stichting
mathematisch |
centrum MC

AFDELING NUMERIEKE WISKUNDE NW 99/80 DECEMBER
(DEPARTMENT OF NUMERICAL MATHEMATICS)

H. SCHIPPERS

THE AUTOMATIC SOLUTION OF FREDHOLM EQUATIONS
OF THE SECOND KIND

Preprint

kruislaan 413 1098 SJ amsterdam

Printed at the Mathematical Centre, 413 Kuvisfaan, Amsterdam.

The Mathematical Centre , founded the 11-th of February 1946, is a non-
progit institution aiming at the promotion of pure mathematics and its
applications. 1t is sponsored by the Netherlands Government through the
Netherlands Organization for the Advancement of Pure Research (Z.0.0.).

1980 Mathematics subject classification: 65X04, 65F10, 65R20

*)

The automatic solution of Fredholm equations of the second kind
by

H. Schippers

ABSTRACT

For the automatic solution of Fredholm equations of the second kind a
new code, called solve int eq, is presented. The linear system resulting
from the discretization of the integral equation is iteratively solved by
a multiple grid method. We selected this method because in a previous paper
[4] we have shown that multiple grid processes take only O(N2) arithmetic
operations. For a variety of problems the performance of solve int eq is
compared with Atkinson's program iesimp [1]. This program appears to be
about 50% more expensive than solve int eq. Additionally; solve int eqg is
applied to the aerodynamic problem of calculation of potential flow around

a Karman-Trefftz aerofoil.

KEY WORDS & PHRASES: Fredholm integral equations of the second kind, Mul-

tiple grid methods, automatic algorithm

*)

This report will be submitted for publication elsewhere.

1. INTRODUCTION

In the present paper we describe an algorithm for the automatic solu-

tion of Fredholm equations of the second kind:

b
(1.1) f(x) - | K(x,y)f(y)dy = g(x), x € [a,b].

a
The algorithm is an improvement of Atkinson's automatic program iesimp [1]
in the sense that a new iterative method is used for the solution of the
non-sparse systems of equations that arise from the approximation of (1.1).
Our iterative methods are multiple grid methods that work with a sequence of
grids of increasing refinement. These grids are simultaneously used to ob-
tain an approximation to the original continuous problem (1.1). The multiple
grid methods used can be seen as an extension of Atkinson's iterative scheme,
that uses only two grids: a coarse and a finer grid. Convergence and compu-
tational complexity of multiple grid methods have been studied in a previous
paper [4]. The program has been written in the algorithmic language ALGOL 68,
since in this language we can easily and efficiently handle the data struc-
tures and the recursive procedures that appear in multiple grid methods.

A description of our multiple grid methods can be given by collective-
ly compact operators and interpolatory projections onto subspaces of piece-
wise continuous. functions. This has been done in section 2, where also some
results from [4] are collected. Based on the theoretical foundation of sec-
tion 2, the program for the automatic solution of Fredholm equations, solve
int eq, is described in section 3. Numerical examples illustrating the
method are given in section 4. Comparisons have been made with Atkinson's

automatic program iesimp.
2. DESCRIPTION OF MULTIPLE GRID METHODS

In this section we write equation (1.1) in operator notation as
(2.1) (I-K)f = g, g € X,

where X is a Banach space and K: X > X the linear operator associated with

the kernel k(X,y). It is assumed that 1 is not an eigenvalue of K. Thus,
therefore (I-K) has a bounded inverse on X. We approximate the solution of
(2.1) by a sequence of interpolating spline functions fP with knots at the

points Gp = {ti‘a = < tye.. < th = b}. On the interval [a,b] all grids

t
0
{GPL£>= 0,1,2,...2 are selected such that GO c G1 C ... C Gﬂ' In the context
of multiple grid iteration, the subscript p is called "level”; h is a
' p

measure of the mesh-size defined by:

In our algorithm we take the sequence of grids {Gp} uniform with

N = 2pN , so that
o) 0

B1. h = 2"%h,,.
Corresponding with the sequence {hp} we approximate K by a sequence of ap-
proximating operators {Kp}, Kp: X » X.

Let Xp' p=20,1,2,..., be the finite~dimensional subspaces of interpolating
spline functions and let Tp’ p=20,1,2,..., be the interpolating operators.

We use the following assumptions on {KP} and {Tp}:

B2. K =KT,

p PP
B3. Il(K—KP)K" < clhg, a >0,
B4. I (I:-TP)K“ < czhg, B > 0.

