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The automatic solution of Fredholm. equations of the second kind *) 

by 

H. Schippers 

ABSTRACT 

For the automatic solution of Fredholm equations of the second kind a 

new code, called solve int eq, is presented. The linear system resulting 

from the discretization of the integral equation is iteratively solved by 

a multiple grid method. We selected this method because in a previous paper 

[4] we have shown that multiple grid processes take only 0(N2) arithmetic 

operations. For a variety of problems the performance of solve int eq is 

compared with Atkinson's program iesimp [1]. This program appears to be 

about 50% more expensive than solve int eq. Additionally, solve int eq is 

applied to the aerodynamic problem of calculation of potential flow around 

a Karman-Trefftz aerofoil. 

KEY WORDS & PHRASES: Fredholm integral equations of the second kind, Mul­

tiple grid methods, automa.tic algorithm 

This report will be submitted for publication elsewhere. 
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1. INTRODUCTION 

In the present paper we describe an algorithm for the automatic solu­

tion of Fredholm equations of the second kind: 

( 1.1) 

b 

f(x) - j K(x,y)f(y)dy = g(x), 

a 

x € [a,b]. 

The algorithm is an improvement of Atkinson's automatic program• iesimp [ 1 J 

in the sense that a new iterative method is used for the solution of the 

non-sparse systems of equations that arise from the approximation of (1.1). 

Our iterative methods are multiple grid methods that work with a sequence of 

grids of increasing refinement. These grids are simultaneously used to ob­

tain an approximation to the original continuous problem (1.1). The multiple 

,. grid methods used can be seen as an extension of Atkinson's iterative scheme, 

that uses only two grids: a coarse and a finer grid. Convergence and compu­

tational complexity of multiple grid methods have been studied in a previous 

paper [4]. The program has been written in the algorithmic language ALGOL 68, 

since in this language we can easily and efficiently handle the data struc­

tures and the recursive procedures that appear in multiple grid methods. 

A description of our multiple grid methods can be given by collective­

ly compact operators and interpolatory projections onto subspaces of piece­

wise continuous.,, functions. This has been done in section 2, where also some 

results from [4] are collected. Based on the theoretical foundation of sec­

tion 2, the program for the automatic solution of Fredholm equations, solve 

int eq, is described in section 3. Numerical examples illustrating the 

method are given in section 4. Comparisons have been made with Atkinson's 

automatic program iesimp. 

2. DESCRIPTION OF MULTIPLE GRID METHODS 

In this section we write equation (1.1) in operator notation as 

{2 .1) (I-K)f = g, g € x, 

where Xis a Banach space and K: X ➔ X the linear operator associated with 
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the kernel _k(x,y). It is assumed that 1 is not an eigenvalue of K. Thus, 

therefore (I-K) has a bounded inverse on X. We approximate the solution of 

(2 .1) by a sequence of interpolating spline functions f with knots at the 
p 

points Gp= {tila = t 0 < t 1 ••• < ~p = b}. On the interval [a,b] all grids 

{Gp},p= 0,1,2, ••• l are selected such that G0 c G1 c ••• c G,e_• In the context 

of multiple grid iteration, the subscript pis called ".level"; h is a 
p 

measure of the mesh-size defined by: 

N 
p 

B1. 

h = p 
max 

t.EG 
1 p 

It. -t. 1 1. 
1 1-

In our algorithm we take the sequence of grids {G} uniform with 
p p 

= 2 N0 , so that 

h 
p 

Corresponding with the sequence {h} we approximate K by a sequence of ap­
p 

proximating operators {K } , K : X + X. 
p p 

Let X, p = 0,1,2, ••• , be the finite-dimensional subspaces of interpolating 
p 

spline functions and let T, p = 0,1,2, ••• , be the interpolating operators. 
p 

We use the following assumptions on {K} and {T }: 
p p 

B2. K =KT, 
p pp 

B3. u (K-K )KR a. 
a.> o, ::;; c1hp, p 

B4. II (I:=-T )KIi 
p 

::;; f3 c2hp, f3 > 0. 

Although the above assumptions are not necessary conditions, they are suf­

ficient to satisfy the assumptions A1-A6 of section 2 in our previous paper 

[4]. Hence, the theory presented in [4] applies to our present algorithm. 

Let X be the Banach space C[a,b], provided with its supremum norm, and 

let ye C[a,b]. If Ky is twice (respectively four times) continuously dif­

ferentiable the assumptions B2-B4 can be verified for the following examples 

1 and 2. 

EXAMPLE 1. The operator K is defined by the repeated trapezoidal rule and 
p 



the operator T by continuous, piecewise linear interpolation, in which 
p 

case ex= 8 = 2. 
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EXAMPLE 2. K is defined by the repeated Simpson's rule and T by continuous, 
p p 

piecewise cubic interpolation. In this case ex= 8 = 4. 

EXAMPLE 3. Finite element methods for integral equations from potential 

theory. Let D be a simply connected finite plane region bounded by a smooth 

contour S with continuous curvature. S is given by the parametric equations 

x = X(s), y = Y(s), s € [0,1]. The kernel function is given by 

1 d (Y(t)-Y(s)) 
k(s,t) = - ir dt arctan X(t)-X(s) • 

Define the operator 

ti+~ = (ti +ti+l) /2, 
must be chosen such 

T by piecewise constant interpolation at the mid-points 
p 

i = 0, ••. ,N -1. Let K be defined by KT. The space X 
p p p 

that for each N it contains the class of piecewise con-

stant functions. Following SLOAN [10] we choose X to be the Banach space 

z[0,l], which is the closure (in the supremum norm) of the space of piece­

wise continuous functions on [0,1] which satisfy 

f(t) = ~[lim 
s+t 

f(s) + lim+ f(s)], 
s+t 

t€ (0,1), 

f(0) = lim+ f(s), 
s-+O 

f(l) = lim f(s). 
s+l 

In this case we get ex= 1 + p, where pis a measure for the smoothness of 

S (0<p~l) and 8 = 1. See [8]. 

