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ABSTRACT 

In this paper modified and conventional Runge-Kutta methods for second 

kind Volterra integral equations are discussed in a uniform way. The modifi­

cation presented takes into account the residual of the previous step with 

the aim of improving the stability behaviour. A general convergence theorem 

is given which establishes that the modified methods may loose one order of 

accuracy. Furthermore, the stability behaviour of the methods is analyzed 

and explicit stability results are derived. It transpires that every A-stable 

Runge-Kutta method for ordinary differential equations generates mixed me­

thods which can be made A-stable by a suitable modification. 
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1 • INTRODUCTION 

1.1. Classical Runge-Kutta methods 

For the numerical solution of Volterra integral equations of the second 

kind 

(1.1) 

X 

f{x) = g{x) + J K{x,y,f{y))dy, 

0 

X ~ 0, 

we shall consider Runge-Kutta methods of the form 

f{i) = 
n+1 

~ m Cl> 
F {x +0.h) + h l a. 0 K{x +d. 0h,x +coh,f 1), 

n n i l=l i~ n i~ n ~ n+ 

{1.2a) i = 1{1)m, n = 0,1, ••• 

f f {m) 
n+1 = n+1' 0 = C = 1. m m 

Here, x = nh and f is a numerical approximation to f{x ). The function ~ n n n 
F {x) is a discretization of n 

X n 

F {x) := g{x) + f K{x,y,f{y))dy, 
n 

0 

defined by 

n m 
w{~)K{x,x~l) ,f~l>), ~ r r {1.2b) F (x) := g(x) + h n ~ o, 

n j=O l=1 nJ J J 

where x~l) denotes the point xJ.-l +clh, and where w~lJ_) are suitable quadra-
J . Cl> C > ture weights with wOO = 0, l = 1{1)m (i.e. FO{x) = g{x)). We define f Om = 

f{O) = g{O), and adopt the convention that w~E) = 0 for l = 1,2, ••• ,m-1, so 

that the terms involving the undefined values fcil) , ••• ,fcim-l) {which we carry 

along only for notational convenience) vanish in (1.2b). 

We shall refer to {1.2a) as the forward (Runge-Kutta) step and to {1.2b) 

as the lag term. 

The Runge-Kutta parameters Si, ail' dil and cl are determined by accu­

racy conditions (cf. [8] and the references therein; see also [13], where a 
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more general class of methods with cl replaced by cil is treated). 

Depending on the choice of the parameters in the forward step two imper· 

tant classes of methods can be distinguished: the choice dil = ci, ei = ci 

yields methods of Pouzet type whereas for dil = dl, ei = ci we obtain method! 

of Bel'tyukov type (see [7] and [4]). In our analysis we consider the gen­

eral methods defined by (1.2a) and some suitable lag term of the form (1.2b). 

A division into subclasses can be given depending on the choice of the 

quadrature weights in the lag term (1.2b). Here, we give three important 

classes considered in the literature: 

~ n m <l> <l> (1.3a) F (x) = g(x) + h I I aml.K(x,x. ,f. ) , n 
j=1 l=l J J 

n m '"' <l> <l> (1. 3b) F (x) = g(x) + h I I ame_K(x,x. ,f. ), n j=l l=l J J 

n 
( 1. 3c) F (x) = g(x) + h }: w .K(x,x.,f.). n j=O nJ J J 

The choice ( 1. 3a) can be used in eombina tion with a forward step of Pouzet­

type, and then yields an extendedPouz@t methDd. Note that ±he quadrature 

weights in the lag term (1.3a) are the Runge-Kutta parameters aml. of the 

forward step. As a consequence of this connection, extended Pouzet methods 

have the property that 

~ (1.4) f = F (x ). n n n 

In contrast to extended methods, lag terms of the form (1.3b) or (1.3c) (in 

which the quadrature weights have no relation to the forward step) yield the 

so-called mixed Runge-Kutta methods. Note that for ( 1. 3b) the lag term uses 

intermediate approximations fJl), whereas for (1.3c) only values fj (i.e. 

approximations at the step points x. = jh) are used. 
J 

1.2. Modified Runge-Kutta methods 

This paper is primarily concerned with the stability behaviour of the 

methods ( 1. 2a - b) • In our analysis we follow the approach based on some test 

equation as a model problem, e.g. the basic test equation [1,6] 



(1.5) 

X 

f (x) -- g (x) + 11. J f (y) dy. 

0 

3 

It can be shown i(cf. (3.4)) that such an analys:Ls leads to recurrence rela­

tions of the form 

~ (1.6) fn+l == R(hA) In + inhomogeneous term, 

~ where I = F (x) - g(x) is independent of x, and where R(hA) is a rational 
n n 

function of hA whose coefficients are functions of the Runge-Kutta parameters. 

For extended Pouzet methods we have, using (1.4), fn+l = R(hA)f + inh. term, 
n 

which is the recurrence relation of a Runge-Kutta method for ODEs. For mixed 
~ methods I t f - g , and the stability behaviour is influenced by the lag 

n n n 
term. In order to eliminate the effect pf the lag term, VAN DER HOUWEN [13, 

14] proposed a modification of the scheme (1.2a-b) by replacing F (x) with 
n ~* F (x) defined as 

n 

(1. 7) ~* F (x) = F (x) + y (x) (f - F (x ) ) , 
n n n n n 

where y(x + 8.h) = y. E [0,1]. The form (1.7) is motivated by the fact that 
n l l 

for y (x) 3 1, thE~ relation (1.6) changes to f 1 = R(hA) f + inh. term, ir-
n+ n 

respective of thE~ choice of the lag term. An additional advantage of the 

formulation (1. 7]1 is that for Runge-Kutta methods where one or more of the 

8. 's vanish, the choice y(x) = 1 and y(x) = 0 for x t x yields Runge-Kutta 
1 n n ~ 

methods in which it is not necessary to evaluate the lag term F (x) at x = x . 
n n 

The first examples of such methods can be found in BEL' TYUKOV [7] (see also 

[13] and [1]). In the latter reference this type of metliods was termed 

economized versions of the Runge-Kutta method. Note that y (x) = 0 yields the 

unmodified method ( 1. 2a-b). Observe that f - F (x ) in ( 1. 7) can be regarded 
n n n ~ 

as a residual which measures the amount by which f fails to equal F (x ). 
n n n 

Therefore y(x) (f -F (x )) is called a (weighted) residual correction to 
n n n 

F (x) • 
n 

In this papE~r we use the terminology given in definitions 1.1 and 1. 2. 

DEFINITION 1.1. 1\. method based on (1.2a) with the (unmodified) lag term 

F (x) defined by (1.2b) is an unmodified (or classical, standard) Runge­
n 
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Kut:ta method. 

~ DEFINITION 1.2. A method based on (1.2a) with the lag term F (x) replaced by 
~* n 

the (modified) lag term F (x) given in (1. 7) is a (y-)modified Runge-Kutta 
n 

method. 

In Section 3, we present the stability analysis of the modified Runge­

Kutta methods described above, with respect to a convolution test equation 

(equation (3.1)), and in Section 4 stability results are given both for the 

basic test equation and this convolution equation. 