Although the above assumptions are not necessary conditions, they are suf-
ficient to satisfy the assumptions Al1-A6 of section 2 in our previous paper
[4]. Hence, the theory presented in [4] applies to our present algorithm.
Let X be the Banach space Cla,b], provided with its supremum norm, and
let y € cla,b]. If Ky is twice (respectively four times) continuously dif-
ferentiable the assumptions B2-B4 can be verified for the following examples

1 and 2.

EXAMPLE 1. The operator Kp is defined by the repeated trapezoidal rule and

the operator Tp by continuous, piecewise linear interpolation, in which

case o = B = 2.

EXAMPLE 2. Kp is defined by the repeated Simpson's rule and TP by continuous,

piecewise cubic interpolation. In this case o = B = 4.

EXAMPLE 3. Finite element methods for integral equations from potential
theory. Let D be a simply connected finite plane region bounded by a smooth
contour S with continuous curvature. S is given by the parametric equations
x = X(s), v = Y¥(s), s € [0,1]. The kernel function is given by

1 4. Y(t)-Y(s)

k t) = - = — —1
(s, ¢) ™ ag aretan (X(t)—X(s)

Define the operator Tp by piecewise constant interpolation at the mid-points
ti+% = (ti+ti+1)/2’ i= O,...,Np—l. Let Kp be defined by KTP. The space X
must be chosen such that for each N it contains the class of piecewise con-
stant functions. Following SLOAN [10] we choose X to be the Banach space
z[0,1], which is the closure (in the supremum norm) of the space of piece-

wise continuous functions on [0,1] which satisfy

f(t) = %[lim_ f(s) + lim+ f(s)1], te (0,1),
s>t s<t
£f(0) = lim+ f(s), £(1) = lim_ f(s).
s>0 s>1

In this case we get @ = 1 + p, where p is a measure for the smoothness of

S (0<p<1) and B = 1. See [8].

On level p we wish to approximate the solution of equation (2.1) by:

(2.2) Af =T f eX
P P po' P p’

where A = I-T K . We assume that the mesh-size h0 is sufficiently small

such that A;l exists for all p 2 0. If the forcing-function g(x) is several

times continuously differentiable such that "(K—Kp)g" <cC hg, it follows

3

from assumption B3 that "(K—Kp)fﬂ < C4h;. From the work of PRENTER [6] the

following error estimate is obtained:

a
(2.3) Ilr £-£ I < c_l(x-k)£l < c c_h .
P P 5 p 4'5p
In solve int eq we use this asymptotic behaviour of the error to extrapolate
and predict the size of the error for small values of hp.
The solution fp € Xp of (2.2) is approximated by a defect correction

process of the form

fp'o = 0’

(2.4)

(3) (3)
£ .., =B + (I-B'2’'A) _,
p,i+l o %p (p p) p,i

where B;J), (j =1,2,3), is an approximate inverse of AP and gp = Tpg. In
[4, section 4] we studied the convergence properties of (2.4) with respect

to the following choices for Béj):

gD —p 40 alox ,
P o p-1p-1pp
(2) _ . -1
By" = TA,
(2) (2)
B =T + T TK ,
ip p p-1Q -1'pp
(3) _ . -1
By = ToPo
(3) (3)
B =T - T + T T ,-T ,K ,+T K),
p p p-1 p-1Q -1 p-1 'p-1'p-1 'pp
with
. v-1 . .
(3) (3 m _(3) .
= (T -B'”'A B = 2,3
%) P P p) p ' J !

m=0

for some positive integer Y.

(1)

We notice that Bp is only of theoretical value, since the dimension of

-1
Ap_1 tends to infinity as p + «©. The operator Béz) yields an iterative

process, that is equivalent with the multi grid method discussed in

HACKBUSCH [3], whereas Bé3)

yields a multiple grid method with better con-
vergence properties for integral operators with a large value of Ixl.
For the various iterative processes we denote the rate of convergence

of (2.4) by n(j)

b Since the convergence of (2.4) depends on the Lipschitz

constant of the operator I - B(j)Ap as a mapping from Xp onto Xp, it fol-

lows that
(3) (3)

=T (z-B'-’a),
nP P b P

(1) _ min(o,B),
. < C.h
o 3p
. (2) (1) ()Y (1)
it. n, < o + oy [np + “?PHHKP“],
Y
iii. n;3) < él) + éii [n(l) + HTPF].

