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1. INTRODUCTION

1.1. Classical Runge-Kutta methods

For the numerical solution of Volterra integral equations of the second

kind
X

(1.1) £(x) = g(x) + I K(x,y,£f(y))dy, x 20,
0

we shall consider Runge-Kutta methods of the form

m
(i) =~ £)
fn+1 - Fn(xn+eih) +h Zzl aiKK(xn+diEh'xn+cﬂh'fn+1)'
(1.2a) ’ i=11)m, n=20,1,...
_ (m) - _
fn+1 B fn+1’ em =cp =1

Here, x = nh and fn is a numerical approximation to f(xn). The function

Fn(x) is a discretization of
X
n

F (%) :=g(x) + .[ K(x,y,f(y))dy,

o;

defined by

n nm
(1.2b) F (x) :=g(x) +h D) wé@)x(x,xfz),ffz)), nzo0,

j=0 £=1 b
where X;K) denotes the point xj_1+-c£h, and where wéf) are suitable quadra-
ture weights with wég) =0, £=1(1)m (i.e. Fo(x) = g(x)). We define fém) =
£(0) = g(0), and adopt the convention that wég) =0 for £ =1,2,...,m-1, so
that the terms involving the undefined values fél) roo .,fém_l) (which we carry

along only for notational convenience) vanish in (1.2b).

We shall refer to (1.2a) as the forward (Runge-Kutta) step and to (1.2b)
as the lag term.

The Runge-Kutta parameters ei, aiﬂ’ dil and cp are determined by accu-

racy conditions (cf. [8] and the references therein; see also [13], where a



more general class of methods with Cp replaced by ciﬂ is treated).
Depending on the choice of the parameters in the forward step two impox:
tant classes of methods can be distinguished: the choice diﬂ =C; Gi =c;

yields methods of Pouzet type whereas for diﬂ = dﬂ’ 6, = c, we obtain methods

of Bel'tyukov type (see [7] and [4]). In our analysislwe consider the gen-

eral methods defined by (1.2a) and some suitable lag term of the form (1.2b).
A division into subclasses can be given depending on the choice of the

quadrature weights in the lag term (1.2b). Here, we give three important

classes considered in the literature:

n m '
~ L)
(1.3a) F (x) =g(x) +h ) ) a K(x,x; ,£.°),
n =1 £=1 ml j 3
n m
~ ~ L) (L)
(1.3b) F (x) =g(x) +h ) Y & K(x,x. " ,£.7),
n jo1 g21 ™ b
(1.3¢) F (x) = g(x) +h jZO LAR I R

The choice (1.3a) can be used in ecombination with a forward step of Pouzet-
type, and then yields an extended Pouzet method. Note that the guadrature
weights in the lag term (1.3a) are the Runge-Kutta parameters e of the
forward step. As a consequence of this connection, extended Pouzet methods

have the property that
(1.4) fn = Fn(xn).

In contrast to extended methods, lag terms of the form (1.3b) or (1.3c) (in
which the quadrature weights have no relation to the forward step) yield the
so-called mixed Runge-Kutta methods. Note that for (1.3b) the lag terxrm uses
L)

intermediate approximations fj , whereas for (1.3c) only values fj (i.e.

approximations at the step points xj = jh) are used.

1.2. Modified Runge-Kutta methods

This paper is primarily concerned with the stability behaviour of the
methods (1.2a-Db). In our analysis we follow the approach based on some test

equation as a model problem, e.g. the basic test equation [1,6]



X
(1.5) £(x) = g(x) + A J f(y)dy.
0

It can be shown (cf. (3.4)) that such an analysi#s leads to recfirrence rela-

tions of the form

(1.6) fn+1 = R(hk)?n + inhomogeneous term,
where En = En(x)-—g(x) is independent of x, and where R(hA) is a rational
function of hX whose coefficients are functions of the Runge-Kutta parameters.
For extended Pouzet methods we have, using (1.4), fn+1 = R(h)\)fn + inh. term,
which is the recurrence relation of a Runge-Kutta method for ODEs. For mixed
methods En # fn-gn, and the stability behaviour is influenced by the lag
term. In order to eliminate the effect of the lag term, VAN DER HOUWEN [13,
14] proposed a modification of the scheme (1.2a-b) by replacing En(x) with

;;(x) defined as

N* ~J ~
(1.7) Fn(x) Fn(X) + v (%) (fn-Fn(xn)),

where v (x +-9ih)

N Yy € [0,1]. The form (1.7) is motivated by the fact that

for v(x) 1, the relation (1.6) changes to £ = R(h)\)fn + inh. term, ir-

respective of the choice of the lag term. An zgéitional advantage of the
formulation (1.7) is that for Runge-Kutta methods where one or more of the
ei's vanish, the chBIEé‘YY§£) = 1 and Y(x5 = Oifg} X #<;5 yigid; ﬁﬁnge—Kutta
methods in which it is not necessary to evaluate the lag term Fn(x) at X=X .
The first examples of such methods can be found in BEL'TYUKOV [7] (see also
[13] and [1]). In the latter reference this type of metHods was termed
economized versions of the Runge-Kutta method. Note that y(x) = O yields the
unmodified method (1.2a-b). Observe that fn-En(xn) in (1.7) can be regarded
as a residual which measures the amount by which fn fails to equal Fn(an
Therefore y(x)(fn‘Fn(xn)) is called a (weighted) residual correction to
F_(x).

In this paper we use the terminology &iven in definitions 1.1 and 1.2.

DEFINITION 1.1. A method based on (1.2a) with the (unmodified) lag term

En(x) defined by (1.2b) is an unmodified (or classical, standard) Runge-



Kutta method.

DEFINITION 1.2. A method based on (1.2a) with the lag term En(x) replaced by

~%
the (modified) lag term Fn(x) given in (1.7) is a (y-)modified Runge-Kutta
method.

In Section 3, we present the stability analysis of the modified Runge-
Kutta methods described above, with respect to a convolution test equation
(equation (3.1)), and in Section 4 stability results are given both for the
basic test equation and this convolution equation.

Firstly, however, the effect of the modification (1.7) on the rate of
convergence is investigated in Section 2. It turns out that the provable
order of accuracy may be reducéd by 1 if Yo = 1; this is the price paid for
an improved stability behaviour.