On level p we wish to approximate the solution of equation (2.1) by: 

(2.2) A f = T g, 
pp p 

f € X , 
p p 

where A = I-T K. We assume that the mesh-size h0 is sufficiently small 
p pp 

such that A-l exists for all p ~ 0. If the forcing-function g(x) is several 
p 

times continuously differentiable such that II (K-K )gU ~ 
(X p 

from assumption B3 that II (K-K ) fll 
p 

~ c4hp. From the work 

following error estimate is obtained: 

c3h;, it follows 

of PRENTER [6] the 
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(2. 3) 

In solve int eq we use this asymptotic behaviour of the error to extrapolate 

and predict the size of the error for small values of h. 
p 

The solution f € X of (2.2) is approximated by a defect correction p p 
process of the form 

(2.4) 

f = o, p,O 

( . ) 
where BJ , (j = 

p 
1,2,3), is an approximate inverse of A and g = T g. In 

p p p 
[4, section 4] we studied the convergence 

to the following choices for B(j): 
p 

B (l) = T -1 + T 1A 1T K , 
p p p- p- pp 

fB~2) = 

lB(2) = 
,P 

-1 
TOAO 

properties of (2.4) with respect 

{
B~ 3) = 

B(3) = 
p 

T - T + T Q( 3) (T -T K +T K) 
p p-1 p-1 p-1 p-1 p-1 p-1 pp' 

with 

j = 2,3, 

for some positive integer y. 

We notice that B(l) is only of theoretical value, since the dimension of 

A- 1
1 tends to in~inity asp+ 00 • The operator B( 2) yields an iterative 

p- p 
process, that is equivalent with the multi grid method discussed in 

HACKBUSCH [3], whereas B( 3) yields a multiple grid method with better con­
p 

vergence properties for integral operators with a large value of DKD. 

For the various iterative processes we denote the rate of convergence 

of (2.4) by n(j). Since the convergence of (2.4) depends on the Lipschitz 
p 



constant of the operator I - B(j)A as a mapping from X onto X, it fol-
p p p p 

lows that 

( . ) 
n J 

p 

THEOREM 2 • 1 • 

i. 
(1) ::;; C hmin(a,13), 

nP 3 p 

ii. 
( 2) ::;; (1) ( 2) Y [ ( 1) 

nP nP + n 1 n p- p 

iii. 
(3) 

nP 
::;; (1) 

np 
(3)\ (1) 

+ np-l nP 

+ IIT IIIIK II], 
p p 

+ flT FJ. 
p 

PROOF. See [4, theorems 4.1 and 4.2]. D 
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Based on part (i} of this theorem, the defect correction process (2.4) 

induced by B(l) can be expected to have a regular geometric rate of conver­
p 

gence, i.e. 

flf . 1-f 11/llf .-f II+ v p,i+ p p,i p p 
as i + 00 , 

where the constant v + 0 as p + 00 • By assumption Bl it follows that 

vp = v 1dp-l with d =p2-min(a,l3) 

The multiple grid processes are constructed in such a way that 
B(l) (2) (3) 

1 = B1 = B1 • As a consequence the rates of convergence of the mul-

tiple grid processes depend on the magnitude of v 1, y, II T II and II K H • For 
p p 

j = 2,3, this dependence is explained by means of the definition of the 
( . ) 

sequence {w J } given by: 
p 

( . ) p-1 w J = vl, V = d v 1 , 1 p 
(2.5) 

(j)y ( . ) 
w J =v + w 1 (v +k.), p > 1, 

p p p- p J 

where 

HTHIIKII, j = 2 
p p 

k. = 
J 

IIT U j = 3. 
p 
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If n(l) s v, by induction it may be shown that n(j) s w(j), (j = 2,3). In 
p p p p 2 

the following lemma we formulate a condition on v 1, such that wp < v 1vp, 

i.e. two multiple grid iteration sweeps yield an iterative approximation 

for f, which has the same geometric rate of convergence as one application 

of (2~4) with ·approximate inverse B(l). 
p 

( . ) 
LEMMA 2.2. Let Vp and w J (j = 2 or 3) be defined by (2.5) and let y = 2, 

.·2 p 
v 1 < 1, then w~J) s v 1vp if and only if 

(2.6) 

PROOF. Since a,S > 0 it follows that d = 2-min(a,S) < 1, so that 
(2) (3) 

vp < vp-l < ••• < v 1 < 1. By definition (2.5) we have w1 = w1 = v 1 and 

by induction we obtain for p > 1: 

( . ) (j>2 w J = V + w l (v +k .) , p p p- p J 

s V + v 1vp_ 1 cv2+kj), p 
V 

s -f (d+v1 (v2+kj)). 

Substituting condition (2.6) we get for p > 1: 

( . ) 
Conversely, we first note that v s w J • Hence, for p > 1 

p p 

2 ( . ) 
V + V l ( V +k . ) S W J • 
pp- PJ p 

{v +v2 
1 cv +k.)} 2 < v 1v, 

p p- p J p 

2 2 
v 1{d+v 1 (v +k.)} < v 1dv l' 
p- p- p J p-

{d+v 1 (v +k.)} 2 < d 3-P. 
p- p J 
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For increasing values of p the left-hand side decreases, whereas the right­

hand side increases. However, the inequality should hold for all values of p, 

in particular for p = 2. In that case condition (2.6) is obtained. D 

As a consequence of this lemma condition (2.6) is sufficient to show 

that the rates of convergence of the multiple grid processes satisfy 

( . ) 2 
TI J < V V , 

p 1 p 
j = 2,3. 

For different values of d and k. the upper bounds on v 1 are given in table 
J 

2.1. 

k. 1 6 24 100 J 
d 

1/1 1.85 - 1 3.12 - 2 7.81 - 3 1.87 - 3 

1/4 2. 36 - 1 4.16 - 2 1.04 - 2 2.50 - 3 

1/2 1.89 - 1 3.44 - 2 8.63 - 3 2.07 - 3 

3/4 1.07 - 1 1.93 - 2 4.83 - 3 1.16 - 3 

Table 2.1 Upperbounds on v 1 to obtain w 
2 :;;; v 1vp, with y = 2. 
p 

The upperbounds on v 1 are essentially the requirement of "a fine enough 

mesh" in the coarsest discretization of the multiple grid algorithm. Since 

on the coarsest grid the system of equations in solved by a direct method 

(e.g. Gauss-elimination) we like to have v 1 as large as possible, so that 

a more robust algorithm is obtained. Therefore, in solve int eq the condi­

tion (2.6) on v 1 is replaced by a weaker one, which also guarantees fast 

convergence. We start on some coarse grid and we estimate v 1 • A test is 

made to check whether 

(2.7) p=l,2, .•• ,l. 