Firstly, however, the effect of the modification (1.7) on the rate of 

convergence is investigated in Section 2. It turns out that the provable 

order of accuracy may be reduced by 1 if y = 1; this is the price paid for 
m 

an improved stability behaviour. 

This paper is developed from the institute report [14]; it contains a 

more general convergence result and stability theorems for the basic test 

equation. We also derive the stability polynomials for a larger class of 

quadrature rules (cf. Section 3.3.2). 

2. CONVERGENCE 

In this section we prove the convergence of the Runge-Kutta methods 

(1. 2a) modified according to ( 1. 7) • In the convergence proof we need the 
~ (i) . 

local error of the numerical method: let fn+l (i = 1, ••• ,m) be the solution 

of (1.2a-b), (1.7) if we substitute f(x) for f and F (x) n n n 
~* implies that F (x) = F (x)); then we define the local error n n 

x + c.h by n J. 

(2 .1) T(i) (h) := f(x + c.h) - f(i) 
n n i n+1· 

(i) 
Furthermore, we define the global error en+l 

(2.2) := 
(i) 

If (x + c. h) - f +l I , n i n 

the quadrature error En(x,h) for the interval [O,xn] 

~ for F (x) (which 

T (i) (~) at 
n 



X n 

E (x,,h) 
n := I K(x,y,f(y) )dy - h 

0 

n m 
I I <l> <l> <l> w . K(x,x. ,f(x. ) ) 

j=O l=l nJ J J 

and the function D (x,h) 
n 

Jo 
D (x,.h) 

n = 
L(E (x,h)-E (x ,h))/(x-x) 

n n n n 

if X = X 
n 

if X ,f- X. 
n 

➔ 
In the convergence theorem we shall need the vectors e 1 

➔ 
and T (h) 

n 
whose components are respectivell given by 

through the set of integers L defined by 

<l> <l> n+ 
en+l and Tn (h), where .t runs 

L = {1,2, .•• ,m}\{.t j w(~) = 0 for all n and j}. 
nJ 

<l> In other words, if l i L then, for all j, the values f. are not used in 
J 

5 

the lag term. For mixed RK methods of the form ( 1 • 3c) , L = {m}, whereas for 

extended Pouzet methods L = {l j amt ,f- O}. For a vector ;- with components 

v (l), l E L we define the maximum norm II II 
00 

(2.4) := max 
.tEL 

We shall also use the following lemmas. 

00 

LEMMA 2.1. Let i:he sequence {En}n=O (En 2: 0) satisfy the inequality 

o. + M 
J n 

where M. and o. and the constants c1 and c2 are non-negative. Then 
J J 

n+l 1 cn+l_l C - n n+l 1 I 0, 1 M. 8 n+1 
:,; c2 C -1 

+ cl Eo + C -1 
max 

1 j=O J 1 j:,;n J 

PROOF. Multiply the inequality for E +1 . by Ci and take the summation for n -1. 1 
i = 0 to n. D 

00 

LEMMA 2.2. Let the sequence {En}n=O (En 2: 0) satisfy the inequality 
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n 
~ hc3 I Ej + c 4 , 

j=0 

where c3 and c4 are non-negative constants. Then, for h sufficiently small 

and (n+l)h = x, 

PROOF. S1ee e.g. BAKER [4, p. 926]. □ 

We now state the convergence theorem 

THEOREM 2.1. Let the function K(x,y,f) satisfy the Lipschitz condition 

* * IK(x,y,f) - aK(x ,y,f) - K(x,y,f) + aK(x ,y,f) I 
n n 

* ~ L{l-a+alx-x l}lf-f I, 
n 

where L :Ls a constant and a E [0,1]. Then ash ➔ 0, while (n+l)h remains 

fixed, 

(2. 5) 11: II ~ A 
n+l 00 

h!D. (x.+8.h,h) I 
{I I J J 1 } maximum E . ( x . + 8 . h, h) , 1 h + 

J J 1 -y + C j~n,l~i~m m 

+ B max 
j~n 

{111.(h)II, 
J 00 

IT~m) (h) I 
J } 

1-y + Ch 
m 

where A, Band Care (bounded) constants. 

PROOF. From (2.1) and (2.2) it follows that 

(2. 6) e <i> + IT <i> <h> 1 
n+1 n ' 

- (i) (i) - (i) (i) - (i) 
where e := If - f I. From the definition of f 1 and f and the n+1 n+l n+l n+ n+l 
Lipschitz condition on K with a= 0 it follows that 

(2. 7) - ( i ) ~ !J.F ( x + 8 . h) + haL 
en+l n n 1 
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"'-k 
·where !J.F (x) = IF (x) - F (x) I and a = max. 0 lal.. 0 I. From (2. 7) we derive 

n n n i,~ ~ 

(2. 8) aLm 
A1 = 1-hmaL • 

If we introduce 

E (x,h) = F (x) 

+ , , <l> <l> <l> the notation F (x) = g(x) + h l l w. K(x,x. ,f(x. )),. then 
+ n nJ J J 

n n 
- F (x) and 

n 

!J.F (x) = ly(x){f -f(x )} + {F (x)-y(x)F (x )} 
n n n n n n 

- {F+(x)-y(x)F+(x )} - {E (x,h)-y(x)E (x ,h)}I. 
n n n n n n 

Writing e = If -f(x) I we obtain 
n n n 

~ ~ <l> <l> <l> !J.F (x) :$; y(x)e + h l l - lw. l•IK(x,x. ,f. ) 
n n j=O l=1 nJ J J 

<l> <l> <l> <l> - y(x)K<x ,x. ,f. ) - K(x,x. ,f(x. )) 
n J J J J 

<l> <l> +y(x)K(x ,x. ,f(x. »I+ IE (x,h)-y(x)E (x ,h)l. 
n J J n n n 

By using the Lipschitz condition on K with a. = y (x + e . h) = y. , and writing 
n J. J. 

we obtain 

(2. 9) 

W = max 
n, j ,,e_ 

6F' (x +8.h) :$; y,e + hLW{1-y.+y8h} 
n n J. J. n J. 

y=maxy., 
. l. 
l. 

n 

I 
j=O 

11:. n + 
J 00 

e = max 
i 

-(i) -(i) 
+ (1-y.) IE (x 1 ,h) I + y8hlD (x 1 ,h) I. 

i n n+ n n+ 

I e. I, l. 

Substitution of (2.9) in (2.8), and then (2.8) in (2.6) yields 

:$; {y.+hA1y}e + {hLW[1-y.+y8h] + h 2LWA1[1+y8h]} 
J. n J. 