This paper is developed from the institute report [14]; it contains a
more general convergence result and stability theorems for the basic test
equation. We also derive the stability polynomials for a larger class of

quadrature rules (cf. Section 3.3.2).
2. CONVERGENCE

In this section we prove the convergence of the Runge-Kutta methods
(1.2a) modified according to (1.7). In the convergence proof we need the
local error of the numerical method: let féii
of (1.2a-Db), (1.7) if we substitute f(xn) for fn and Fn(x) for Fn(x) (which

implies that F:(x) = Fn(x)); then we define the local error Tél)(h) at

(i=1,...,m) be the solution

X + cih by

(1) _ (1)
(2.1) Tn (h) := f(xn*-cih) - fn+1'

(i)

Furthermore, we define the global error en+1

(1)

(1)
(2.2) 1 I

.= If(xn+ cih) - fn+1

the quadrature error Ej(x,h) for the interval [0,x,]



X

n
: n m
(2.3) En(x,h) := '[ K(x,v,£(y))dy - h 2 Z Wég)K(x,xfz),f(xgz)))
5 j=0 £=1 ™ ) J
and the function Dn(x,h)
IO if x = xn

Dn (X,‘h) = 1
(En(X,h)—En(xn,h))/(x-xn) if x # X -

-> -
In the convergence theorem we shall need the vectors e and Tn(h)

2) ) n+l

whose components are respectively given by e 41 and Tn (h), where £ runs

through the set of integers L defined by

L=1{1,2,...,mN\{£ lwég) =0 for all n and j}.

In other words, if £ ¢ L then, for all j, the values f;ﬂ)

are not used in
the lag term. For mixed RK methods of the form (1.3c), L = {m}, whereas for

} >
extended Pouzet methods L = {KI ane # 0}. For a vector v with components

V(Z), L ¢ L we define the maximum norm | “m
(2.4) 191 += max v,
Lel

We shall also use the following lemmas.

LEMMA 2.1. Let the sequence {En}n=0 (sn > Q) satisfy the inequality

n
en+1 - Clsn = C2 .2 6j + Mn
j=0
where Mj and Gj and the constants C1 and C2 are non-negative. Then
GRS
€ 41 _C2C1_'1jzo 85+ C; €O+_c‘1T?:§ M,

i by CT and take the summation for

PROOF. Multiply the inequality for En 1

+1-
i =0 ton. g

LEMMA 2.2. Let the sequence {en}z= (en > 0) satisfy the inegquality

0



€ .4 S hCy jZO €5+ Cyr

where C3 and C4 are non-negative constants. Then, for h sufficiently small

and (n+l)h = x,

< (hC3e 4-C4)exp(c3x).

Entt 0
PROOF. See e.g. BAKER [4, p. 926]. o

We now state the convergence theorem

THEOREM 2.1. Let the function K(x,y,f) satisfy the Lipschitz condition
* *
IK(x,y,£) - ok(x_,¥,f) - K(x,¥,£) + oK(x ,v,f ) |
*
< L{1—a+a]x-xn|}]f—f |,

where L is a constant and o € [0,1]. Then as h > 0, while (n+l1)h remains

fixed,

R th.(x.+6ih,h)|
(2.5) e ||°° < A maximum {lE.(xj+9ih,h)|, J_J b+

n+l j<n, 1<i<m 1=y, *+ Ch
" ™ (|
+ Bmz.x { T(h)"oo' m}
J=sn m

where A, B and C are (bounded) constants.

PROOF. From (2.1) and (2.2) it follows that

(1) ~ (i) (i)
(2.6) e b1 S €y tIT M,
~(1) _ (1) _=2(1) e (i) = (1)
where e 1 = Ifn+1 fn+1|' From the definition of fn+1 and fn+1 and the

Lipschitz condition on K with o = 0 it follows that

m

- (1) - - ()
(2.7) € 1 S AF (x +6.h) + haL 121 & 11

4



. ~k . -
A = - _ .
whgre Fn(x) IFn(x) Fn(x)l and a maxilz Iaiﬂ" From (2.7) we derive

~ (1) aLm
2. < AF = = .
(2.8) e i1 n(xn+9ih) + hA 1Ta§m AF (xn+6£h), Al Tohm

If we introduce the notation F:(x) = g(x) + h z Z wéf)K(x,xfg),f(xgz))),-then
E (x,h) =F (x) - F+(x) and
n n n

OF_(x) = |y(x){f -£(x )} + {§n<x)—v (x)ﬁn(xn)}

- {F:(x)-y (F (x )} - {E_Ge,h) -y (E_(x_ )}

Writing e = |f -f(x )| we obtain
n n n
n m
AFn(x) < 'y(x)en + h 2 z vlw(g)l-lK(x,xfz),ffz))
j=0 £=1 ™ 3
L) &) (£2) (£)
- ( -
Y (xX)K xn,xj ,fj ) K(x,xj ,f(xj ))

+ v Goxeg = e+ s e -y e m .

By using the Lipschitz condition on K with a = y(xn+-eih) = Yi' and writing

=(i) _ _ (£) _ —
X 11 = xn+eih, W = méx Ian |, Y = méx Yy 0 = max |ei|,
nl]l'e i i
we obtain
o >
+ < - le. |

AFn(xn Bih) vie, t hiw{1 yi+y6h} 'Zo el +

(2.9) J

—=(i)
+ (1_Yl) IEn(xn+1'

=(1)
h) | + Yethn(xn+1,h)|-

Substitution of (2.9) in (2.8), and then (2.8) in (2.6) yields

n
(1) 2 >
e /1 S {Yi+hA1y}en + {hLW[l-Yi+y8h] + h LWA1[1+y6h]} .z llejllco
(2.10) i=0

- - (i)
+ [1-yi+hA1]|En(xn,h)l + [1+hA1]yeh|Dn(xn,h)l + lTn (h) |,



-(1)

where IEn(xn,h)I = max, lEn(xn+1,h)L an(xn,h)l = max, IDn(xn+1,h)l.
For i = m, (2.10) has the form
(m) T iy
= < E
e i1 e 41 S A2en + A3 jzo llejll°° + A4IEn(xn,h)| + ASh[Dn(xn'b)l

(2.11)
(m)
+ ITn (h) |,

where, as h - 0, A, = 0(1) and

2 . _
A, = 1+ha )y, A, # 0, A, = 0m*y, A, = Om), if Y, = 1
or

A, <1, ;= 0(n), a, = 0(1)y, if Y, <1

Application of Lemma 2.1 yields the inequality

n A
7 -
< e 1
e 11 hA5 .2 ej ot A6e0 + T 00 h max [Dj(xj,h)l
j=0 m j<n
(2.12)
A
i} (m)
+A_max |E,.(x.,h)| + ——=—max |T. ' (h)],
8 j<n J 1 Ym+0(h) j<n J

where the constants Ai are uniformly bounded. Substitute the inequality

(2.12) for en into (2.10) to obtain

n
1) 1.1 3
e . ShA g, 'X sl + Aj,eq + A, max |E, (x.,h) |
j=0 j<n
A A
13 - 14 (m)
(2.13) + h max |D,(x.,h)| + ——A37~ max [T,  (h)]|
1-Ym+5(h) jen 33 1-y _+0(h) jen-1 3

(1)
+ T, 7 ().