The necessary upper bound on v 1 again depends on the actual value of kj and 

d as is shown in table 2.2. 
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k. 
d J 1 6 24 100 

1/16 3.51 - 1 9.11 - 2 2.81 - 2 7.46 - 3 

1/4 4.47 - 1 1.17 - 1 3.27 - 2 8.27 - 3 

1/2 4.34 - 1 1.10 - 1 2.93 - 2 7.13 - 3 

3/4 3. 70 - 1 8.82 - 2 2.25 - 2 5.40 - 3 

Table 2.2. Upper bounds on v 1 to obtain w (j) 2 
:s; V ' with y = 2. 

p p 

From table 2. 2 we conclude that the condition on v 1 becomes stronger as kj 

becomes larger. Since k 2 = UT IIIIK II and k 3 = NT D the rate of convergence 
p p l3) p 

of the multiple grid process defined by B does not depend on IIK D. There-
. p (3) p (2) 

fore, in our code we apply the approximate inverse B rather than B • 
(3) p (3) ~ 

Without confusion we further use np and wp for np and wp , respectively. 

Since np :S: wp it follows that 

(2.8) II f . 1-f . II :s: w II f . -f II, p,i+ p,i p p,i p 

i.e. the multiple grid p~ocess has a regular geometric rate of convergence. 

The constant wp follows from (2.5) as soon as v1 has been determined. 

After a iteration sweeps the multiple grid proces yields an approxi-

mate solution f for which the following error estimate holds p,a 

(2.9) IIT f-f n :s; IIT f-f n + Df -f II. 
p p,a p p p,cr p 

In our code solve inteq we determine the integers panda in an automatic 

way so that DT f-f D is less than a prescribed value tol. This is achieved 
p p,O' 

by estimating the errors on the right-hand side of (2.9). Asymptotically for 

p + m, condition (2.7) insures that only two multiple grid sweeps yield. a 

result of the order of the approximation error IIT f-f II. On the lower levels 
p p 

(i.e. small p) we determine a so that 

(2.10) Hf -f II :s; O.l*DT f-f 11, 
p,O' p p p 

i.e. the iteration error must be less than the approximation error. 
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3. AUTOMATIC PROGRAM 

In this section we describe our code solve int eq, a program for the 

automatic solution of Fredholm equations (1.1). Like Atkinson's program 

iesimp the procedure in divided into two stages. In stage A we determine 

the coarsest meshwidth h0 by means of (2.4) with the approximate inverse 

B!l). The rate of convergence v 1 is estimated by 

max (Df1 . 2-f1 . 111/llf1 . 1-f1 .11, 
. 0 1 5 ,1.+ ,1.+ ,1.+ ,1. 
1.= ' ' ••• ' 

with fl,O = T1f 0 • 

If the rate of convergence v 1 appears sufficiently small such that 
2 

w < v , then stage B is entered. Otherwise, the number of points N0 is 
p p 

doubled. In stage B the number of levels is increased until the predicted 

error estimate for IIT f-f U is less then tol. The rate of convergence P p,cr 
of the multiple grid process is estimated by w (2.5) and the previously 

p 
determined value of v 1 • Using (2.8) we estimate the iteration error by 

(3.1) II f -f II = w / ( 1-w ) 0 f -f 1 D • 
p,cr P P P p,cr p,cr-

As the number of levels increases we are able to estimate the ratio 

r = RT f-f 11/IIT 1f-f 1H. 
p p p- p-

Asymptotically for p ➔ ~, this ratio approximates the value 2-a; see assump­

tion Bl and (2.3). In this paper we only apply multiple grid methods to 

approximating operators K with a> 1. Hence, the ratio r must be less than 
p 

0.5. Initially we set r = 0.5 and we compute the above ratio by 

r = min(0.5,ma:x:(2-a, 
llT 1f -f 10 

p- p p-
llT f -f a» · 

p-2 p-1 p-2 

Using this value of r we estimate the approximation error by: 

(3.2) IIT f-f II = r/(1-r)IIT 1f -f 111. 
P P p- p,cr p-
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The error estimates (3.1) and (3.2) are used to verify the test (2.10). 

If it is satisfied, then we set f := f • Otherwise, a new iterate is P p,cr 
computed and test (2.10) is repeated. If the error estimate (3.2) yields 

a value less than tol, then the computations are terminated and solve int eq 

returns successfully. 

Asymptotically for p + 00 , the total amount of work on level p can be 

computed. For the examples 1 and 2 the operation counts per iteration sweep 

for B( 3) (with y = 2) are 3.5 N2 . Condition (2.7) insures that only two 
p p 

iterates need to be calculated. The first iterate is obtained by interpo-

lating the results of level p-1. Therefore the total amount of work is 

equal to: 

( 3. 3) 

For the description of our code solve int eq we use the formal lan­

guage ALGOL 68 [11]. In practice it appeared that ALGOL 68 is an elegant 

and in a numerical research environmeRt an efficient tool to implement mul­

tiple grid techniques, because this language can easily handle the data 

structures and the recursive procedures that appear in multiple grid algo­

rithms. 

In order to give our program in a concise, modular and readable form, 

we first give an informal description of a set of ALGOL 68 modes and opera­

tors that correspond to the mathematical objects and operators of section 2. 

The formal description of the modes and operators is their ALGOL 68 - imple­

mentation which we give in the appendix. 

MODE VEC 

MODE MAT 

= REF [ ] REAL: 

# a structure to represent an element of X , i.e. the nodal 
p 

values of the spline representation# 

=REF[,] REAL: 

# a structure to represent a matrix# 

PROC .restrict:= (VEC y ) VEC: 
p 

# some representation of 

X onto X 1, restrict 
p p-

the operator T 1 mapping from 
p-

(y) delivers T 1 yp # 
p p-



PROC prolongate 

PROC project 

INT no 

PROC n 

PROC level 

PROC zero 

PROC q 

PROC solve 

directly 

PROC evaluate 

jacobian 

PROC norm 

PROC kk 

PROC forcey 

:= (VEC y) VEC: 
p 

11 

# some representation of the operator T 1 mapping from 
p+ 

X onto X ·1 , prolongate (y) delivers T 1 yp #. 
p p+ p p+ 

:= (INT p, PROC (REAL) REAL f) VEC: 

# some representation of the operator T mapping from X 
p 

onto X, project (p,f) 
p 

delivers T f #. 
p 

=#an integer to represent the dimension of x0 #. 