(2.10) 

+ [1-y.+hA1] IE (x ,h) I + [1+hA1]y8hlD (x ,h) I 
J. n n n n 

n , 11:. n 
l J 00 

j=O 

+ IT~i) (h) I, 
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- -(i) -where IE (x ,h) I = max. IE (x 1,h) I, ID (x ,h) I = max. 
n n i n n+ n n i 

-(i) 
ID (x 1 ,h) I . 

n n+ 
For i = m, (2.10) has the form 

(m) n 
= e < A e + A t r:. II + A4 IE (x ,h) I + Ash ID (x ,h) I n+l - 2 n 3 l J 00 n n n n 

j=O 
(2.11) 

where, ash+ 0, AS= 0(1) and 

if y = 1 
m 

or 

if y < 1. 
m 

Application of Lemma 2.1 yields the inequality 

(2.12) 

+ A IE ( h) I Ag IT <_m) (h) I , 
8 max . x., + l-y +O (h) max 

j~n J J m j~n J 

where the constants A. are uniformly bounded. Substitute the inequality 
i 

(2.12) fore into (2.10) to obtain 
n 

II + n 1- I eJ. 00 + A11e 0 + A12 max E. (x.,h) 
j~n J J 

(2.13) 
A13 A14 

+ 1-y +O (h) h max lo. (x. ,h) I + 1-y +0 (h) max 
m j~n J J m j~n-1 

+ IT(i)(h)I n . 

From (2.13) it is easily verified that 

IT ~m) (h) I 
J 
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(2.14) 
A13 

+ l-y +O (h) h max ID. (x .,h) I 
m j:O::n J J 

+ 1-y +O(h) max 
m j:O::n-1 

IT~m)(h)I + IIT (h)II. 
J n oo 

Application of Lemma 2.2 yields the result (2.5). D 

The condition on K required in this theorem is satisfied if, for exam­

ple, Kand K satisfy Lipschitz conditions with respect to f. We then may 
X 

write 

* * IK(x,y,f)-a.K(x ,y,f)-K(x,y,f )+a.K(x ,y,f) I 
· n n 

X 

* I = I (1-a.)[K(x,y,f)-K(x,y,f )] + a. K (t,y,f)dt 
X 

X 
n 

X 

I * - a. K (t,y,f )dtl 
X 

X 
n 

* * :0:: (1--a.) L I f-f I + a.lx-xn1L2 if-f I 1 

from which the condition in the theorem is immediate. 

Furthermore, we shall now discuss the error bound (2.5) in more detail. 

If y < 1, then 1-y +O(h) = 0(1) and in this case m m 

hiD. (x.+8.h,h) I :0:: 2 
J J ]. 

max 
1:0::i:O::m 

IE. (x. +e. h, h) I ' 
J J ]. 

so that we can express (2.5) in terms of the quadrature errors Ej(x,h) and 

local truncation errors only. 

If y = 1, however, then 1-y +O(h) = O(h) and the left-hand side of (2.5) 
m m O -1 (m) 

contains expressions of the form D. (x.+8.h,h) and (h )T. (h). For most 
J J ]. J 

quadrature formulae, however, it can be shown that D (x,h) (which was defined 
n 
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as (E (x,h)-E (x ,h))/(x-x) has the same order of accuracy as E (x,h), · n n n n n 
provided that the kernel is sufficiently smooth. 

A disadvantage of the introduction of the modification (1.7) with 

Ym = 1 in a given Runge-Kutta method is the possibility of loosing an order 

of accuracy. This can be seen by the following heuristic argument. 

Let us assume that IE. (x,h) I = O(hq), ITJm) (h) I = O(hp+l) and 11;t;, (h) II = 

0 r+l ➔ qJ p+l r+l + J 00 

(h ) then U e 1 11 = 0 (h ) + 0 (h ) + 0 (h ) if y < 1 and U e 1 11 = 
n+ 00 m n+ 00 

O(hq) + O(hp) + O(hr+l) if y = 1. If the lag term (1.3c) is used, then 
m 

ll;t;, (h) D = IT~m) (h) I and hence r = p. Therefore an order of accuracy is lost 
J 00 J 

if Y = 1 and p+l ~ q. This result is corroborated by the numerical examples 
m 

in Section 5. 

3. STABILITY 

Various equations of the form (1.1) have been taken as test equations 

in the study of numerical stability. The test kernel K = Af was proposed by 

MAYERS [17] in 1962 and only recently (1977) was an x-dependent kernel which 

essentially behaves as K = (a+bx)f investigated [13]. A rather general 

class of separable kernels K = LA, (x)B. (y,f) for the study of stability was 
l. l. 

first proposed in [15] where also polynomial convolution kernels are dis-

cussed. The most simple example of such convolution equations is given by 

(3.1) 

X 

f(x) = g(x) + f (A+µ(x-y))f(y)dy, 

0 

A,µ E ]R. 

The papers mentioned above deal with a rather restricted class of me­

thods. Extensions to more general classes of methods have been presented in 

a number of recent papers ([6], [5], [1] and [2]). 

In this paper we consider the linear equation (3.1) since consideration 

of this equation is sufficient to enable us to establish some promising sta­

bility properties of the modified methods, in comparison with conventional 

(unmodified) methods. 

Application to (3.1) ef the .y-modified Runge-Kutta method ((1.2) with 
~* ~ ·F n (x) for F n (x)) yields the equations 



~ ~ g(x + 8.h) -y.g(x) +y.f + (1-y.)I +hµ8.G 
n 1. 1. n 1. n 1. n 1. n 

(3. 2a) 
~ 2 (l) 

+ l a. 0 {hA+h µ(d. 0 -c 0 )}f l' 
l=l i~ J..~ ~ n+ 

where we have defined 

(3.2b) 

(3. 2c) 

I ( := I (x ) ) : = h 
n n n 

G 
n 

:== h 
n m 
I I 

j=O l=l 

11 

➔ T ➔ T -t- T 
Lets= [1, ... ,1], y = [y 1 , ... ,ym], tl = [8 1 , ... ,em] and let A0 and A1 de-

note the matrices whose entries in the i-th row and l-th column are ail and 
2 -1 

ail (dil-cl), respectively, and define, with M = (I - hAA0 - h µA 1 ) 

(3. 3) 
➔T ➔ 

R. = s.Ms, 
l. l. 

➔T ➔ 
S. = s.M8, 

l. l. 

➔T ➔ 
U. = s.My, 

l. l. 
V. = R. -U., i = 1(1)m. 

l. l. l. 

2 
Thus, R., S., U. and V. are rational functions in the variables hA and h µ. 

l. l. :L l. 

It is then easily verified that we may write (3.2a) in the form 

(3. 4) fn(+il) = hµS.G + U.f + V.I + inh. term. 
1. n 1. n 1. n 

In particular, we have for i = m 

(3.5) 

➔ 
Notice that for y 

+ 
ys (i.e. y. = y for all i, i = 1 (l)m) 

l. 
(3. 4) reduces to 

~ (3.4') yR.f + (1-y)R.I + hµS.G + inh. term 
1. n 1. n 1. n 

where R. and S .. , defined in (3. 3), are independent of y. 
l. l. 

Relation (3.5) describes how the forward step (characterized by S , U m m 
and V ) , the laq term (i.e. I and G ) , and f influence the value f 1 . In 

m · n n n n+ (£.) 
the following WE?. shall consider different lag terms in which the weights w . 

nJ 
display a special structure. Due to this structure it is possible to derive 
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coupled c~fference equations for values fn, In and Gn. From these differ­

ence equations G and I can be eliminated yielding a difference equation 
n n 

in terms of fn-values only. {These are the components we are usually interest 

ed in, and stability of such a relation is called "full step stability" in 

[1].) This elimination step is described in the following Lemma. 