From (2.13) it is easily verified that



le I < e I B
e il S hA Z el + Aoy + B, max IE.(xj.h)l
j=0 j=n
A13 =
(2.14) + Ty +0 (0 h @ix [Dj(xj,h)!
m j<n
A
14 (m) -
+ ——— 555 max [T, (h) ]| + I (n)l .
1 Ym+0(h) j<n-1 n 0
Application of Lemma 2.2 yields the result (2.5). J

The condition on K required in this theorem is satisfied if, for exam-
ple, K and KX satisfy Lipschitz conditions with respect to f. We then may

write

* *
IK(x,y,f)—aK(xn,y,f)—K(x,y,f )+aK (x ¥, F ) |

| (1-0) [K(x,y,f)-K(x,v,£)] + a K, (t,7,£)dt

R

n
X
*
- a .[ K, (t,y,f ydt|
X

n

IA

(1—a)L1|f—f*| + alx—xnlelf—f*l

from which the condition in the theorem is immediate.
Furthermore, we shall now discuss the error bound (2.5) in more detail.

If Y, < 1, then 1—Ym+-0(h) = 0(1) and in this case

max hID.(x.+eih,h)[ < 2 max IE_(x,+9ih,h)|,
1<i<m ] 1<i<m J

so that we can express (2.5) in terms of the quadrature errors Ej(x,h) and

local truncation errors only.

If Yy = 1, however, then 1-ym4-0(h) = 0(h) and the left-hand side of (2.5)

contains expressions of the form Dj(xj+6ih,h) and O(h-l)T;m)(h). For most

quadrature formulae, however, it can be shown that Dn(x,h) (which was defined
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és‘(En(x,h)—En(xn,h))/(x—xn) has the same order of accuracy as En(x,h),
provided that the kernel is sufficiently smooth.

A disadvantage of the introduction of the modification (1.7) with
Ym = 1 in a given Runge-Kutta method is the possibility of loosing an order

of accuracy. This can be seen by the following heuristic argument.

Let us assume that |E. (x,h)| = 0%, IT{™ ()] = 0P ana II%j ml_=
+1
0m™) then 121 =0mY) + 0®™Y) + 0@™?) iy <1 ana 1 I =
n+1 ¥+1 m n+l o«
O(hq) + O(hp) + 0(h )y if Y, = 1. If the lag term (1.3c) is used, then
"E"j(h)"°° = IT;m)(h)l and hence r = p. Therefore an order of accuracy is lost

if Ym = 1 and p+1 £ g. This result is corroborated by the numerical examples

in Section 5.
3. STABILITY

Various equations of the form (1.1) have been taken as test equatiohs
in the study of numerical stability. The test kernel K = Af was proposed by
MAYERS [17] in 1962 and only recently (1977) was an x-dependent kernel which
essentially behaves as K = (a+bx)f investigated [13]. A rather general
class of separable kernels K = ZAi(x)Bi(y,f) for the study of stability was
first proposed in [15] where also polynomial convolution kernels are dis-

cussed. The most simple example of such convolution equations is given by
X

(3.1) f(x) = g(x) + J (Au(x-y)) £(y)dy, A, € IR.
0

The papers mentioned above deal with a rather restricted class of me-
thods. Extensions to more general classes of methods have been presented in
a number of recent papers ([6], [5], [1] and [2]).

In this paper we consider the linear equation (3.1) since consideration
of this equation is sufficient to enable us to establish some promising sta-
bility properties of the modified methods, in comparison with conventional
(unmodified) methods.

Application to (3.1) ef the y-modified Runge-Kutta method ((1.2) with

N* ~
-Fn(x) for Fn(x)) vields the equations
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(1) _ ) o ~
fn+1 = g(xni-eih) Yig(xn)~+yifn-f(1 Yi)In-+hu6iGn
(3.2a)

(£)

m
2
-+£Z1 aiﬂ{hki-h u(diﬂ-cz)}fn+1,

where we have defined

L)

~ 7T oL@
(3.2b) I, (=L (x)) :=h 121 vy (HuGe —x, ) -eph) S,

j=0

n m
(3.2¢) G =n ) J W B 0
j=0 £=1 ™ J

-> T T
et e =1[1,...,1]1, ? = [Yl,...,ym] , B = [61,...,6m]T and let AO and A1 de-

note the matrices whose entries in the i-th row and £-th column are ail and

. . co _ 2 -1
aiﬂ(diﬂ—cﬂ)' respectively, and define, with M = (I-—hAAO-h uAl)
>T > >T > T > .
(3.3) Ri = siMe, Si = eiMG, Ui = giMy, Vi = Ri-Ui, i=1(1)n.

. . . , 2
Thus, Ri' Si' Ui and Vi are rational functions in the variables hA and h yu.

It is then easily verified that we may write (3.2a) in the form

(i) ~ ~ .
. = . . + VvV, + . rm,
(3.4) fn+1 huSlGn + Ulfn VlIn inh. te

In particular, we have for i = m

(3.5) £

]

hyS G+ U £ + V. I_ + inh. term.
n+1 m n m n mn

Notice that for ? = yg-(i.e. Yi =y for all i, 1 = 1(1)m) (3.4) reduces to

(3.4") féii = YR, £+ <1—y)RiEn + hpsiEn + inh. term

where Ri and Si, defined in (3.3), are independent of ¥.
Relation (3.5) describes how the forward step (characterized by Sm' Um

. In

£)

(
nj
display a special structure. Due to this structure it is possible to derive

and V_), the lag term (i.e. E and E ), and £ influence the value £
m n n n n+l

the following we shall consider different lag terms in which the weights w
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coupled difference equations for values fn' I, and G- From these differ-

ence equations Gn and In can be eliminated yielding a difference equation

in terms of fn—values only. (These are the components we are usually interest
ed in, and stability of such a relation is called "full step stability" in
[1].) This elimination step is described in the following Lemma.