= (INT p) INT: n0*2**Pi 

# delivers the value N #. 
p 

= (INT n ) INT: p 
# level number as follows from n and no#. 

p 
= (INT p) VEC: 

# delivers the zero-element of X #. 
p 

:= (INT l, VEC y) VEC: 
p 

some representation of the operator K mapping p 
onto xl, q(l,yp) delivers TlK y #. 

pp 
= (MAT a, VEC f,g) VOID: 

# solve directly determines the solution 

means of Gaussian-elimination) # 

= (INT p, VEC y) MAT: 
p 

# evaluates the matrix T (I-K) #. 
p p 

= (VEC y ) REAL: 
p 

# delivers the l -norm of y #. 
00 p I 

:= (REAL x,y,fy) REAL: 

of af 

# some representation the integrand of (1.1), 

kk(x,y,fy) = k(x,y)*f(y) #. 

:= (REAL x) REAL: 

= 

from 

g by 

# some representation of the right-hand side of 1.1 #. 

X 
p 

TEXT 1. An informal description of modes, operators and procedures used in 

solve int eq. 

The implementation in an ALGOL 68 program of these operators and procedures 

depends on the choice of {G }, the approximating operators {K} and the in-
p p 

terpolation operators {T } • Using uniform grids an implementation of example 
p 

1 and 2 is given in the appendix. 
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The approximating inverse B( 3) is defined in a recursive way and depends 
p 

on a positive integer y (fixed for all p). However, a more robust algorithm 

is obtained if y can be adapted to the level number p. Therefore, in our 

implementation of the multiple grid algorithm y depends on p (i.e. in the 

definition of Q< 3> we replace y by y). Inside solve int eq a procedure, 
p p 

called examine convergence, is specified which determines y, p = 1,2, ••• l-1, 
p 

(l is the highest level which follows from Nl and N0). This procedure is of 

a heuristic structure. In its most simple form it would set y = 2, for all 
p 

p. Depending on the behaviour of the actual, iterative process it would 

adapt y. In order to retain our computational complexity of 0(N2) we take p 
care that yp :;;; 3. An exception is made for the lowest level (y 1 may in-

crease to 5) • The multiple grid method obtained in this way is given in 

text 2. 

PROC mu1,graid3 = ( INT m,sigma,[] INT garrtrm,, MAT jaoobian, 
REF VEC um, VEC rahsm, BOOL um is zero) VOID: 

IF m = 0 
THEN solve direotty(jaoobian,um,rhsm) 
ELSE BOOL uz:= um is zero; 

FI 

FOR it TO sigma 
DO VEC m = ( uz I rhsm ! rhsm-um+q(m, um)); 

VEC umm1:= zero(m-1); 

OD . , 

VEC rrmm1 = restraiot(m); 
VEC fmm1. = rrmm1-q ( m-1, rrmm1 )+q ( m-1, m); 
mutgrid3 (m-1, garrtrm,[m], garrtrm,, jaoobian, umm1,fmm1., TRUE ) ; 
wn:= um+ 1"Tl1 + prao1,ongate(umm1-rrmm1.); 
uz:= FALSE 

TEXT 2. Implementation of the multiple grid method defined by (2.4) and B( 3). 
p 

The procedure solve int eq for the automatic solution of Fredholm equa­

tions of the second kind is described in text 3. The user has to specify 

upper limits for N0 and N l' i.e. the maximum number of intervals in the 

coarsest and the finest discretization. Furthermore, solve int eq needs in­

formation about a. (see assumption B3) and IIT II (see 2.5). 
p 



PROC solve int eq = ( REF INT nO, INT nOupper,nlupper, REAL tol, 
alfa,nor>Tl'tf;, REF VEC um, REF REAL error) BOOL: 

BEGIN 

PROC deterwrine vl = ( REF REAL numvl,denvl,vl, REF VEC um, 
VEC rhs) VOID : 

( VEC umold:= COPY um; 
mulg-,,id5 (1,1, gamma, Jacobian, um, -,,hs, FALSE ) ; 
nwnvl:= no7'1Tl(wn-umold); REAL vlold:= o.o; 
FOR it TO 5 
WHILE umold:= COPY um; 

mulg-,,id5(1,1,gamma,jacobian,um,rhs, FALSE); 
denvl:= nwnvl; numvl:= no7'1Tl(umold-um); 
IF numvl > min((tol,1.0e-12)) 
1'HEN (it> 1 ! vlold:= vl ); 

vl:= numvl/denvl; 
it<3 OR ABS (vl-vlold) > 0.02*vlold 

E~SE ( it=l ! vl*:= mtio ); vlold:=vl; FALSE 
FI 

DO SKIP OD; 
vl:= 1.02*max((vlold,v1)) ); 

PROC examine convergence= ( REAL vl, INT levels, REF[] INT gamma) 
BOOL: 

( gamma.[1:]: = 0; BOOL con1J; 
FOR ii TO levels+2 
WHILE IF ii<= levels 

1~HEN FOR i FROM 2 TO ii DO gamma[i]:= 5 OD 
ELIF ii=levels+l THEN gamma[2]:= 4 
BLIF ii=levels+2 THEN gamma[2]:= 5 
PI ; 
REAL vp:= vl,bl[):= vl; 
IF conv:= ( bl[)*wp <= vp) 
THEN FOR p FROM 2 TO levels 

WHILE Vp * := mtio; 
bl[) := Vp+bl[)**gamma[p]*(vp+nor>Tl'tf;); 
conv:= ( wp*wp <= vp J 

DO SK.IP OD 
FI; 
( NOT conv) AND no= nOupper 

DO SK.IP OD; 
print(newline); 
FOR ii TO levels DO pT'int((whole(gamma[ii],4))) OD; 
conv ) ; 