LEMMA 3.1.. Let {!n}~=O (!n = [z~l) , ... ,z~M)]T) satisfy the system of differ­

ence equattions with constant coefficients 

(3.6) 
M {j) I T .. (E) z 1 k = 1J n+ -j=l 

i = 1 ( 1) M, 

where T. .. is a polynomial of degree at most k, and where E denotes the for-
1:, 

ward shiEt operator. Then each component {z(i)}00 satisfies a difference 
n n=O 

equation of the form 

(3. 7) 
- (i) 
T(E)zn+l-kM i = 1 (1) M, 

-(j) . \ (j) 
where <Jn,~l has the form laij (E)gn+l for some polynomial aij and 

(3. 8) T (E) = det (T .. (E)). 
1] 

PROOF. The proof is based essentially on a formal application of an elimina­

tion process. It is perhaps best illustrated for M = 2. For M = 2 the system 

reads (with n replaced by n-k) 

(1) 
= gn+l-k' 

(2) 
gn+l-k 

In order to eliminate {z (2 )} we apply T ,CE) to. the first equation, and T (E 
n 22 12 

to the se~cond, and subtract to obtain 
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which is of the form (3.7). A general proof arises on writing T(E) = 

[T .. (E) ], E (E) = [o .. (E)] and defining I: (E) := adj (T(E)), the classical ad-
1] 1] 

joint. Then I:(E)T(E) = T(E)I and (3.7) may be deduced from (3.6). D 

A caveat in the interpretation of Lemma 3.1 is appropriate, since if 

T(E) and er •. (E), j = 1, ... ,M, have common factors then (3.7) is a recurrence 
1] 

of higher order than necessary, and its characteristic equation has unwanted 

roots. 

An important corollary is: 

+ 00 

COROLLARY. Let the vector {zn}n=O satisfy the system of difference equations 

(3.6), and let {z(i)}00 

0 satisfy the scalar difference equation (3.7). Then 
n n= 

the characteristic equations associated with these difference equations are 

identical. □ 

(i) 
This corollary tells us that the values zn+l-k satisfy a stable recur-

rence relation (3.7) if T(E) is a Schur polynomial. (We observe that one 

should check whether (3.7) is of sufficiently low order.) 

Returning to the equation (3.5) we shall now derive the difference equa­

tions for I and G for three different choices of the lag term. Application 
n n 

of the Corollary then yields the characteristic equation associated with the 

difference equation satisfied by {fn}:=o· For a discussion of the character­

istic equation as a tool in the stability analysis for inregral equations we 

refer to [6]. 

3.1. Extended Pouzet methods 

In this case f = I + g so that (3.4) yields 
n n n 

(3. 9) f(i) = R.f + hµS,G + inh. term 
n+l 1 n 1 n 

+ 
where R. is independent of y! In addition, we have, in view of (1.3a), that 

1 

m 
a f Cl) 

Gn+1 - G = h I = (using (3.9)) 
n l=l mt n+l 

* 2 *~ = hR f + h S G + inh. term 
mn µ m n 
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* \m * where Rm= l.t=l amlR.t and Sm= (3.9) we arrive 

at the equations 

f =Rf + hµS G + inh. term 
n+l m n m n 

(3 .10) 

* 2 *~ = hR f + h µS G 
mn mn 

+ inh. term. 

From these equations G can be eliminated to obtain a difference equation 
n 

in terms of fn only, whose characteristic equation is, after application of 

Lemma 3.1 given by 

(3.11) 
2 

z; 2 * 2 * * (R + 1 + h µS ) z; + {R + h µ (R S - R S ) } = 0. 
m m m mm mm 

(£_) 
3.2. Mixed Runge-Kutta methods using intermediate values fj in the lag_ ten 

In this case the lag term is defined by (1.3b). We derive the following 

differeni::e equation for G • 
n 

m 
- (.t) 

Gn+l - G = h I amlfn+l = (using (3 .4)) 
n l=l (3.12) 

hU f - ~ h 2 S G = + hV I + + inh. term, m n mn µ m n 

where um = I a.ml U,e_ and similar definitions for "m and Sm For I we derive n 

m 
a.ml{).+ µh (1-c.e_) }f~:~ I - I = hµG + h I n+l n n 

l=l (3.13) 

hµG + hU f + hV I 
2 ~ ~ 

+ inh. term = + h µS G 
n mn m n m n 

where Um = I a.ml{),+ µh(l-c.e_) }U.e_ and similar definitions for Vm and Sm. The 

difference equations (3.12) and (3.13) together with (3.5) yield a system 

of difference equations, and the characteristic equation of the difference 

equation satisfied by {fn} can be found by application of':Lemma 3.1 (with 

M = 3). 



3.3. Mixed Runge-Kutta methods using only values f. in the lag term 
J 

3.3.1. {p,cr}-reducible quadrature rules 

The lag term is now defined by (1.3c) so that the expressions (3.2b) 

and (3.2c) become 

n 
I = h L w .[A+µ(x -x.)]f. n • Q nJ n J J J= 

n 
G = h I w . f .. n j=0 nJ J 

15 

For the present we assume that the quadrature formulae based upon the weights 

w . are (p,cr)-reducible (see [19]), i.e. we assume that 
nJ 

k 
(3.14) I 

r=0 
aw . 

r n-r,J 
= {o 

b . 
n-J 

for j 

for j 

= 0(1)n-k-1, 

= n-k(l)n. 

where a and b are the coefficients of a LMS method for ODEs, and where 
r k-rr k 

P(s) = tars and cr(s) = lbrs -r. With this assumption we can derive the 

difference equations 

k k 
(3.15a) I a G = h I b f 

r=0 r n+l-r 
r=0 r n+l-r 

k k k 
(3.15b) I I 2 l a I = b {hA + r h µ}f l - hµ ra G r n+1-r r n+ -r r n+l-r r=0 r=0 r=0 

Application of Lemma 3.1 to (3.15a-b) together with (3.5) yields the charac­

teristic equation 

(3.16) 

k-r 
where P1 Cs) = Irars and cr1 (s) 

k-r + + = Irbrs • For the special case that y = £ 

(i.e. yi = 1 for i = 1 (l)m) vi - 0 and (3.16) reduces to 

(3.16') 
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We.observe that for this special case the equation (3.16') has a factor p(I;;) 

The presence of this factor is a consequence of the generality of the analy­

sis, and it indicates that the analysis can be simplified to obtain (3.16') 

without the factor p(I;;). In order to see this we look at (3.5) and observe 

that we do not need the recurrence relation (3~15b) for I since V = 0. n m 
Application of Lemma 3.1 to (3.5) and (3.15a) then yields (3.16') without thE 

factor p ( I;;) • 

3.3.2. Block-reducible quadrature rules 

In Section 3.3.1 we assumed the (p,cr)-reducibility of the quadrature 

rules. We now extend these results by considering quadrature rules which 

are block-reducible. That is, we assume that the weights w . can be parti­
nJ 

tioned into matrices V . (with V . = b for j > n) such that 
nJ nJ 

(3.17) 

k 
f j = 0 (l)n-k-1, 

I AV = 
r=O 

r n-r,j LB j = n-k(l)n, 
n-j 

where Ar and Br are fixed matrices (with r:=O Art= 

ples are also given). 