L > 1 M) T ,
LEMMA 3.1. Let {zn}n=0 (zn = [zé ),...,zé )] ) satisfy the system of differ-
ence equations with constant coefficients

(3) _ (1)

(3.6) n+l-k ~ “n+1’

i=1(1)Mm,

I ™~

Ti.(E)z
=1
where Tij is a polynomial of degree at most k, and where E denotes the for-

i [
ward shift operator. Then each component {zél)}n_ satisfies a difference

0
equation of the form

. (i) _ ~(1) .
(3.7) T(E)Zn+1—kM = gn+1, i=1(01)M,
where é(i) has the form 20 (E)g(j) for some polynomial © and
n+1 ij n+1 ij
(3.8) T(E) = det(Tij(E)).

PROOF. The proof is based essentially on a formal application of an elimina-

tion process. It is perhaps best illustrated for M = 2. For M = 2 the system

reads (with n replaced by n-k)

(1) (2) _ (1)

Ty B2 o ¥ T ® 20 o T Tniik

11

(1) 2  _ (2

Tor B2 00 o ¥ T E 2 0 o = Fny1k -

21
In order to eliminate {2(2)} we apply T22(E) to.the first equatioen, andT12(E
n

to the second, and subtract to obtain

(1) (1) (2)

{19 (E)Ty (B) =1y (B) Ty (BY Y2 g o = Top (B 4y 3~ T1o ®Y 00
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which is of the form (3.7). A general proof arises on writing T(E) =
[Tij(E)], T(E) = [Gij(E)] and defining I (E) := adj(T(E)), the classical ad-
joint. Then Z(E)T(E) = T(E)I and (3.7) may be deduced from (3.6). O

A caveat in the interpretation of Lemma 3.1 is appropriate, since if
%(E) and cij(E), j=1,...,M, have common factors then (3.7) is a recurrence
of higher order than necessary, and its characteristic equation has unwanted
roots.

An important corollary is:

> Jo® :
COROLLARY., Let the vector {Zn}n—o satisfy the system of difference equations

(2.6), and let {zél)}:z satisfy the scalar difference equation (3.7). Then

0
the characteristic equations associated with these difference equations are

identical. il

(1)
n+l-k
rence relation (3.7) if T(E) is a Schur polyncmial. (We observe that one

This corollary tells us that the values z satisfy a stable recur-
should check whether (3.7) is of sufficiently low order.)

Returning to the equation (3.5) we shall now derive the difference equa-
tions for En and En for three different choices of the lag term. Application
of the Corollary then yields the characteristic equation associated with the
difference equation satisfied by {fn}:=0' For a discussion of the character-

istic equation as a tool in the stability analysis for integral equations we

refer to [6].

3.1. Extended Pouzet methods

In this case fn = En + g, S° that (3.4) yields

(1)

(3.9) fn+1

=R, f + huS.E + inh. term
i™n in

>
where Ri is independent of y! In addition, we have, in view of (l1.3a), that

14
14

v 2)
-G =h £21 amﬁfn+1 = (using (3.9))

* Fer
hrR £ + hzus G + inh. term
mn m n
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where R zﬂ 1 3np £ and S = zﬂ 1 mﬂ 2 Taking 1 = m in (3.9) we arrive
at the equations

£ = R £ + husS E 4+ inh. term
n+1 mn m n
(3.10)
~ ~ * 2 P .
G -G ,=hR f + h uS G + inh. term.
n+l n m n mn

From these equations Gn can be eliminated to obtain a difference equation
in terms of fn only, whose characteristic equation is, after application of

Lemma 3.1 given by

2 2 % : 2 * *
(3.11) o - mm+1+h“%Qc*’“&+h‘”%fm_%fm”'_

(£)

3.2, Mixed Runge-Kutta methods using intermediate values fj in the lag temn

In this case the lag term is defined by (1.3b). We derive the following

difference equation for En.

Q
2

m
-8 =n ) £)

n+1 n £=1 apfney = (using (3.4))

(3.12)

hi £ + hV T + h2uS G + inh. term,
mn m”n mn

where ﬁ = zamKUz and similar definitions for G and S . For E we derive
m m m n

)

1
H
I

- o huG +h KE mz{ki-uh(l cz)}f

(3.13)

I

huG + hU £ + hV I + h2uS & + inh. term
n mn mn mn

h ~ - - . + _ . . . . . ~ ~

where Um X amz{l ph(1 cﬂ)}Uﬂ and similar definitions for Vm and Sm' The
difference equations (3.12) and (3.13) together with (3.5) yield a system
of difference equations, and the characteristic equation of the difference
equation satisfied byA{fn} can be found by application of:<Lemma 3.1 (with
M= 3).
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3.3. Mixed Runge-Kutta methods using only values fj in the lag term

3.3.1. {p,0}-reducible quadrature rules

The lag term is now defined by (1.3c) so that the expressions (3.2b)

and (2.2c) become

n
I =h .2 wnj[x+u(xn—xj)]fj
j=0
N n
G =h } LAY
=0

For the present we assume that the quadrature formulae based upon the weights

wnj are (p,0)-reducible (see [19]), i.e. we assume that

0(1)n-k-1,

(3.14) ) aw =

k 0 for j
r n-r,j {

r=0 bn—j for j = n-k(1)n.

where ar and br are the coefficients of a LMS method for ODEs, and where
k-r -
p(£) =}at = and 0(z) =]b T

difference equations

. With this assumption we can derive the

P ad i

(3.15a) a G =h 2

=0 r n+l-r =0 r n+l-r
ko k ) k

3.15b T = - G

( ) Z al iy z br{hki-r h u}fn+1—r hyu 2 raan+1_r
r= r=0 r=0

Application of Lemma 3.1 to (3.15a-b) together with (3.5) yields the charac-

teristic equation

k-1, 2
g e (@ (g-U) - hAv p(5)o(z)
(3.16)
2 2 -
- h"wv_[p(2)o, (2) -p(@)o(@)] - h uSmp(C)c(Z;)} =0
- - - -
where pl(E) = Zrarck Y and Gl(C) = Xrbrck r. For the special case that vy =¢
(i.e. Yi =1 for 1 = 1(1)m) Vi = 0 and (3.16) reduces to

3.160 @ ie@ (c-u) -n’us o0} = 0.
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We .observe that for this special case the equation (3.16') has a factor p (%)
Thé presence of this factor is a consequence of the generality of the analy-
sis, and it indicates that the analysis can be simplified to obtain (3.16")
without the factor p(z). In order to see this we look at (3.5) and observe
that we do not need the recurrence relation (3.15b) for En since Vm = 0.
Application of Lemma 3.1 to (3.5) and (3.15a) then yields (3.16") without the
factor p(z).