PROOF. See [4, theorems 4.1 and 4.2]. [

Based on part (i) of this theorem, the defect correction process (2.4)
(1)

induced by Bp can be expected to have a regular geometric rate of conver-

gence, i.e.

e . g/l £l >+ as 1 +> ®
pri+l p/ p,si p p !

where the constant v. - 0 as p > ©, By assumption Bl it follows that

Vp = Vldp_1 with d = 2—m1n(a,B).
The multiple grid processes are constructed in such a way that
Bil) = Biz) = 3{3). As a consequence the rates of convergence of the mul-

tiple grid processes depend on the magnitude of v, Y,“TP“ and "Kpﬂ. For
j = 2,3, this dependence is explained by means of the definition of the

sequence {wéj)} given by:

(3) _ p-1
w1 = v1, vp = d vl,
(2.5)
w(j) =v + w(j)Y(v +k .) p>1
P p p-1 3’ !
where
e g j = 2
b o J
k., =
J

L L

If nél) < Vp' by induction it may be shown that ngj) < wéj), (3 = 2,3). In

the following lemma we formulate a condition on vl, such that w; < vlvp,

i.e. two multiple grid iteration sweeps yield an iterative approximation

for fp, which has the same geometric rate of convergence as one application

(1)

of (2.4) with approximate inverse Bp .

LEMMA 2.2. Let vp and wéj) (j = 2 or 3) be defined by (2.5) and let vy = 2,

v, < 1, then w(i? < v v if and only if
1 P 1p
(2.6) d + vy (v rk,) < va.
PROOF. Since a,B > 0 it follows that d = 2—m1n(a,8) < 1, so that
s (2) _ _(3) _
v < vp_1 < ... < v, < 1. By definition (2.5) we have Wy =w, =v, and
by induction we obtain for p > 1:
2
(3) (3)
w =v +Ww (v +k.)
P p p-1 p 3’
< +
Vp + Vlvp—l(V2 kj),
’p
< + .
3 (d+v1(v2 kj))

Substituting condition (2.6) we get for p > 1:

(3)

Conversely, we first note that vp < wP . Hence, for p > 1

v o+ v2 (v +k.) < W(J).
p p-1"'p 3 p

< v,v it follows that

Since w
p 1p

{v +v2 (v +k.)}2 < v,V ,
p p1 p J 1p

2 2
Vp—l{d+vp—1(vp+kj)} < Vldvp—l'

{a+v_ , (v +k.)}2 < aP,
p-1"'p 3

For increasing values of p the left-hand side decreases, whereas the right-
hand side increases. However, the inequality should hold for all values of p,

in particular for p = 2. In that case condition (2.6) is obtained. [

As a consequence of this lemma condition (2.6) is sufficient to show

that the rates of convergence of the multiple grid processes satisfy

n(j)2 < v.vVv j = 2,3
P 1p’] T
For different values of 4 and kj the upper bounds on V1 are given in table
2.1,
& 1 6 24 100
a
1/16 1.85 -1 3.12 - 2 7.81 - 3 1.87 - 3
1/4 2.36 - 1 4.16 - 2 1.04 - 2 2.50 - 3
1/2 1.89 -1 3.44 - 2 8.63 - 3 2.07 - 3
3/4 1.07 - 1 1,93 - 2 4.83 - 3 1.16 - 3

Table 2.1 Upperbounds on vy to obtain wé < Vlvp' with vy = 2.

The upperbounds on v, are essentially the requirement of "a fine enough

1
mesh" in the coarsest discretization of the multiple grid algorithm. Since

on the coarsest grid the system of equations in solved by a direct method

(e.g. Gauss-elimination) we like to have v, as large as possible, so that

1
a more robust algorithm is obtained. Therefore, in solve int eqg the condi-

tion (2.6) on v, is replaced by a weaker one, which also guarantees fast

1

convergence. We start on some coarse grid and we estimate v A test is

1
made to check whether

(4)2
(2.7) pr < Vo p=1,2,...,2.

The necessary upper bound on v, again depends on the actual value of kj and

1
d as is shown in table 2.2.

k.

a\ - 1 6 24 100
1/16 3.51 -1 9.11 - 2 2.81 - 2 7.46 - 3
1/4 4,47 - 1 1.17 - 1 3.27 - 2 8.27 - 3
1/2 4.34 - 1 1,10 - 1 2,93 - 2 7.13 - 3
3/4 3.70 - 1 8.82 - 2 2,25 - 2 5.40 - 3

()2

Table 2.2. Upper bounds on V1 to obtain WPJ < Vp' with vy = 2.

From table 2.2 we conclude that the condition on v, becomes stronger as kj

1
becomes larger. Since k, = “Tp“"Kp" and k_ = ﬂTp“ the rate of convergence

3) goes not depend on K . There-

p
fore, in our code we apply the approximate inverse B(3) rather than Béz).