➔ 
O; see [1], where exam-

We further restrict attention to the case where each matrix A is dia-
r 

gonal (A0 = I) . It may be noted that all the quadrature rules considered in 

[6] have weights which can be partitioned so that A0 = I, A1 = -I, Ar= o, 

r = 2(1)k. We suppose that the matrices A and B are of order Mand we write 
r r 

(3.18) 
T 

[fnM+1'fnM+2'"""'fnM+MJ ' 

so that, for example, 
...,_ -+ -+ 
$ satisfying$ = g n n n 

the quadrature method applied to (1.5) yields vectors 
n -+ 

+ hA l. O V . $ .• 
J= nJ J 

We shall employ the following lemma. 

LEMMA 3.2. Let the assumptions of this section prevail and suppose that 

( 3. 19) 
-+ 
cr = h 

n 

n 

I 
j=O 

# -+ 
[V . *K . ]$., 

nJ n-J J 
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where * denotes the Schur (or pointwise) product t and K# . is the matrix with 
n-J 

entries A0 + A1 ((n-j)Mh+ (l-m)h) in the (l,m)-th position (l,m = 1,2, ..• ,M). 

Then 

k 

(3. 20) I 
r,s=O 

➔ 
A A CJ 

s r n-r-s 

k 

=h I 
r,s=O 

A [B *K# ]$ . 
s r r-s n-r-s 

PROOF. Writing (3.19) in more explicit form we have 

n ➔ 

h 2A 
n ➔ ➔ I V .1/J. + I CJ = hA0 (n-j)MV .1/J. 

n j=O nJ J 1 
j=O nJ J 

+ h2A1 
n ➔ 

I (DV . - V .D)i/J., 
j=O nJ nJ J 

where D = diag(l,2, ..• ,M). We now find, employing (3.17), that 

k k n k 
➔ I 

➔ 

h 2A I I 
➔ 

(3.21) I A CJ = hA B 1/J + (n-j)MA V .1/J. 
r=O 

r n-r 0 r=O 
r n-r 1 j=O r=O r n-r,J J 

n k 

- h 2A I I 
➔ 

rMA V .1/J. 
1 

j=O r=O r n-r,J J 

n k 
➔ 2 

+ h A1 I I A (DV .-V .D)i/J. 
r n-r,J n-r,J J 

j=O r=O 

k k 

I 
➔ 

h 2A I 
➔ 

= hA0 B 1/J + rMB 1/J 
r=O r n-r 1 

r=O 
r n-r 

n k 

- h 2A I 
➔ l rMA V .1/J. 

1 j=O r=O r n-r, J J 

k 
2 I 

➔ 

+ h A1 (DB - B D)i/J . 
r=O 

r r n-r 

Here, we have used the fact that the matrices A are diagonal and hence com­r 
mute with D. Applying LA to successive equations (3.21) yields 

s 

t) We define the Schur product A*B of the matrices [aij] and [bij] as the 
matrix [a .. b .. ]. 

l. J l.J 
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k 

I 
r,s=O 

-+ A A er 
s r n-r-s 

k k 

= hAO l AB; + h 2A 
s r n-r-s 1 r 

r,s=O 

k 
+ h2A t 1 l. 

r,s=O 

-+ 
rMA B 1/1 

rs n-r-s 

r,s=O 

-+ 
A (DB - B D)l/J , 

s r r n-r-s 

-+ 
A B rf.11/J 

s r n-r-s 

which, when expressed in terms of K# , is the required result. D 
r-s 

Establishing our notation and the above lenuna has been preliminary to 

our task. We return to equation (3.5) from which we deduce, in terms of 

(3.18) 

(3.22) 
fnM+2 I [GnM+11 

= hµS : 

fnM~M+1· m Gn~+M 

+ V ['~+1 
m • 

~ 
InM+M 

-+ 
+ u 1/1 • mn 

-+ 
We designate the left-hand side vector in 

first two terms on the right-hand side by 

(3.22) by~, and the sum of the 
n 

(3.22') 
-+ -+ 

=cr +Utt,. 
n m n 

-+ 
er so that (3.22) becomes 

n 

-+ 
Moreover, if we take AO = hµS + AV and A1 = V µ then er coincides with m m m n 
(3.19) in the statement of Lemma3.2. Taking these values of AO and A1 in the 

definition of K# we have, from (3.20) 
r-s 

k 

r 
r,s=O 

-+ 
A A CJ 

s r n-r-s 

In consequence, from (3.22') 

k 

(3.23) r 
r,s=O 

-+ 
A A ~ s r n-r-s 

=h 

= h 

It remains to observe that if 

k 

I 
r,s=O 

k 

r 
r,s=O 

+ u 
m 

k 
-+ 

r,s=O 
A A 1/1 s r n-r-1 
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(3.24) 

then 

➔ 

(3.25) = Jcj> 
n 

and that substitution of (3.25) in (3.23) yields a recurrence relation for 
➔ ➔ 

the vectors cpn. Thus we have shown that the vectors cj>n = [fnM+2 , fnM+ 3 , ... 

... ,fnM+M+l]T, satisfy, under the assumptions of Lemma 3.2, a recurrence 

relation whose characteristic equation is given by 

k k 

(3.26) det[ I = 0. 
s=O 

Note that for M = 1 the result (3.16) is obtained as a special case of (3.26) 

on writing K# = (hµS + "AV ) + µV (r-s)h, A 
r-s m m m r 

J = (0) and J# = (1). 

3.4. The special caseµ== 0 and y, = y 
1. 

B = b and defining 
r r 

Ifµ= 0 the convolution test equation reduces to the basic test equa­

tion (1.5). In this case the characteristic equations derived in the previous 

§ §, can be factorized, which indicates that the analysis can be simplified 

(in fact, we do not need the recurrence relations for G ). Furthermore, we 
n 

➔ ➔ fl -1+ 
assume that y = ys so that we can use (3.4') with R = £. (I-h"AA0 ) £; in 

1. 1. 

particular Rm(h"A) represents the amplification factor of the RK-method for 

ODEs (see e.g. [16]). Below we give the characteristic equations associated 

with the three classes of methods discussed in the previous§§. These char­

acteristic equations with y = 0 can also be found in [1]. For the extended 

Pouzet methods we obtain 

(3.27) s - R = 0, 
m 

and for the mixed methods of §3.2. 
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(3. -28) 
2 

r; - (1 + YR + (1-y)hA 
m 

The mixed methods of §3.3 yield 

(3.29) 

Note that for Y = 1, (3.28) and (3.29) can be simplified to yield {3.27). In 

the next section we shall analyze the equation (3.29) for y # 1. 