PROC vl on Level = ( INT m) REAL : 
( REAL vp:= Vl, bl[):= vl; 

FOR p PROM 2 TO m 
DO vp:= mtio*vp; wp:= Vp+bl[)**gamma[p]*(vp+nor>Tl'tf;) OD; 
wp ); 

13 
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INT levels:= level(nlupper); HEAP [1:levels] INT gamma; 
FOR j TO levels DO gamma[j]:= 2 OD; 
REAL mtio = 0.6**alfa; 
REAL v1:=1.0,denv1,numv1,v2:=0.6,denv2,numv2:=1.0; e7'1'0r:= TrltJZYl'eal; 
BOOL mpid.ccmvergence; 
VEC rhs, UTTITl1.; MAT jacobian; 

stage a 

FOR loop 
WHILE wn:= aero(O); rhs:=project(O,forcey); 

jacobian:= evaluate jacobian(O,wn); 
solve directly( jacobian, wn, rhs); 
IF loop>l . 
THEN denv2:=numv2; numv2:=nom(restnct(wn)-UTTITl1.); 

FI; 

(loop>2 I v2:= ma:x;{(ratio,min((0.6,nwnv2/denv2)))) ); 
eppor:=(V2/(1-v2))*numv2 

IF e7'1'0r>tol 
THEN rhs := project(l,forcey); 

wmn1 := COPY wn; 
wn := prolongate(UTTITl1.); 
detemne vl ( numvl, denvl, vl, wn, rhs); 
mpidccmvergence:= e:x:amine ccmvergence(vl,levels,gamma) 

FI; 
ePPor>tol AND ( NOT -rapidccmvergence) AND nOuppe-r >= 2*n0 

DO nO*:= 2; levels-:= 1 OD ; 

IF NOT mpidccmve-rgence 
THEN p-rint({netrJline, 11 multig'Y'id convergence too sl01iJ 11 )) 

FI ; 



stage b 

IF e.,,..,.OT' > tol AND mpideonVePgenee 
THEN FOR m TO levels 

WHILE denv2:=numv2; numv2:= noPm(PestT'iet(um)-wnm1); 
REAL T't := min((Patio,v2)); 
REAL uJm = vl on level(m); 
REAL vlm := uJm; 
FOR imax TO 5 
WHILE numvl > 0.1*((1.0-v1m)/v1m)*(n/(1.0-Pt))*numv2 

# extm itemtion: # 
DO denvl:= numvl; 

VEC umold:= COPY um; 
mulgPid.3 (m, 1, gamma, jaeobian, um, Phs, FALSE ) ; 
numvl:= noT'17l(um-umold); 
numv2:= noT'17l(PestPiet(um)-wnm1); 
vlm := min( (uJm, numvl/denvl)) 

OD ; 
v2 := max((patio,min((0.5,numv2/denv2)))); 
e.,,..,.oP:= (v2/(1-v2))*numv2; 
e.,,..,.oP>tol AND m<levels 

DO Phs := projeet(m+l,fopeey); 

OD 
FI ; 

umml:= COPY um; um:= prolongate(wnm1); 
VEC umold:= COPY um; 
mulgPidJ(m+l,1,gamma,jaeobian,um,Phs, FALSE); 
numvl:= noPm(um-umold) 

#******************* end of stage b 

eT'T'OT' <= tol OR PapideonvePgenee 
END# solve int eq # ; 

TEXT 3. Implementation of solve int eq. 

15 
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We could use: a slight modification of the above program to implement 

Atkinson's [1] FORTRAN code iesimp in ALGOL 68. Because of the modular 

structure of solve int eq it is also easy to program other numerical methods 

for integral equations {e.g. higher order formules for smooth kernel func­

tions). Furthermore, solve int eq can be applied to multi-dimensional in­

tegral equations {e.g. potential flow around three-dimensional bodies) and 

non-linear integral equations, as was applied in [7] to the physical problem 

of oscillati.ng disk flow. 

4. NUMERICAL RESULTS 

In this section we illustrate examples 1-3 on a variety of problems. 

The problems contain a number of parameters A,p,µ, which are chosen so that 

II (I-T K )-1 11 is large. This means that large linear systems are necessary 
pp 

to obtain a reasonably accurate, approximate solution f (s) (l':X) to the 
p p 

true solution f (s). 

For the problems 1-3 (taken from Atkinson [1]) we give the performances 

of both solve int eq and Atkinson's program iesimp. In the tables we give 

the highest level (N0 and Nl, respectively) and the number of work units 

{WU), where 1 WU is defined by Ni kernel evaluations. 

:-NOTE. For the examples 1 and 2 of section 2 the number of kernel evaluations 
2 4 2 

is Nl, when the values are computed once and stored (example 3 ~ 3 N). 

However, when they are not stored the number of kernel evaluations is a 

good measure for the computational complexity of the algorithms solve int 

eq and iesimp. 

Case {i): 

rAX(l-y), 0 ::;; X ::;; y ::;; 1, 

k{x,y) = 
-1,.y(l-x), 0 ::;; y ::;; X ::;; 1. 

Since this kernel function is not continuously differentiable for x = y, 

we define K by the repeated trapezoidal rule. Assumption B3 is satisfied 
p 

with a= 2. The interpolatory spline functions are defined by linear inter-



polation. 

Th~ right-hand side g(s) is chosen so that the solution of (1.1) is 

f(s) = µ2sµ(1-s), µ ~ 1. 
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IDTE. In [1] Atkinson solves this problem by Simpson's rule, but he remarks 

that the order of convergence is O(h2). Therefore, in table I the numerical 

results of iesimp (which are obtained by Simpson's rule) can be compared 

with the results of solve int eq. 

Error Final 

A Predicted Actual NO Nl WU 

solve i. -10.0 8.48 (-4) 7.35 l.J..4) 32 256 4'.83{l) 

iesimp -10.0 8.93 (-4) 1.03 (-3) 16 256 9.23 

solve i. -30.0 5.52 (-4) 5.48 (-4) 16 128 5 .61 

iesimp -30.0 8.91 (-4) 8.93 (-4) 8 128 6. 76 

solve i. -90.0 4.85 (-3) 3 .86 (-3) 32 256 10.65< 2 > 

iesimp -90.0 7.71 (-3) 5.96 (-3) 32 256 13.60< 2 > 

solve i. 90.0 3.01 (-4) 2.93 (-4) 16 128 8.15( 3) 

iesimp 90.0 3.78 (-4) 2.18 (-4) 32 256 8.06< 3> 

Table I. Results for case (i), µ = 5. 