(3) (3)

Without confusion we further use np and wp for np and w ; respectively.

of the multiple grid process defined by Bp

Since np < wp it follows that

(2.8) I£ I <wlf .—fpﬂ,

p,i+1_fp,i P p,i
i.e. the multiple grid process has a regular geometric rate of convergence.
The constant wP follows from (2.5) as soon as v, has been determined.

After o iteration sweeps the multiple grid proces yields an approxi-
mate solution £ . for which the following error estimate holds

14

(2.9) e £-£ I <l £-£ 0 + 1 -£ I,

b p,0 p p P:0 P
In our code solve integ we determine the integers p and ¢ in an automatic
way so that "Tpf_fp,ou is less than a prescribed value tol. This is achieved
by estimating the errors on the right-hand side of (2.9). Asymptotically for
p > ©, condition (2.7) insures that only two multiple grid sweeps yield a
result of the order of the approximation error "Tpf—fp“. On the lower levels

(i.e. small p) we determine o so that

(2.10) e -l <o0.1xllr £-£ 1,
p,¢6 P p p

i.e. the iteration error must be less than the approximation error.

3. AUTOMATIC PROGRAM

In this section we describe our code solve int eq, a program for the
automatic solution of Fredholm equations (1.1). Like Atkinson's program
iesimp the procedure in divided into two stages. In stage A we determine

the coarsest meshwidth h0 by means of (2.4) with the approximate inverse

1
B{). The rate of convergence v, is estimated by

1

v, = max e, . -, . Wpe, -,
1 i=0,1,...,5 1,i+2 71,i+1 1,i+1 71,1
i = £ .
with f1,0 T1 0
If the rate of convergence v, appears sufficiently small such that
wé < Vp, then stage B is entered. Otherwise, the number of points N0 is

doubled. In stage B the number of levels is increased until the predicted
error estimate for “Tpf_fp,c“ is less then tol. The rate of convergence
of the multiple grid process is estimated by wp (2.5) and the previously
determined value of Vl' Using (2.8) we estimate the iteration error by

3.1 lf -fl =w /(1-w)If -f I,
() p,0 P p/(p) pP,0 p,o0-1

As the number of levels increases we are able to estimate the ratio
r=1Ilrf-£ I/l £-£ .
P p p-1" "p-1

Asymptotically for p - », this ratio approximates the value Z_a; see assump-
tion Bl and (2.3). In this paper we only apply multiple grid methods to
approximating operators Kp with o > 1. Hence, the ratio r must be less than

0.5. Initially we set r = 0.5 and we compute the above ratio by

I f -f I
e DI
Tp_2fp_1—fp_2

r = min(0.5,max(2 °,
Using this value of r we estimate the approximation error by:

£ 0.

(3.2) “Tpf—fp“ = r/(l—r)"Tp—lfp,o_ o1

10

The error estimates (3.1) and (3.2) are used to verify the test (2.10).
If it is satisfied, then we set fp := fp,o' Otherwise, a new iterate is
computed and test (2.10) is repeated. If the error estimate (3.2) yields
a value less than tol, then the computations are terminated and solve int eg '
returns successfully.

Asymptotically for p - «, the total amount of work on level p can be
computed. For the examples 1 and 2 the operation counts per iteration sweep
for BL(>3) (with vy = 2) are 3.5 NIZJ. Condition (2.7) insures that only two
iterates need to be calculated. The first iterate is obtained by interpo-
lating the results of level p-1. Therefore the total amount of work is
equal to:

1 (3.3) (1+%+11—6+ ...) 3.5 N;=42/3 N;.

For the description of our code solve int eq we use the formal lan-
guage ALGOL 68 [11]. In practice it appeared that ALGOL 68 is an elegant
and in a numerical research environment an efficient tool to implément mul-
tiple grid techniques, because this language can easily handle the data
structures and the recursive procedures that appear in multiple grid algo-
rithms.

In order to give our program in a concise, modular and readable form,
we first give an informal description of a set of ALGOL 68 modes and opera-
tors that correspond to the mathematical objects and operators of section 2.
The formal description of the modes and operators is their ALGOL 68 - imple-

mentation which we give in the appendix.

MODE VEC = REF [] REAL:
a structure to represent an element of Xp, i.e. the nodal
values of the spline representation #,
MODE MAT = REF [,] REAL:

a structure to represent a matrix #,

PROC restrict:

(VEC y_) VEC:
p

some representation of the operator Tp- mapping from

1

X onto X restrict (y) delivers T #,
o p-1’ Ip p-1 7p

PROC prolongate :=

PROC project

INT nO

PROC n

PROC level

PROC zero

PROC q

PROC solve

directly

PROC evaluate

jacobian

PROC norm

PROC kk

PROC forcey

11

(VEC y_) VEC:
p

some representation of the operator Tp mapping from

+1
' i #
XP onto XP+1' prolongate (yp) delivers Tp+1 y .