3.3.2. Block-reducible quadrature rules

In Section 3.3.1 we assumed the (p,0)-reducibility of the quadrature
rules. We now extend these results by considering quadrature rules which
are block-reducible. That is, we assume that the weights wnj can be parti-

tioned into matrices an (with an = 0 for j > n) such that

0 (1)n-k-1,
(3.17) ) AV =

WO
.
I

n-k(1)n,

.
I

k -> ->
where Ar and Br are fixed matrices (with zr—O Are = 0; see [1], where exam-

ples are also given).
We further restrict attention to the case where each matrix Ar is dia-
gonal (AO==I). It may be noted that all the quadrature rules considered in

[6] have weights which can be partitioned so that A_. = I, A, = -I, A =0,

0 1
r = 2(1)k. We suppose that the matrices Ar and Br are of order M and we write

> T
(3.18) Ipn B [an+1'an+2"“"an+M] ! an+r = f(ng+r)'

so that, for example, the quadrature method applied to (1.5) yields vectors
- -> > n ->

. . - + .
wn satisfying wn 9, hA zj=0 an¢j

We shall employ the following lemma.
LEMMA 3.2. Let the assumptions of this section prevail and suppose that

> . n #
(3.19) o =h ) [V _*K
n . nj n

>
V.,
]=O =J ij
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—f-
where * denotes the Schur (or pointwise) product and Kﬁ—j is the matrix with

entries AO + Al((n—j)Mh-f(Z—m)h) in the (£,m)-th position (£,m = 1,2,...,M).
Then
k k .
(3.20) y v =n ¥ arBsx" Ty :
S 'Y n-r-s s Y r-s n-r-s
r,s=0 r,s=0
PROOF. Writing (3.19) in more explicit form we have
n > n N
>
S =hhy L v U+ h2A1 I (-hw_ Ly,
j=0 ™ =0 J°3
n
2 ->
+ h™ A . = . .
. .Z (V5 = V3PV
=0
where D = diag(1,2,...,M). We now find, employing (3.17), that
k k N ) n k N
->
(3.21) Y Ao _=nhh_ ) BY _+h°A }) )} (n-}MAV .
=0 Y n-r 0 =0 r n-r 1 520 r=0 r n-r,j Jj
5 n k N
-h Al z 2 o n-r ¥
j=0 r= 3]
n k N
+ h2A1 D) AV .-V DY
§=0 r=0 ’ rJ
k -> 2 k >
- hAO 2 rwn—r *h A1 Z rMBrwn—r
r=0 r=0
n k N
_ h2A1 y oy rMA Vb
3=0 r=0 3]
k -
+ h2A Yy (OB_-B DY .
1 r r n-r
r=0
Here, we have used the fact that the matrices Ar are diagonal and hence com-

mute with D. Applying ZAS to s

+) We define the Schur product A%xB of the matrices [ai

matrix [a, .b..].
1j 1]

uccessive equations (3.21) yields

.1 and [b,.] as the
J 1]
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k k R ) k
Y aAg =hA, ) A n°A, )
S ¥ n-r-s 0 S r n-r-s 1
r,s= r,s=0 r,s=0

k ->
- h2A 2 rMA B
r s n-r-s
r,s=0
k
+n%, ) a_ (DB -B.D)Y
1 . s r r '‘n-r-s'
r,s=0

which, when expressed in terms of Ki_s, is the required result.

A B ri
s r v

n-r-s

0

Establishing our notation and the above lemma has been preliminary to

our task. We return to equation (3.5) from which we deduce, in terms of

(3.18)
£ M+2 G M1 nM+1
>
(3.22) . = husm . + vm . + Umwn.
an+M+1‘ GnM+M nM+M
>

We designate the left-hand side vector in (3.22) by ¢n’ and the sum of the

first two terms on the right-hand side by gﬁ so that (3.22) becomes

3.22") 5 =9 +Uv
(3. ¢n =% mwn'

>
Moreover, if we take A, = huS + AV_ and A, = V_u then o_ coincides with
0 m m 1 m n

(3.19) in the statement of Lemma 3.2. Taking these values of AO and A1 in the

definition of Kﬁ we have, from (3.20)

k k R
Y aac =h J arssx" )
S r n-r-s S r r-s ‘n-r-s
r,s=0 r,s=0
In consequence, from (3.22')
k R k N k
(3.23) Y Ad =h ) Aa[B ' Ty +u_ )
s r'n-r-s s r r-s 'n-r-s m
r,s=0 r,s=0 r,s

It remains to observe that if

A
S ¥ n-r-=s
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O e.... 0] 0 ... 01
(3.24) J = 1\\: ’ J#= : :(.)
0 10 0... 00
then
- -> #>
(3.25) wn = J¢n + J ¢n_1

and that substitution of (3.25) in (3.23) vyields a recurrence relation for

-> -
the vectors ¢n. Thus we have shown that the vectors ¢n = [an+2,an+3,...

T . .
""an+M+1] , satisfy, under the assumptions of Lemma 3.2, a recurrence
relation whose characteristic equation is given by

k k
) ok —p—
(3.26) det[ § A ) {a_cz-[nB s +ua g+ a 13K < o,
s=0 s =0 r r r-s mx

Note that for M 1 the result (3.16) is obtained as a special case of (3.26)

. # _ _ ..
on writing Kr— (huSm4-AVm) + uvm(r—s)h, Ar = ar, B = br and defining

S r

J = (0) and J% = (1).

3.4. The special case yu = 0 and Yi =y

If 1 = 0 the convolution test equation reduces to the basic test equa-
tion (1.5). In this case the characteristic equations derived in the previous
§8§, can be factorized, which indicates that the analysis can be simplified
(in fact, we do not need the recurrence relations for En). Furthermore, we
assume that ? = YZ so that we can use (3.4') with Ri = EE(I-—hXAO)—lg; in
particular Ry(h)) represents the amplification factor of the RK-method for
ODEs (see e.g. [16]). Below we give the characteristic equations associated
with the three classes of methods discussed in the previous §§. These char-
acteristic equations with Yy = 0 can also be found in [1]. For the extended

Pouzet methods we obtain

(3.27) z - Rm =0,

and for the mixed methods of §3.2.
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' m
2 . .
(3.28) T - (1+ 'YRm+ (1-y)hA Zzi a R,@) z + YRm'

The mixed methods of §3.3 yield

(3.29) (£ -YR)P(Z) - hA(L-Y)R o (2) = O.

Note that for y = 1, (3.28) and (3,29) can be simplified to yield (3.27). In
the next section we shall analyze the equation (3.29) for vy # 1.