4. STABILITY RESULTS 

4.1. Results for the basic test equation 

In analogy with the stability theory for ODEs, a numerical method for 

{1.1) is said to be A-stable if, when applied to {1.5) with g(x) constant, 

the solution f tends to zero as n + 00 for all values of the step size hand n 
for all A€~ with Re A< 0. It is easily seen that A-stability is equivalent 

to asymptotic stability of the discrete scheme when Re{hA) < 0 and is obtain­

ed precisely when the zeros of the characteristic polynomial are within the 

unit circle. We shall call the method weakly A-stable if these zeros are on 

the unit disk, those on the boundary being simple roots. The following theo-
. + + rem gives us an important result for the modified methods with y = e already 

mentioned in the introduction. 

THEOREM 4.1. Consider a general Runge-Kutta method (1. 2a-b) which is modified 

according to (1.7) with y. = 1 (i = 1, ••• ,m). Then the method is (weakly) 
i 

A-stable if and only if the generating Runge-Kutta method defining the for-

ward part is (weakly) A-stable for ordinary differential equations. 

PROOF. From relation {3.4') which holds for a general lag term {1.2b), the 

result of the theorem is readily seen. Here, weak A-stability for ordinary 

differential equations is defined in a similar manner as above. D 

The next theorem states necessary conditions for A-stability in the 

weak sense. 
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THEOREM 4.2. Consider a mixed Runge-Kutta method (1.2a-b) which employs (p,cr)­

reducible quadrature formulae for the lag term (1.3c), and which is modified 

according to (1.7) with y. = y, (i = 1,2, .•• ,m), y E [0,1). Let the amplifi-
i 

cation factor Rm(z) = P(z)/Q(z), where P and Qare polynomials, and where 

z = hA. Then necessary conditions for weak A-stability are 

!R {z) I = 0(1/lzl) as lzl + 00 , 
m 

(i) 

(ii) Q (z) has no zeros in the half plane Re z ::; O, 

(iii) P (z) has no zeros in the half plane Re z < O. 

k+1 PROOF. Observe first that the coefficient of 1:; in equation (3.29) is 

independent of z. If R (z) or zR (z) is unbounded, then the polynomial (3.29) 
m m 

has at least one unbounded coefficient. This implies that (3.29) has at least 

one unbounded root. This proves (i) and (ii) . Next we prove (iii) . We observe 

that the zeros 1:; 1 (z), ... ,z;;k+l (z) of (3.29) can be interpreted as the values 

of an algebraic function. Let P (z0 ) = 0 with Re z 0 < 0. Then Rm (z0 ) = 0 and 

· (3 .29) reduces to 1:;p (i',;) = 0 which has a root 1:; 1 (z0 ) == 1. Now z;: 1 (z) is a 

branch of an algebraic function which is analytic in a neighbourhood of z 0 • 

Let Ce: = { z I I z-:z0 I ::; d be a small circle around the point z0 , which is con­

tained entirely in the left half plane Re z < 0. Application of the maximum 

principle for analytic funct:ions yields that !1:; 1 (z) I > 1 for some z with 

lz-z0 1 = e: or that z;: 1 (z) must reduce to a constant (= 1) on Ci=;. However, 

z;: 1 (z) = 1 on CE: implies that Rm(z} = 0 on Ce: which is not true. Hence, we 

have shown that there exists a point z with Re z < 0 such that ( 3. 2 9) has a 

root greater than unity which implies that the method cannot be Jl.-stable. D 

The following Corollary is a consequence of the condition (iii) in Theo­

rem 4.2 and indicates that high-order mixed Runge-Kutta methods cannot be A­

stable. 

COROLLARY. Consider the methods treated in Theorem 4. 2. Let the amplification 

factor R (z) be A-acceptable and a p-th order approximation to exp(z). Then 
m 

the method is not A-stable for p ?: 3. 

PROOF. The order star associated with R (z) has at least [(p+l)/2] - 1 bound­
m 

ed dual fingers in the left-hand plane Re z < 0 (see the proof of Theorem 5 

of WANNER et al. [20]). This implies (see Proposition 4 in [20]) that R (z) 
m 
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has at least [(p+1)/2] - 1 zeros in the left-half plane. Therefore condition 

(iii) of Theorem 4.2 is violated. D 

Let us now consider the case that A assumes only real values. A numeri­

cal method is said to be weakly A0-stable if, when applied to (1.5) with 

g(x) constant, the solution f remains bounded as n ➔ 00 for all values of 
n 

the stepsize hand all A E lR with A~ 0. This condition is equivalent to 

stability of the discrete scheme when Re(hA) ~ O. 

THEOREM 4.3. Consider the methods treated in Theorem 4.2. Let the amplifi­

cation factor R (x) = P(x)/Q(x) with P(O) = Q(O) = 1 and x = hA E lR-. Then 
m 

necessary conditions for weak A0-stability are 

(i) IR Cx) I= O(1/lxl) as !xi+ 00 • 
m 

(ii) Q(x) has no zeros for x ~ 0. 

(iii) P(x) does not change sign for x ~ 0, i.e. P(x) ~ 0. 

PROOF. The proof for (i) and (ii) is the same as for Theorem 4. 2. For ( iii) we 

reason as follows. Since Q(x) > 0 on (-oo,O) and P(O) = 1, we know that 

P(x) ~ O if P(x) does not change sign on (-oo,O). Suppose that R (x) changes 
m 

sign at x = x0 with x0 < 0. Then Rm(x) has a zero at x = x0 , and ifµ is the 

multiplicity of that zero thenµ is odd. Since Rm(x0 ) = O, the equation 

(3.29) reduces to ~p(~) = 0 which has a root~= 1. By (repeated) differen­

tiation of (3.29) with respect to hA, and using the fact that R (x0 ) = ••• = 

R!µ-l) (x0 ) = 0, R!µ) (x0 ) :/ 0, we derive that m ' 

Since ~ (x0) = 1, R!µ) (x0 ) :/ 0 and µ odd, we can always find an x sufficient!~ 

close to x0 such that ~ (x) > 1, which implies that the method cannot be A0-

stable. D 

We conclude this section on the basic test equation by listing the 

stability boundaries of a number of mixed Runge-Kutta methods (the stability 

boundary Sis defined by the interval -S ~ hA ~ 0 where the characteristic 

roots ~(hA) are on the unit d.i.sk, those on the unit circle being simple 

roots). In Table 4.1 the lag terms in these methods are defined by specify­

ing the characteristic polynomials {p,o}, and in Table 4.2 we give the vec-
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tor. e and the matrices Ao, Al associated with the Runge-Kutta parts used. De­

riving the functions u , V and S defined according to (3. 3), and substitu-
m m m 

tion of {p,cr} and {U ,v ,S} into (3.16) yields the characteristic equation 
m m m 

Table 4.1. Lag terms defined by {p,cr} 

k P < s) cr (s) 

third order Gregory rule [4] 2 s(s-1) css 2+ss-U/12 

trapezoidal rule 1 i:-1 (i:+1)/2 

third order backward 
3 

3 2 
{11s -lBs +9s-2)/11 6s 3/11 

differentiation formula [19] 

of the various mixed Runge-Kutta methods. In Table 4.3 the stability bound-
➔ ➔ ➔ ➔ ➔ ➔ 

aries for the basic test equation are listed for y = 0, y =Eland y = E, 

respectively. We also include the stability boundaries when the lag term is 

combined with the one-step Runge-Kutta part defined by the forward and back­

ward Euler formula and the trapezoidal rule. (In the following a particular 

Runge-Kutta method will be indicated by specifying first the lag term and 

then the Runge-Kutta part.) 
➔ 

From the data of Table 4.3, the stabilizing effect of y 
➔ ➔ 

➔ 
Eis evident. 

