn[i0, j0] := -2;
FOR i TO upb ex
DO INT i1 = ex[i], j1 = ey[i];

PROC trace = (REP [] INT loop) VOID :
FOR k TO UPB loop
DO IF loop[k] = inside THEN loop[k] := innearb FI OD;

IF i1 = i0 AND j1 /= j0
THEN IF j1 > j0
THEN trace(positn

(i0 = kmin ! i0+1 !: positn[i0-1,j1-1] <
inside ! i0 + 1 ! i0 - 1),
(j0 > rmin + 1 ! j0 - 1 ! rmin+1) : j1)
ELSE trace(positn

(i0 = kmin ! i0+1 !: positn[i0-1,j1+1] <
inside ! i0 + 1 ! i0 - 1),
 j1 : (j0 < rmax - 1 ! j0 + 1 ! rmax - 1)])

FI
ELSE i1 = j0 AND i1 /= i0
THEN IF i1 > i0
THEN trace(positn

(i0 > kmin+1 ! i0 - 1 ! kmin+1) : i1,
(j0 = rmin ! j0+1 !: positn[i1-1,j0-1] < inside
! j0 + 1 ! j0 - 1)])
ELSE trace(positn[i1] : (i0 < kmax-1 ! i0+1 ! kmax-1),
(j0 = rmin ! j0+1 !: positn[i1+1,j0-1] < inside
! j0 + 1 ! j0 - 1)])

FI
FI;
IF positn[i1, j1] = -2
THEN positn[i1, j1] := corner; i0 := outi; j0 := outj
ELSE positn[i1, j1] := (i0 = outi ! -2 ! corner);
i0 := i1; j0 := j1
FI
OD;
check coord(grid[], positn[], n)
END # of tfm grid #,

PROC recognise sst = (REP [] INT pos, REP [] INT situation,
REP INT neit) INT :
yield is index such that sxy[ind] is sxy with same situation,
else store new sxy-weights and neit := 1 #
BEGIN INT val := 0, pow := 1;
FOR i TO 3 DO FOR j TO 3
 DO IF pos[i, j] <= border THEN val+ := pow FI;
 IF pos[i, j] = -3 THEN val+ := pow FI;
 pow * := 4
 OD OD;
pow := 0;
FOR j TO nsit WHILE pow = 0
 DO IF situation[j] = val THEN pow := j FI OD;
 IF pow = 0 AND nsit < 60
 THEN situation[nsit + := 1] := val FI;
pow
END # recognize situation #,

COMMENT the interface for semidiscretization of initial boundary value problems. this part by: p.h.m. wolkenfelt (ordinary points) and j. kok (near-boundary points), using the minimal-inverse-method by k. dekker. COMMENT

-------------------------------- begin of discretizer --------------------------------#

PROC compute data = (WMAT mastor, snstore, REP [,] POINT grid,
 REP [,] INT position, BOOL uniform, put data,
 REP FILE data, REP [,] INT eposmas, eposen,
 INT available) VOID:
BEGIN INT kmin = 1 LWB position, rmin = 2 LWB position,
 kmax = 1 UPB position, rmax = 2 UPB position,
 RSAL sqrt2 = 1.414 21356 23731, sqrt6 = 2.449 48974 27832;

PROC generate weights = (INT k, r, REP [,] POINT grid
) MAT:
BEGIN [1 : 8] REF POINT p, INT ind := 0;
FOR r1 FROM 3 BY -1 TO 1
 DO FOR k1 TO 3
 DO IF r1 /= r OR k1 /= k
 THEN p[ind+ := 1] := grid[k1, r1] FI
 OD
OD;
[1, 3] [2, 3] [3, 3] p1 p2 p3
[1, 2] [2, 2] [3, 2] p4 pc p5
[1, 1] [2, 1] [3, 1] p6 p7 p8

provided that [k, r] indicates the centre of the nine points #
REF POINT pc = grid [k, r];

REAL xcentre = xc OF pc, ycentre = yc OF pc;
MAT \(m = \text{genmat}(8, 14) \),
REAL delta := 0.0;

FOR i TO 8
DO REAL xi = xc OF p[i] - xcentre,
yi = yc OF p[i] - ycentre;
REAL xi2 = xi*xi, yi2 = yi*yi;
wl[i, j] := (xi, yi, xi2/sqrt2, xi*yi, yi2/sqrt2,
xi3*xi/sqrt6, xi2*yi/sqrt2,
xi*yi2/sqrt2, yi2*yi/sqrt6,
xi2*xi2/(3*sqrt6), xi*xi2*yi/sqrt6,
xi2*yi2/2, xi*yi*yi2/sqrt6, yi2*yi2/(2*sqrt6)
);
IF ABS xi > delta THEN delta := ABS xi FI;
IF ABS yi > delta THEN delta := ABS yi FI
OD;