For iesimp K is defined by Simpson's rule, for solve int 
p 

eq by the trapezoidal rule. 

Tolerance (to1) = 1.0 (-3). 

Notes to table I: 

note (1): For this problem solve int eq needs 4.83 WU, which is already 

close to the asymptotic value of 4.66 WU (see 3.3). 

note (2): For the tolerance specified both iesimp and solve int eq cannot 

solve this problem with 256 intervals on the highest level. In this case 

we took nlupper = 256 and therefore both codes fail. 
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note (3): For this problem iesimp needs 256 intervals, whereas solve int eq, 

return succesfully with 128 intervals on the highest level. 

Case (ii}: 

2 k (x , y) = A cos ( µ mcy} , 0 :s; x, y :s; 1. 

The oscillatory behaviour of this kernel function increases asµ increases. 

The value of A is chosen close to characteristic values; see ATKINSON [1]. 

Since k(x,y} is several times continuously differentiable we use Simpson's 

rule and cubic interpolation to define K and T, respectively (i.e. Example 
p p 

2 of section 2 with a.= f3 = 4 and UT II = 24}. 
p 

The right-hand side is so chosen that f(x} = eµx cos(7µx}. 

Error Final 

A µ Predicted Actual NO Nl 

solve i. -2000 1.0 8.41 (-6} 8.37 (-6} 32 256 

iesimp -2000 1.0 9.75 (-6} 8.68 (-6) 32 256 

solve i. -1.42 2.0 3.57 (-6} 3.56 (-6) 16 256 

iesimp -1.42 2.0 3.58 (-6} 3.57 (-6) 16 256 

Table II. Results for case (ii}. 

The operator K is defined by Simpson's rule. 
p 

Tolerance (tol) = 1.0 (-5). 

WU 

6 .00 (l) 

7.83 

4.17 

6.60 

note (1): For this case solve int eq did not use the default values of 

yp, (p = 0,1,2), but on level 1 the value of yp was adapted (i.e. y1 = 3, 

y2 = 2). 

Case (iii}: 

µ > 0 ' 0 :s; x, y :s; 1. 

This kernel is increasingly peaked asµ+ 0. Forµ= 0.1 the ratio 



k /k . = 101. max min . 
2 We determine the right-hand side so that f(x) = x - 0.8x + 0.06. 

For the definition of K and T we refer to example 2 of section 2. The 
p p 

numerical results are given in table III. 

Error Final 

A Tolerance Predicted Actual NO N,e WU 

solve _i 0.52 1.0 (-7) 3.42 (-8) 3.40 (-8) 32 256 4.83 

iesimp 0.52 1.0 (-7) 3.43 (-8) 3.41 (-8) 32 256 7.83 

solve i. 0.95 1.0 (-6) 1.55 (-7) 1.54 (-7) 32 256 5.22 

iesimp 0.95 1.0 (-6) 1.56 (-7) 1.55 (-7) 32 256 7.83 

solve i 10.0 1.0 (-6) 1.65 (-7) 1.59 (-7) 32 256 8.14 (l) 

iesimp 10.0 1.0 (-6) 2.90 (-7) 2.70 (-7) 32 256 7.83 

Table III. Results for case (iii),µ= 0.1. 

The operator K is defined by Simpson's rule. p . 
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note (1): In this problem solve int eq adapted the values of y to: y 1 = 5 

and y 2 = 3. Moreover, an additional iteration sweep was performed on the 

highest level because test (2.10) was not satisfied after one iteration 

sweep. Therefore, the computational work deviates from the asymptotic amount 

given by (3.3). 

From the tables I - III we conclude that Atkinson's code iesimp is on 

an average about 50% more expensive than solve int eq. In all the experi­

ments both procedures very accurately predict the error of the obtained 

solution. 

Case (iv). 

The kernel function is defined in example 3 of section 2. We apply solve 

int eq to the calculation of non-circulatory, potential flow around a 

Karman-Trefftz aerofoil, which is obtained from a circle by conformal map­

ping. For details about the derivation of the integral equation we refer 

to [2,5,8]. 
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Let thE: script-letters x, z, etc. denote complex numbers. The Karman­
-le Trefftz aerofoil is obtained from the circle in the X-plane, X = ce , by 

means of th•= mapping 

(4 .1) :z = f (X) 

whereµ measures the trailing edge angle, y the camber and o the thickness 

of the aerofoil; 

C = 

with l the length of the aerofoil. To make f single-valued we take the 

principal value in (4.1). 

The Karman-Trefftz aerofoil is not a smooth boundary because of the 

presence of the trailing edge angle at z = zt. At this point the curvature 

is not defined. In the present paper we remove the corner by the additional 

mapping 

(4. 2) 

where z is a point inside the aerofoil. Here we locate it arbitrarily at 

z =-µ.By means of (4.2) the aerofoil in the z-plane is converted into a 

quasi-circular shape in the W-plane. This has been done because the inverse 

mapping of (4.1) converts real aerofoils (which do not belong to the family 

of Kiirman-'l~refftz aerofoils) into quasi-circular shapes too. 

X-plane Z-plane W-plane 

figure 4.1 
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In the present paper we only consider symmetric a.erofoils {y=O) and 

non-circulatory flow. The right-hand side of the integral equation is given 

by 

g{s) = - 2000 ~W{s), w € s. 

In [9] we also consider non-symmetric aerofoils and circulatory flow. 

The grid G is given by a uniform partition of the circle. On level 
p 

p the contour- and collocation points in the W-plane follow from G, (4.1) 
p 

and (4.2), with 

G = {8. 
p J 

8. = 2,rj/N, 
J p 

j = 0,1, ••• ,N}. 
p 

The tangential velocity v. at the point Z{s.), {Z e: K.T.-aerofoil) is ob-
J J 

tained in a numerical way by: 

(4. 3) V. = 
J 

j = 1, ••• ,N -1, 
p 

where W. Lis the collocation point co~responding withe. L" In table 
J+~ J+~ 

IV we compare the outcome of (4.3) with the analytical value. The predicted 

error refers to the error in the approximate solution and not to the error 

in the tangential velocity. 