4. STABILITY RESULTS

4.1. Results for the basic test equation

In analogy with the stability theory for ODEs, a numerical method for
(1.1) is said to be A-stable if, when applied to (1.5) with g(x) constant,
the solution fn tends to zero as n +> « for all values of the step size h and
for all A € € with Re A < 0. It is easily seen that A-stability is equivalent
to asymptotic stability of the discrete scheme when Re(hA) < O and is obtain-
ed precisely when the zeros of the characteristic polynomial are within the
unit circle. We shall call the method weakly A-stable if these zeros are on
the unit disk, those on the boundary being simple roots. The following theo-
rem gives us an important result for the modified methods with ? = Z already

mentioned in the introduction.

THEOREM 4.1. Consider a general Runge-Kutta method (1.2a-b) which is modified
according to (1.7) with Y, = 1 (i =1,...,m). Then the method is (weakly)
A-stable if and only if the generating Runge-Kutta method defining the for-

ward part is (weakly) A-stable for ordinary differential equations.

PROOF. From relation (3.4') which holds for a general lag term (1.2b), the
result of the theorem is readily seen. Here, weak A-stability for ordinary

differential equations is defined in a similar manner as above. O

The next theorem states necessary conditions for A-stability in the

weak sense.
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THEOREM 4.2. Consider a mixed Runge-Kutta method (1.2a-b) which employs (p,0)-
reducible quadrature formulae for the lag term (1.3c), and which is modified
according to (1.7) with Yy =Y (i=1,2,...,m), v € [0,1). Let the amplifi-
cation factor Rm(z) = P(z)/Q(z) , where P and Q are polynomials, and where

z = hl. Then necessary conditions for weak A-stability are

1) IR (2] = 01/lz]) as |z] + =,

(ii) Q(z) has no zeros in the half plane Rez < 0,

(iii) P(z) has no zeros in the half plane Rez < O.

PROOF. Observe first that the coefficient of Ck+1 in equation (3.29) is

independent of z. If Rm(z) or sz(z) is unbounded, then the polynomial (3.29)
has at least one unbounded coefficient. This implies that (3.29) has at least
one unbounded root. This proves (i) and (ii). Next we prove (iii). We observe

that the zeros El(z),...,C (z) of (3.29) can be interpreted as the values

of an algebraic function. i:i P(zo) = 0 with Re:q)< 0. Then Rm(zo) = 0 and
'(3.29) reduces to Zp(z) = 0 which has a root cl(zo) = 1, Now gl(z) is a
branch of an algebraic function which is analytic in a neighbourhood of Zge
Let C_ = {zl Iz—zol < e} be a small circle around the point Zg which is con-
tained entirely in the left half plane Rez < 0. Application of the maximum
principle for analytic functions yields that !C1(z)l > 1 for some z with

|z-2z € or that cl(z) must reduce to a constant (= 1) on CF. However,

ol = S

cl(z) z1on Ce implies that Rm(z) Z 0 on Cs which is not true. Hence, we
have shown that there exists a point z with Rez < 0 such that (3.29) has a

root greater than unity which implies that the method cannot be A-stable. [J

The following Corollary is a consequence of the condition (iii) in Theo-
rem 4.2 and indicates that high-order mixed Runge-Kutta methods cannot be A-

stable.

COROLLARY. Consider the methods treated in Theorem 4.2. Let the amplification
factor Rm(z) be A-acceptable and a p-th order approximation to exp(z). Then

the method is not A-stable for p = 3.

PROOF. The order star associated with Rm(z) has at least [ (p+1)/2] - 1 bound-
ed dual fingers in the left-hand plane Re z < 0 (see the proof of Theorem 5
of WANNER et al. [20]). This implies (see Proposition 4 in [20]) that Rm(z)
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has at least [(p+1)/2] - 1 zeros in the left-half plane. Therefore condition

(iii) of Theorem 4.2 is violated. 0

Let us now consider the case that A assumes only real values. A numeri-

cal method is said to be weakly A_ -stable if, when applied to (1.5) with.

0
g(x) constant, the solution fn remains bounded as n » « for all values of
the stepsize h and all A € IR with A £ 0. This condition is equivalent to

stability of the discrete scheme when Re(hA) < O.

THEOREM 4.3. Consider the methods treated in Theorem 4.2. Let the amplifi-
cation factor Rm(x) = P(x)/Q(x) with P(0) = Q(0) = 1 and x = hA € IR . Then
necessary conditions for weak Ao—stability are

(1) IR )] = 0(1/1x]) as |x| > «.

(ii) Q(x) has no zeros for x < 0.

(iii) P(x) does not change sign for x < 0, i.e. P(x) = 0.

PROOF. The proof for (i) and (ii) is the same as for Theorem4.2. For (iii) we
reason as follows. Since Q(x) > 0 on (—,0) and P(0) = 1, we know that
P(x) =2 0 if P(x) does not change sign on (-»,0). Suppose that Rm(x) changes

sign at x = xo with x0 < 0. Then Rm(x) has a zero at x = XO’ and if y is the

multiplicity of that zero then p is odd. Since Rm(xo) = 0, the equation

(3.29) reduces to Zp(g) = 0 which has a root é = 1. By (repeated) differen-

tiation of (3.29) with respect to hA, and using the fact that Rm(xq) = ... =
(n-1) (w) :

Rm (x.) =0, R

0 0 (xo) # 0, we derive that

n+1

(u) )y

- SRR
z(x) = c(xo) + o (x xo) (1 Y)xORm

(xo) + 0((x—xo)

(u)

Since C(xo) =1, Rm (xo) # 0 and u odd, we can always find an x sufficiently

closé to X, such that ¢(x) > 1, which implies that the method cannot be Agy-
stable. |

We conclude this section on the basic test equation by listing the
stability boundaries of a number of mixed Runge-Kutta methods (the stability
boundary B is defined by the interval -B < hA < 0 where the characteristic
roots z (hA) are on the unit disk, those on the unit circle being simple
roots). In Table 4.1 the lag terms in these methods are defined by specify-

ing the characteristic polynomials {p,c}, and in Table 4.2 we give the vec-
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tor 6 and the matrices AO' Al associated with the Runce-Kutta parts used. De-
riving the functions Um' Vm and Sm defined according to (3.3), and substitu-

tion of {p,o0} and {Um,Vm,Sm} into (3.16) yields the characteristic equation

Table 4.1. Lag terms defined by {p,c}

k p () o(g)
third order Gregory rule [4] 2 z(z-1) (5§2+8C—1)/12
trapezoidal rule 1 -1 (c+1)/2
third order backward 3 (11E3—18C2+9C—2)/11 6C3/11

differentiation formula [19]

of the various mixed Runge-Kutta methods. In Table 4.3 the stability bound-
aries for the basic test equation are listed for ? = 3, ? = 31 and ? = Z,
respectively. We also include the stability boundaries when the lag term is
combined with the one-step Runge-Kutta part defined by the forward and back-
ward Euler formula and the trapezoidal rule. (In the following a particular
Runge-Kutta method will be indicated by specifying first the lag term and
then the Runge-Kutta part.)