scale factors
REAL d1 := 1/delta; REAL d2 := d1*d1; REAL d3 := d1*d2,
d4 := d2*d2;
[] REAL scale = (d1, d1, d2, d2, d3, d3, d3, d3, d4, d4, d4, d4, d4);
scaling the columns of m
FOR j TO 14
DO REAL e = scale[j];
 FOR i TO 8 DO m[i, j] := e OD
OD;

computation of the minimal inverse
MAT w = min inverse(m, 6);

scaling back the rows of w
FOR j TO 8 DO w[i, j] := sqrt2; w[5, j] := sqrt2 OD;
FOR i TO 5
DO REAL e = scale[i];
 FOR j TO 8 DO w[i, j] := e OD
OD;

send data to mass storage # w
END # of generate weights #;
\(\text{ws1} = \text{ws[1], ws2 = ws[2,]}, \)
\(\text{INT notj} = (3 - \text{row}) \times 3 + \text{col}, \text{INT } j = 0; \)
\(\text{REF REAL sumx} = \text{sk1[notj]} := 0.0, \)
\(\quad \text{sumy} = \text{sk2[notj]} := 0.0; \)
\(\text{FOR } \text{ii} \text{ TO } 3 \)
\(\quad \text{DO } \text{jj} := 1; \text{IF } \text{ii} = \text{notj} \text{ THEN } \text{jj} := 1 \text{ FI} ; \)
\(\quad \text{sumx} := (\text{sk1[jj]} := \text{ws1[ii]}); \)
\(\quad \text{sumy} := (\text{sk2[jj]} := \text{ws2[ii]}); \)
\(\text{OD} \)
\(\text{FI} \)
\(\text{OD} \)
\(\text{skrn[: neq,]} \)
\(\text{END } \text{# generate on #}; \)
\(\text{INT } \text{nsit} := 0, \text{avail} := \text{available}, \)
\([1:60] \text{INT situation, keit, reit, [1:60] MAT exy,} \)
\(\text{BOOL start} := \text{TRUE}, \text{keep them} := \text{TRUE}, \text{MAT } w; \)
\(\text{IF put data} \)
\(\text{THEN on physical file end(data,} \)
\(\quad (\text{REF FILE } f) \quad \text{BOOL :} \)
\(\quad (\text{fail(2, "back ground memory exhausted"); } \text{fin }) \)
\(\text{FI} ; \)
\(\text{FOR } k \text{ FROM } \text{kmin + 1 TO kmax - 1} \)
\(\text{DO REF [] INT postk = position } [k,] , \)
\(\text{cposmk} = (\text{put data } \text{! cposmas}[k,] \text{ ! NIL }), \)
\(\text{cposnk} = (\text{put data } \text{! cposen}[k,] \text{ ! NIL }); \)
\(\text{FOR } r \text{ FROM } \text{rmin + 1 TO rmax - 1} \)
\(\text{DO IF put data THEN cposmk[r] := cposnk[r] := 0 FI ;} \)
\(\text{IF postk[r] := inside} \)
\(\text{THEN IF start} \)
\(\text{THEN MAT: } \text{rm} = \)
\(\quad \text{generate wghts(2, 2, grid[k-1 : k+1, r-1 : r+1]);} \)
\(\text{IF put data} \)
\(\quad \text{THEN cposmk[r] := char number(data);} \)
\(\quad \text{putbin(data, rm)} \)
\(\text{FI ;} \)
\(\text{IF keepthem} \)
\(\quad \text{THEN master[k, r] := rm; avail := 44;} \)
\(\quad \text{keepthem := avail > 0;} \)
\(\quad \text{IF NOT (keepthem OR put data)} \)
\(\quad \text{THEN fail(1, "insufficient central memory"); } \text{fin } \)
\(\text{FI} ; \)
\(\text{FI} ; \)
\(\text{IF uniform THEN } w := \text{rm; start} := \text{FALSE } \text{FI} \)
\(\text{ELSE master[k, r] := w} \)
\(\text{FI} ; \)
\(\text{IF postk[r] = in near b} \)
\(\text{THEN REF [,] INT } \text{pos = position[k-1:k+1, r-1:r+1];} \)
INT recogn = IF uniform THEN recognize sit(pos, situation, nsit) ELSE -1 FI;

store[k, r]:= IF recogn <= 0 THEN MAT rem = generate en(grid[k-1:k+1, r-1:r+1], pos);
 IF recogn = 0 THEN k=it[nsit]:= k; r=it[nsit]:= r;
 sxy[nsit]:= rem
 FI;
 IF put data THEN coposnk[r]:= char number(data);
 putbin(data, 1 UPB rem); putbin(data, rem)
 FI;
 IF keep them THEN avail := (1 UPB rem) * 9 + 4; keep them:= avail > 0; rem
 ELSE NIL FI
 ELSE INT ks = k=it[recogn], rs = r=it[recogn];
 IF put data THEN coposnk[r]:= coposnk[ks, rs] FI;
 sxy[recogn]
 FI
 FI
 OD

END # compute data #;

DISCARR dc = load03zab(dg, lfn); fin : SKIP ; IF error THEN NIL ELSE dc FI
END # of d03zab # ;

SKIP

END # of Source Text #