~- For example 3 the operation counts per iteration sweep {with y=2) are 

3.5 N2 • Asymptotically for p ➔ 00 , by condition (2.7) two applications of 
p 

(2.4) yield an approximation of O{h ). In order 
p 

proximate solution on the collocation points we 

to obtain an O{hl+p) ap­
p 

have to perform an extra 

iteration, so that the total amount of work is equal to 

(4.4) ... ) 
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' 
Predicted Actual error Final 

µ error in f 
p in velocity NO Nl WU 

1.90 4.23 (-5) 5.42 (-4) 8 256 8.99 

1.95 8.60 (-5) 9.09 (-4) 8 256 8.99 

1.99 1.84 (-4) 8.49 (-4) 16 256 8.73 

Table IV. Results for case (iv). 

The operators K and T are defined in example 3 of see-
p p 

tion 2. 

Flow around a Karman-Trefftz aerofoil with 6 = 0.05, 

y = o.o, l = 1.0, u~ = 1.0. 

Tolerance (= tol) is 1.0 (-4). 

From table IV we conclude that the number of Work Units is in agreement 

with the asymptotic amount of work (4.4) and our code solve int eq appears 

to be applicable with respect to this aerodynamic problem. 

The numerical examples of this section were computed on a CDC-Cyber 175 

in single precision arithmetic. 
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APPENDIX 
BEGIN# automatic soiution of fPedhoim equations of the second kind# 

MODE INTERVAL= STRUCT ( REAL begin,end); 
MODE VEC = REF []REAL; 
MODE MAT = REF [, ] REAL ; 

OP ** = ( REAL x,y) REAL : ( x <= 0.0 I 0.0 ! e:x:p(y*Ln(x)) ); 

OP+= ( VEC a,b) VEC: 
(INTL= LWB a, u= UPB a; VEC c = HEAP [L:u] REAL; 

FOR i FROM L TO u DO c[i]:= a[i] + b[i] OD; 
c) # vec + vec #; 

OP - = ( VEC a,b) VEC: 
( INT L= LWB a, u= UPB a; VEC c = HEAP [L:u] REAL ; 

FOR i FROM L TO u DO c[i]:= a[i] - b[i] OD; 
c ) # vec - vec #; 

OP / = ( VEC a, REAL b) VEC : 
(INTL= LWB a, u.= UPB a; VEC c = HEAP [L:u] REAL; 

FOR i FROM i TO u DO c[i]:= a[i] / b OD; 
c) # vec I peai #; 

OP * = ( REAL b, VEC a) VEC : 
(INTL= LWB a, u= UPB a; VEC c = HEAP [L:u] REAL; 

FOR i FROM L TO u DO c[i]:= b * a[i] OD; 
c) # Peai * vee #; 

OP * = ( VEC a, b) REAL : 
( INT L= LWB a, u= UPB a; REAL c:= 0.0; 

FOR i FROM L TO u DO c +:= a[i]*b[i] OD; 
c) # vee * vee #; 

OP * = ( MAT a, VEC b) VEC : 
( INT l,=-,1 LWB a, u=l UPB a; VEC c = HEAP [L:u] REAL ; 

FOR i FROM L TO u DO c[i] := a[i, ]*b[] OD; 
c) #mat* vec #; 

OP COPY= ( VEC u) VEC: 
(INTL= LWB u, up= UPB u; VEC c = HEAP [L:up] REAL; 

FOR i FROM L TO up DO c[i]:= u[i] OD; 
C ) ; 

PROC pPVec = ( VEC x) VOID : 
( pPint((" vee bounds ", LWB x, UPB x, newiine)); 

FOR i FROM LWB x TO UPB x 
DO p1"int ( x[ i]) OD ; 
pPint(newUne) ) ; 



PROC ma:c = ([] REAL a ) REAL : 
( INT l= LWB a, u= UPB a; REAL s:=aCl]; 

FOR i FROM Z+l TO u DO ( a[i]>s ! s:=a[i]) OD; 
8 ); 

PROC min=([] REAL a) REAL: 
( INT l= LWB a, Ui= UPB a; REAL s:=a[ZJ; 

FOR i FROM Z+l TO u DO ( a[i]<s ! s:=a[i]) OD; 
8 ); 

PROC no'Y'l'Tl = ( VEC a) REAL : 
( INT l= LWB a, u= UPB a; REAL s:= ABS a[l,J; 

FOR i FROM Z+l TO u 
DO REAL b = ABS a[il; ( b>s ! s:=b) OD; 
8 ); 

PROC n = ( INT 1,) INT:( no* 2**1, ); 

PROC Zevel, = ( INT nb) INT : 
( INT s:= n(O), Z:= O; 

WHILE s < nb DOZ+:= 1; s:= 2*s OD; 
IF s > nb THEN e1'1"01" FI ; 7, ); 

PROC ze'l'"o = ( INT 1,) VEC: 
( INT nZ = n(l,); VEC bb = HEAP [O:nZJ REAL ; 

FOR i FROM O TO nZ DO bb[i]:= 0.0 OD ;bb); 

PROC pinject = ( INT Z, PROC (REAL) REAL f) VEC: 
( INT nl= n(Z); HEAP [O:nZJ REAL yZ; 

REAL a:= begin OF int; REAL h = (end OF int - a)/nZ; 
yZ[O]:= f(a); 
FOR i TO nl, 
DO yZ[il:= f( a+:=h) OD; yZ ); 

PROC inject= ( VEC vp) VEC: 
( INT np = UPB vp, nq = np OVER 2; 

VEC vq = HEAP [O:nq] REAL; 
FOR i FROM O TO nq DO vq[il:= vp[2*i] OD; vq); 

emmpZe 1 

PROC Zin int= ( VEC vp) VEC: 
( INT np = UPB vp; INT nq = 2*np; 

VEC vq = HEAP [O:nq] REAL ; 
vq[Ol:= vp[OJ; 
FOR i TO np 
DO vq[2*i] := Vp[i]; 

vq[2*i-11:= 0.5*(vp[i-11 + vp[il) 
OD ; 
vq ); 