It should be remarked, however, that they= El version of the method may 
➔ ➔ 

have a smaller stability boundary. (Recall that if y = El the methods in 

Table 4.3 a1:e economized, except for the N¢rsett formula where e1 ,J 0 

(see Table 4.2) .) 
➔ 

The result S(O) = 2 obtained for the trapezoidal rule when mixed with 

the repeated trapezoidal rule for the lag term, is surprising at first sight 

because it is well-known that the trapezoidal rule when used as a direct 

quadrature method is A-stable (see e.g. [6]). Although both representations 

will produce the same numerical solution if exact arithmetic is used, differ­

ent numerical solutions are obtained in the actual computation on a finite pre­

cision computer. In Table 4.4 this is illustrated for the integral equation 
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X 

(4. 1) f (x) = 1 + 100x + e-xsinx -I -x [ 100 + e cos (yf (y)) ]f (y) dy 

0 

with the exact solution f(x) - 1. 

-+ 
Table 4.2. Runge-Kutta parts defined bye, A0 and A1 

Third order 

Bel'tyukov 

[9, p.148] 

Third order 

Newton-Cotes [14] 

0 

1 

1/3 

1 

Third order (3''3) 
Nprsett ¼ 3-: 
[11, p.150] 

(.jg 
0 

0 

2/9 

1/4 

0 

1/4 

2/3 

(3+'3 
¼ -2: 

Ao 

0 

0 

0 

3/4 

0 

3+13 

3 

-+ 

0 0 

0 1/2 

0 1/18 

0 0 

~) ~ 
0 

12 

9-313 

-+ -+ -+ -+ 

0 

0 

0 

0 

A 1 

0 

0 

1/3 

0 

0 

0 

0 

0 

1/2 

9+313 

-+ -+ 
Table 4.3. Stability boundaries 8(y) for y = 0, y = £1 and y = £ 

LAG TERM 

0 ) 0 

0 

Runge-Kut ta Trap. Rule Gregory Backw. diff. 
part -+ -+ -+ -+ -+ -+ -+ -+ -+ 

8 (0) 8(£1) 8(£) 8(0) 8(£1) 8(£) B(O) 8(£1) 8(£) 

Forward Euler 1 1 2 1 1.2 2 1 .9 2 

Trap.Rule 2 00 00 2 00 00 2 6.6 00 

Backward Euler 00 00 00 00 00 00 00 00 00 

Bel'tyukov 1.6 1.3 2.5 1.6 1.3 2.5 1.6 1.3 2.5 

Newton-Cotes 5.6 2.4 12 5.1 2.4 12 7.7 2.4 12 

N¢rsett 2.2 8.5 00 2.2 4.8 00 2.2 3.5 00 

o' 
0 

0 

0, 
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Table 4.4. Numerical solution of (4.1) obtained on the CDC CYBER750 for h = 1/10. 

X Mixed Method (4.2) Direct Method (4. 3) 

• 2 1.000001. .• 1. 000001. •. 

1.0 . 999998 •.. • 999998 .•• 

1.6 . 9996 ••. . 999998 ••. 

1.9 . 95 ••• 

2.0 • 79 .•. 

2.1 - • 04 .•. 

2.2 - 4. 2 ••. 

2.3 - 25. 1. •. 

2.4 -129.8 ••• .999998 •.• 

We recall that the "mixed" representation reads 

(4.2) 

n,, 
g(x) + h l K(x ,x.,f.) 

n j=O n J J 

n,. 
= g(x 1) + h L K(x 1 ,x.,f.) 

n+ . 0 n+ J J 
]= 

1 ( 1) 
+ -2 h[K(x 1 ,x ,f 1) + K(x 1 ,x 1 .f 1)] 

n+ n n+ n+ n+ n+ 

and the "direct" representation simply 

n+l 
(4. 3) fn+l = g(xn+l) + h Y "K(x 1,x.,f.). . ·o n+ J J 

]= 

According to Table 4.3 and Table 4.4 as well, the direct representation is 

stable, whereas the mixed version (4.2) is unstable for this stepsize (the 

same phenomenon occurs for the basic test equation). 

4.2. Stability plots for the linear convolution equation 

For the convolution equation (3.1) the stability regions (that region 
2 

in the (hA,h µ)-plane where the characteristic equation has its roots on the 

unit disk with simple roots on the unit circle) were computed for a number 
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-N¢rsett 4. 5. Gregory 
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of_mixed Runge-Kutta methods specified in the Tables 4.1 and 4.2. In the 
➔ ➔ ➔ ➔ 

figures 4 .1 - 4.6 these regions are given for y = 0 (///), y = £ 1 ( 111) and 
➔ -+ 

for y = £ (\\\). The values given in these figures refer to the part of the 

(hA,h2µ)-plane to which the stability plots are restricted. 

In these figures we see that except for the Gregor.y...:N{ZSrsett method 
➔ ➔ 

(Fig. 4.5) the stability regions corresponding toy=£ contain those cor-
➔ ➔ ➔ ➔ 

responding to the standard method (y = 0) or to the economized version (y = £ 1 
➔ ➔ 

and are considerably larger. In figure 4.5 they= £1 method is stable 

where the modified method is not but this has no practical significance. 

Furthermore, we may conclude that just as in Table 4.3 the Runge-Kutta 

part mainly determines the magnitude of the stability region and the lag ter 

is less important. 

5. NUMERICAL EXPERIMENTS 

In this section we report on numerical experiments with mixed Runge­

Kutta methods and their modification employing residual corrections. The pur 

pose of these experiments is to verify the order of convergence expected fro 

Theorem 2.1, and to indicate the relevance of the stability results obtained 

in Section 3 and 4. 

In the accuracy experiment, we have chosen the following mixed Runge­

Kutta method of Pouzet type, where the forward step is given by the two-stag 

third order Radau formula (see LAPIDUS and SEINFELD [16, p.62]). 