- -
From the data of Table 4.3, the stabilizing effect of Yy = € is evident.

-> -

It should be remarked, however, that the y = € version of the method may
- >

have a smaller stability boundary. (Recall that if vy = € the methods in

Table 4.3 are economized, except for the Ngrsett formula where 61 #0
(see Table 4.2).)

The result 8(6) = 2 obtained for the trapezoidal rule when mixed with
the repeated trapezoidal rule for the lag term, is surprising at first sight
because it is well-known that the trapezoidal rule when used as a direct
quadrature method is A-stable (see e.g. [6]). Although both representations
will produce the same numerical solution if exact arithmetic is used, differ-
ent numerical solutions are obtained in the actual computation on a finite pre-

cision computer. In Table 4.4 this is illustrated for the integral equation
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X
(4:1) £(x) =1 + 100x + e “sinx - J [100+ e *cos (y£(y)) If (y)dy
0

with the exact solution f(x) = 1.

>
Table 4.2. Runge-Kutta parts defined by 8, AO and A1

[ Ay AL
0 0 0 0 0 0 0 0 )
Third order 1 1 0 0 0 1/2 0 0 0
Bel' tyukov 1/3 1/9 2/9 0 1/18 0 0 0
[9, p.148] 1 0 1/4 3/4 0 0 0 1/2 0,
0 0 0
Third order 0 0 0 0
Newton-Cotes [14] 1/2 /4 1/4 0 1/8 0 0
1 1/6 2/3 1/6 1/6 1/3 0
0 0 0
Third order 1 3+73 1 3+/3 0 0 1
2 |2z = - 12 0 0
Nprsett =13 /3 z 2/3 3+/3 0 . }
6 3 30 36 V3 /3
[11' P'150] . 9_3 3 9+3 3 O
- > > > - - -
Table 4.3. Stability boundaries B(y) for y = 0, y = €4 and Yy = €
LAG TERM
Runge-Kutta Trap, Rule Gregory Backw, diff.
t > > > > > > > > >
paxr B(O) B(g,) B(e) B(0) B(e,) B(e) B(O) B(c,) B(e)
Forward Euler 1 1 2 1 1.2 2 1 .9 2
Trap. Rule 2 b © 2 L © 2 6.6 ©
Backward Euler ® ® @ ® o o ®© o L]
Bel' tyukov 1.6 1.3 2.5 1.6 1.3 2.5 1.6 1.3 2.5
Newton-Cotes 5.6 2.4 12 5.1 2.4 12 7.7 2.4 12
Ngrsett 2.2 8.5 [ 2.2 4.8 L 2.2 3.5 B
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'I“able 4.4. Numerical solution of (4.1) obtained on the CDC CYBER750 for h=1/10.

X Mixed Method (4.2) Direct Method (4.3)
.2 1.000001... 1.000001...
1.0 .999998... .999998...
1.6 .99%... .999998...
1.9 .95...
2.0 .79... .

.1 -.04... .
2.2 -4.2... .
2,3 -25.1...
2.4 -129.8... .999998...

We recall that the "mixed" representation reads

(1) Nu
= +
fn+1 g(xn) h .2 K(xn,xj,fj)
j=0
n“
(4.2) fer =90k, *h ] KX g%y Ey)
3=0
1 (1)
+ 5 h[K(xn+1,xn,fn+1) + K(Xn+1'xn+1’fn+1)]
and the "direct" representation simply
n+l
(4.3) £ ., =g(x_ ) +h ij K(x g% E).

According to Table 4.3 and Table 4.4 as well, the direct representation is
stable, whereas the mixed version (4.2) is unstable for this stepsize (the

same phenomenon occurs for the basic test equation).

4.2. Stability plots for the linear convolution equation

For the convolution equation (3.1) the stability regions (that region
2
in the (hA,h"p)-plane where the characteristic equation has its roots on the

unit disk with simple roots on the unit circle) were computed for a number
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.25

Gregory-Bel'tyukov

Figure 4.1.

Fiqure 4.3. Gregory-Newton Cotes

Figure 4.5. Gregory-Ngrsett
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-6.25

rigure 4.2.

- Bel'tvukov

Backw. diff.

W
\\—6.25

--Newton Cotes

4,4, Backw., diff.

Picure

-12.5

Figure 4.6, Backw. diff. - Ndrsett
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of mixed Runge-Kutta methods specified in the Tables 4.1 and 4.2. In the
figures 4.1 - 4.6 these regions are given for ? = 6 ///7), ? = Zl (I1l) and
for ? =% (\\\). The values given in these figures refer to the part of the
(hk,hzu)-plane to which the stability plots are restricted.

In these figures we see that except for the Gregory-Ngrsett method
(Fig. 4.5) the stability regions corresponding to ? = g contain those cor-
responding to the standard method (?==8) or to the economized version (;==Zl
and are considerably larger. In figure 4.5 the ? = Zl method is stable
where the modified method is not but this has no practical significance.

Furthermore, we may conclude that just as in Table 4.3 the Runge-Kutta
part mainly determines the magnitude of the stability region and the lag ter

is less important.
5. NUMERICAL EXPERIMENTS

In this section we report on numerical experiments with mixed Runge-
Kutta methods and their modification employing residual corrections. The pur
pose of these experiments is to verify the order of convergence expected fro
Theorem 2.1, and to indicate the relevance of the stability results obtained
in Section 3 and 4.