25 
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PROC t7'ap · = (#to level # INT p, VEC v) VEC : 
( INT np = n(p), nq = UPB v; 

VEC vp = HEAP [0:np] REAL; 
INT st= ( n-p=nq I 1 I: 2*np--nq I 2 I e7'7'o7'; 0 ); 
REAL a= begin OF int, b = end OF int; REAL h = (b-a)/nq; 
FOR i FROM OBY st TO nq 
DO REAL s, tj; REAL ti= a+ i*h; 

s := kk(ti,tj:=a,v[0])/2; 
FOR j TO nq-1 
DO s +:= kk(ti,tj+:=h,v[j]) OD; 
s +:= kk(ti,tj+h,v[nqJ)/2; 
vp[i OVER st].- s*h 

OD; 
vp); 

example 2 

PROC eub int= ( VEC vp) VEC: 
( INT np = UPB vp; INT nq = 2*np; 

VEC vq = HEAP [0:nq] REAL ; 
vq[0J ;~= vp[0J; 
vq[1J := (5 .0*(vp[0J+J .0*vp[1J-vp[2J )+vp[JJ )/16 .o; 
vq[nq-21:= vp[np-1]; 
vq[nq-1];~= (5 .0*(vp[np]+3 .0*vp[np-1]-vp[np-2] )+vp[np-3] )/16 .0; 
vq[nq] := vp[np]; 
FOR i TO np-2 
DO vq[2*~l] := vp[ i]; 

vq[2*i+11:= (-vp[i-1]+9.0*(vp[iJ+vp[i+1J)-vp[i+2J)/16.0 
OD; 
vq ) ; 

PROC sirrrp = (#to level# INT p, VEC v) VEC: 
( INT np = n(p), nq = UPB v; 

VEC Vp == HEAP [0:np] REAL ; 
INT st= ( n-p=nq ! 1 !: 2*n-p=nq I 2 I 87'7'07'; 0 ); 
REAL a= begin OF int, b = end OF int, w43 = 4/3, w23 = 2/3; 
REAL h ,= (b-a) /nq; 
FOR i FROM OBY st TO nq 
DO REAL s, tj; REAL ti= a+ i*h; 

s := kk(ti,tj:=a,v[0J)/3; 
FOR j TO nq-1 
DO s +:= ( ODD j I w43 ! w23) * kk(ti,tj+:=h,v[j]) OD; 
s +:= kk(ti,tj+h,v[nq])/3; 
vp[i OVER st].- s*h 

OD; 
vp); 

#****************** end of example 2 



PROC solvei directly= ( MAT jacobian, VEC um, rhsm) VOID: 
BEGIN # gaussian elimination# 
( 1 UPB jacobian /= UPB rhsm OR 2 lJPB jacobian/= UPB rhsm ! 
error); 

MAT j"b= jacobian[ AT 1, AT 1]; 
INT n = UPB jb; 
[1:n,1:n+l] REAL a; 
VEC v = a{, n+l]; a[, 1 :n] := jb; v:= rhsm[ AT 1]; 
FOR j TO n 
DO INT jpl= j+l; INT pj:= j; 

REAL s1i,s:= ABS a[j,j]; 
FOR i FROM jpl TO n 
DO ((s~i:= ABS a[i,j]) >s ! s:=si; pj:=i) OD; 
IF j I= pj 
THEN REAL t; 

FOR k TO n+l 
DO t:= a[pj,k]; a[pj,k]:= a[j,k]; a[j,k]:=t OD 

FI ; 
s := a[j,j]; 
FOR i ,PROM jpl TO n 
DO si:= a[i,j]/s; 

FOR k FROM j TO n+l 
DO a[i,k] -:= a[j,k]*si OD 

OD 
OD; 
FOR j FROM n BY -1 TO 1 
DO v[j] /:= a[j,j]; 

FOR i FROM j-1 BY -1 TO 1 
DO v[i] -:= a[i,j]*v[j] OD 

OD; 
um:= v[ AT (1 LWB jacobian) J 
END# solve directly#; 

PROC eva1-uate jacobian = 
BEGIN IN'I' nm = n(m); 

VEC qm = q(m, um); 
FOR i FROM OTO nm 

( INT m, VEC um ) MAT : 
[O:nm] REAL umd := um; 
HEAP [O:nm, O:nm] REAL jac; 

DO REAL delta= ma:x:(( um[i]*0.001, 0.001)); 
wnd[i] +:= delta; 
jac[,i] := (qm - q(m,umd))/delta; 
jaa[i,i]+:= 1.0; 
wnd[i] := um[i] 

OD ; jac 
END# evaluate jaaobian #; 
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# PROC muLg'Y'id.3 = 
# PROC soive int eq = 

see text 2 
see text 3 

gLobal, Va'Y'iabl,es 

INT nO:= 4; REAL toL:=1.0e-6; 
INTERVAL int; 
PROC ( REAL , REAL , REAL ) REAL kk; 
PROC (REAL) REAL fo'Y'cey; 
PROC ( INT J• PROC ( REAL ) REAL ) VEC p'Y'oject; 
PROC ( VEC) VEC 'Y'est'Y'ict; 
PROC ( VEC ) VEC pro fongate; REAL nor>mt; 
PROC ( INT , VEC ) VEC q ; REAL al,f a ; 

irrrpl,ementation of exampl,e 1 

project:=pinject; 'Y'est'Y'ict:=inject; 
p'Y'oLongate.~= Un int; nor>mt:= 6; q:=tmp; 

irrrpl,ementation of exampl,e 2 

pr>oject:=p·inject; 'Y'est'Y'ict:=inject; 
p'Y'oLongate:= cub int; nor>mt:= 24; q:=sirrrp; 

PR pr>og PR SKIP 
END 

end of Ubm'Y'y 

al,fa:=2; 

aLfa:=4; 

# 
# 

TEXT 4. An 11.LGOL 68 program for the automatic solution of Fredholm equa­

tions of the second kind,in which the linear system is iteratively solved 

by a multiple grid method. 

Example 1: Approximation of the integral by the trapezoidal rule, 

Example 2: Approximation of the integral by Simpson's rule. 