0 

1/3 

3/4 

and where the lag term (1.3c) was computed by the Gregory-rules of order 4. 
➔ ➔ ➔ ➔ 

For the classical (y = 0) and economized (y = £ 1 ) method the expected order of 
➔ ➔ 

accuracy is p = 4, whereas for the modification with y =£it is p = 3. For 
➔ 

these choices of y we have applied the method to the equation 

X 

( 5. 1) f(x) g(x) - J 2 
2 f(y)dy, 

0 (x-y+2) 
o:,;x:,;2. 
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The kernel in the equation (5.1) occurs in the study of the reflection of 

sound pulses (see FRIEDLANDER [10]}. In order to have the exact solution at 

hand, we have chosen g(x} = 2 - 2/(x+2} which yields f(x) - 1. We have inte­

grated the problem (5.1) with stepsizes h = 0.1, 0.05, 0.01 .and 0.005. In 

Table 5.1 the number of correct digits (defined by cd = - 101og absolute error) 

at x = 2 and the computed order p * is listed (p * = [cd (h) - cd (2h) J;1°1og 2) • 

The results confirm the theoretical result given in Theorem 2.1. Notice that 
+ + 

the economized version (y = £1) yields the same results as the standard ver-
+ + 

sion (y = 0) • The stabilized version is considerably less accurate in this 

non-stiff example. 

In the following experiment we have applied the third order N¢rsett 

formula mixed with the third order Gregory rule (see Section 4.1) to the 

integral equation (5.2): 

Table 5 .1. Number of correct digits at x = 2 and computed order for problem (5. 1) 

h 

0.1 

0.05 

0.01 

0.005 

+ 
y = 

cd 

6 .1 

7.2 

9.8 

11.0 

-+ 
0 

+ y 

* p cd 

3.7 
6 .1 

3.7 
7.2 

4.0 
9.8 

11.0 

X 

+ + + 
= £1 y = £ 

* * p cd p 

3.7 
4.6 

3.0 

3.7 
5.5 

3.0 

4.0 
7.7 

3.0 
8.6 

(5.2) f (x) = g(x) - I [16+(x-y)][1-0.01exp(-x)cos(yf(y))]f(y)dy. 

0 

With g(x) = 1 + 16x + 1/2 x 2 0.0lexp(-x) [1- cosx+ 16 sinx] the exact solu-

tion of (5.2) is f(x) = 1. The kernel in (5.2) deviates only slightly from 

our linear convolution test equation (3.1), and therefore, it is expected 

that the stability regions given in Fig. 4.5 can be used in a quantitative 

manner to predict stable or unstable behaviour. The problem (5.2) was inte­

grated with stepsizes h = 1/2, 1/4, 1/8, 1/16 and 1/32; the endpoint was 128h. 
+ + 

From Fig. 4.5 we expect the modified (y = £) method to be stable for all step-

sizes considered and the ciassical (y = 0) version only for h =/ 1/2, 1/4. The 
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tr1,1th is given in Table 5.2 where we have listed the number of correct digit 

at the endpoint xe = 128h. (An asterisk indicates that the absolute error is 

larger than lO+lO_) These results indicate that the modified method is reall· 

Table 5.2. The number of correct digits 
at xe = 128h for problem (5.2). 

+ + + + 
h xe y = 0 y = £ 

1/2 64 * 3.4 

1/4 32 * 3.2 

1/8 16 4.5 3.5 

1/16 8 6 .1 4.0 

1/32 4 7.2 4.6 

highly stable but also that its accuracy is rather modest. If one decides to 

base a computer program on the modified methods it seems desirable to have 

some strategy which makes an appropriate choice between the more accurate 

standard method (for nonstiff problems) and the more stable modified method 

(for stiff problems). However, to justify such a strategy one has to be sure 

that the behaviour shown in Table 5.2 is also typical of problems which do 

not resemble the model problem (3.1). 

our first "non-model" problem is a nonlinear convolution equation with 

increasing stiffness as x increases: 

(5. 3) 

X 

f(x) = 17(exp(x)-1) - I (16+x-y)exp(f(y))dy 

0 

with the exact solution f(x) = x. Applying the Gregory-N¢rsett method, we 

obtained the results listed in the Tables 5.3 and 5.4 showing the higher 

accuracy of the standard method for small hand the increased stability of 

the modified method for larger values of h. 

Our final problem is a nonlinear, non-convolution equation given by 

(5. 4) f(x) = [1+(1+x)exp(-10x) ] 112 + / 0 (l+x) [10ln(l+x)+1-exp(-10x)] 

X 

- A I l+x 2 
l+y f (y)dy, 10. 

0 
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Table 5.3. The number of correct digits for problem (5.3) 

➔ ➔ 

y = 0 x=.5 1.0 1.5 2.0 2.5 3.0 3.5 

h = 1/4 0.9 -0.1 -1.2 * * * * 
1/8 1.4 0.4 0.5 * * * * 
1/16 2.7 1.8 0.6 0.2 -1. 7 * * 
1/32 3.9 3.4 2.5 1.0 0.9 -0.9 * 

Table 5.4. The number of correct digits for problem (5.3) 

➔ ➔ 
y=E: x=.5 1.0 1.5 2.0 2.5 3.0 3.5 

1/4 0.9 0.7 0.5 0.3 0.0 -0.2 -0.4 

1/8 1.6 1.4 1.1 0.9 0.7 0.4 0.2 

1/16 2.3 2.0 1.8 1.5 1. 3 1.0 0.8 

1/32 3.1 2.7 2.4 2.2 1.9 1. 7 1.4 

with the exact solution f(x) = [1+(1+x)exp(-10x)J 112 . We considered the 

values A= 1, 10 and 100 in order to make this problem increasingly stiff. 

For A= 10, (5.4) is the frequently quoted equation of DE HOOG and WEISS 

[12]. In order to avoid the computation of the initial phase of the solution, 

we computed the integral over [0,1] exactly and started the integration at 

x = 1. The results obtained with the Gregory-N~rsett method are listed in 
➔ ➔ ➔ ➔ 

Table 5.5 and indicate that the methods (y = 0 and y = E:) have the same be-

haviour as in the case of convolution kernels. 
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Table 5.5. The number of correct digits at x = 10 for problem (5.4) 

A = 1 A= 10 A = 100 

+ ➔ ➔➔ ++ ➔ ➔ + ➔ ➔ ➔ 
h y=0 y=£ y=0 y=£ y=0 y=£ 

1/2 3.6 3.3 * 1.8 * * 

1/4 4.8 4.0 * 2.6 * * 

1/8 6.0 4.8 * 3.2 * * 

1/16 7.1 5.6 5.3 3.9 * 2.7 

1/32 8.2 6.5 6.6 4.7 * 3.3 

6. EXTENSIONS 

To conclude this work we indicate briefly some topics of further interef 

Concerning convergence, it will be observed that the use of (1.3a) or 

(1.3b) may correspond to superconvergence in the values f 1 = f(m) which is 
n+ n+l 

not revealed by application of Theorem 2.1. 

Concerning stability, we recall that it is possible to consider test 

equations of the form 

(6 .1) f (x) 
r 

A (x-y) }f (y) dy 
r 

in place of (3.1), or to extend consideration to non-convolution kernels in 

which there is polynomial dependence on x (cf. [2], [15] and [18]). In [2] 

certain unmodified methods have been analysed for the equation (6.1) and the 

present authors have adapted these results to include modified Runge-Kutta 

methods considered here. These extensions are in preparation and will be 

published in the near future [3]. 
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