In the accuracy experiment, we have chosen the following mixed Runge-
Kutta method of Pouzet type, where the forward step is given by the two-stag
third order Radau formula (see LAPIDUS and SEINFELD [16, p.62]).

o 0 o0
% =r0,2/3,11%, Ay = (173 173 of ,
1/4 3/4 0

and where the lag term (1.3c) was computed by the Gregory-rules of order 4.
>

->
For the classical (y=0) and economized ($?=Zl) method the expected order of
accuracy is p = 4, whereas for the modification with ; = Z it is p = 3. For
these choices of ? we have applied the method to the equation

p: 4

(5.1) £(x) = g(x) - J ———43——§-f(y)dy, 0<xc<2.
(

0 x-y+2)
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)The kernel in the equation (5.1) occurs in the study of the reflection of
sound pulses (see FRIEDLANDER [10]). In order to have the exact solution at

hand, we have chosen g(x) = 2 - 2/(x+2) which yields f(x) = 1. We have inte-

1

grated the problem (5.1) with stepsizes h = 0.1, 0.05, 0.01 and 0.005. In
Table 5.1 the number of correct digits (defined by cd = —1Olog absolute error)
at x = 2 and the computed order p* is listed (p* = [cd(h)-—cd(2h)]/1olog2).
The results confirm the theoretical result given in Theorem 2.1. Notice that
the economized version ($==Zl) yields the same results as the standard ver-
sion (;?=8). The stabilized version is considerably less accurate in this
non-stiff example.

In the following experiment we have apvlied the third order N@rsett
formula mixed with the third order Gregory rule (see Section 4.1) to the

integral equation (5.2):

Table 5.1. Number of correctdigits at x =2 and computed order for problem (5.1)

> > > > > >
Yy=0 Y =€, Yy=c¢
h
* * *
cd p cd o) cd jo)
0.1 6.1 3.7 6.1 3.7 4.6 3.0
0.05 7.2 3.7 7.2 3.7 5.5 3.0
0.01 9.8 4.0 9.8 4.0 7.7 .
0.005 11.0 11.0 8.6
X
(5.2) f(x) = g(x) - [ [16+(x-y) 1[1-0.01exp(-x) cos (yf(y)) JE(y)dy.
0

With g(x) = 1 + 16x + 1/2 x2 - 0.0lexp(-x)[1 - cosx+ 16 sinx] the exact solu-
tion of (5.2) is f(x) = 1. The kernel in (5.2) deviates only slightly from
our linear convolution test equation (3.1), and therefore, it is expected
that the stability regions given in Fig. 4.5 can be used in a gquantitative
manner to predict stable or unstable behaviour. The problem (5.2) was inte-
grated with stepsizes h = 1/2, 1/4, 1/8, 1/16 and 1/32; the endpoint was 128h.
From Fig. 4.5 we expect the modified ($?=25 method to be stable for all step-

sizes considered and the classical (¢?=6) version only for h # 1/2, 1/4. The
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truth is given in Table 5.2 where we have listed the number of correct digit

at the endpoint xe = 128h. (An asterisk indicates that the absolute error is

+10
larger than 10 ! .) These results indicate that the modified method is reall

Table 5.2. The number of correct digits
at xe = 128h for problem (5.2).

h xe ? = 3 ? = Z
1/2 64 * 3.4
1/4 32 * 3.2
1/8 16 4.5
1/16 8 6.1 4.0
1/32 4 7.2 4.6

highly stable but also that its accuracy is rather modest. If one decides to
base a computer program on the modified methods it seems desirable to have
some strategy which makes an appropriate choice between the more accurate
standard method (for nonstiff problems) and the more stable modified method
(for stiff problems). However, to justify such a strategy one has to be sure
that the behaviour shown in Table 5.2 is also typical of problems which do
not resemble the model problem (3.1).

Our first "non-model" problem is a nonlinear convolution equation with

increasing stiffness as x increases:
b 4

(5.3) f(x) = 17(exp(x)-1) - [ (16+x-y)exp (f(y))dy
0

with the exact solution f(x) = x. Applying the Gregory-Ngrsett method, we
obtained the results listed in the Tables 5.3 and 5.4 showing the higher
accuracy of the standard method for small h and the increased stability of
the modified method for larger values of h.

Our final problem is a nonlinear, non-convolution equation given by

)

(5.4) f(x) = [1+(1+x)exp(—10x)]1/2 T

(1+x) [10£8n (1+x) +1-exp (-10x) ]

X
1+x _2
A J T4y £ (y) dy, 0 < x
0

IA

10.
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Table 5.3. The number of correct digits for problem (5.3)

- >
Yy =0 x=.5 1.0 1.5 2.0 2.5 3.0 3.5
h=1/4 0.9 -0.1 -1.2 * * * *
1/8 1.4 0.4 0.5 * * * *
1/16 2.7 1.8 0.6 0.2 -1.7 * *
1/32 °~ 3.9 3.4 2.5 1.0 0.9 -0.9 *

Table 5.4. The number of correct digité for problem (5.3)

> >

Y=¢ x=.5 1.0 1.5 2.0 2.5 3.0 3.5
1/4 0.9 0.7 0.5 0.3 0.0 -0.2 -0.4
1/8 1.6 1.4 1.1 0.9 0.7 0.4 0.2
1/16 2.3 2.0 1.8 1.5 1.3 1.0 0.8
1/32 3.1 2.7 2.4 2.2 1.9 1.7 1.4
with the exact solution f(x) = [1+(1+x)exp(—10x)]1/2. We considered the

values A = 1, 10 and 100 in order to make this problem increasingly stiff.
For A = 10, (5.4) is the frequently quoted equation of DE HOOG and WEISS
[12]. In order to avoid the computation of the initial phase of the solution,
we computed the integral over [0,1] exactly and started the integration at

x = 1. The results obtained with the Gregory-Ngrsett method are listed in
Table 5.5 and indicate that the methods (? = 8 and 7 = g) have the same be-

haviour as in the case of convolution kernels.
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Table 5.5. The number of correctbdigits at x = 10 for problem (5.4)

A =1 A =10 A = 100
- > >
h ¥=0 Y=¢ ¥=0 Y=t ¥=0 Y=¢
1/2 3.6 3 * 1.8 * *
1/4 4.8 4.0 * 2.6 * *
1/8 6.0 4.8 * 3. * *
1/16 7.1 ) ) * 2.7
1/32 8.2 . 6.6 4.7 * 3.3

6. EXTENSIONS

To conclude this work we indicate briefly some topics of further interes

Concerning convergence, it will be observed that the use of (1.3a) or
(1.3b) may correspond to superconvergence in the values fn+1 = f;fi which is

not revealed by application of Theorem 2.1.
Concerning stability, we recall that it is possible to consider test

equations of the form

X R
(6.1) £(x) = g(x) + [ ) lr(x—y)r}f(y)dy
o ¥=0 -

in place of (3.1), or to extend consideration to non-convolution kernels in
which there is polynomial dependence on x (cf. [2], [15] and [18]). In [2]
certain unmodified methods have been analysed for the equation (6.1) and the
present authors have adapted these results to include modified Runge-Kutta
methods considered here. These extensions are in preparation and will be

published in the near future [3].
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