(INT p, PROC (REAL) REAL f) VEC: ?

some representation of the operator T mapping from X
onto'Xp, project (p,f) delivers Tpf #,

an integer to represent the dimension of XO #,

(INT p) INT: nOx2x*p;

delivers the value Np #,

(INT np) INT: ,

level number as follows from n, and no #,

(INT p) VEC:

delivers the zero-element of Xp #.

(INT £, VEC yp) VEC:
some representation of the operator Kp mapping from Xp
onto X, q(K,yp) delivers TEprp #,

(MAT a, VEC f,g) VOID:

solve directly determines the solution of af = g by
means of Gaussian-elimination) #.

(INT p, VEC yp) MAT:

evaluates the matrix TP(I—KP) #,

(VEC yp) REAL:

delivers the £_-norm of v, #;

(REAL x,y,fy) REAL:

some representation the integrand of (1.1),
kk(x,y,£fy) = k(x,y)*f(y) #.

(REAL x) REAL:

some representation of the right-hand side of 1.1 #,

TEXT 1. An informal description of modes, operators and procedures used in

solve int eq.

The implementation in an ALGOL 68 program of these operators and procedures

depends on the choice of’{Gp}, the approximating operatorsv{Kp} and the in-

terpolation operators'{Tp}. Using uniform grids an implementation of example

1 and 2 is given in the appendix.

12

(3)

The approximating inverse Bp is defined in a recursive way and depends
on a positive integer 7y (fixed for all p). However, a more robust algorithm
is obtained if y can be adapted to the level number p. Therefore, in our

implementation of the multiple grid algorithm y depends on p (i.e. in the
definition of QéB) we replace Y by YP). Inside solve int eq a procedure,
called examine convergence, is specified which determines Yp' p=1,2,...L-1,
(£ is the highest level which follows from NE and NO). This procedure is of
a heuristic structure. In its most simple form it would set YP = 2, for all
p. Depending on the behaviour of the actual, iterative process it would
adapt Yp' In order to retain our computational complexity of 0(N2) we take
care that Yp < 3. An exception is made for the lowest level (Y1 may in-
crease to 5). The multiple grid method obtained in this way is given in

text 2.

PROC mulgrid3 = (INT m,sigma,[] INT gamma, MAT jacobian,
REF VEC um, VEC rhsm, BOOL um is zero) VOID :
IF m=20
THEN solve directly(jacobian,um, rhsm)
ELSE BOOL uz:= um 18 3ero;
FOR it TO sigma
DO VEC rm = (uz ! rhsm ! rhsm-um+q(m,um));
VEC wmml:= zero(m-1);
VEC rmml = restrict(rm);
VEC frml = rmml-q(m-1,vrmml)+q(m-1,rm);
mulgrid3 (m-1, gammalm], gamma, jacobian, wmml , fmml, TRUE);
um:= um + rm + prolongate(umml-rmml);
uz:= FALSE
oD

TEXT 2. Implementation of the multiple grid method defined by (2.4) and Bé3).

The procedure solve int eq for the automatic solution of Fredholm equa-
tions of the second kind is described in text 3. The user has to specify

upper limits for N_. and Nﬂ' i.e. the maximum number of intervals in the

0
coarsest and the finest discretization. Furthermore, solve int eq needs in-

formation about o (see assumption B3) and “Tp“ (see 2.5).

PROC solve int eq = (REF INT n0, INT nOupper,nlupper, REAL tol,
alfa,normt, REF VEC um, REF REAL error) BOOL :
BEGIN

PROC determine vl = (REF REAL numvl,denvl,vl, REF VEC um,
VEC vhs) VOID :
(VEC umold:= COPY um;
mulgrid3 (1,1, gamma, jacobian,um,rhe, FALSE);
numvl := norm(um-umold); REAL viold:= 0.0;
FOR 1t TO §
WHILE umold:= COPY umg .
mulgrid3 (1,1, gamma, jacobian, um, rhe, FALSE);
denvl := numvl; numvl:= norm(umold-um);
IF numvl > min((tol,1.0e-12))
THEN (it > 1 ! vlold:= v1);
v1:= numvl/denvi;
1t<3 OR ABS (vi-vlold) > 0.02*viold
ELSE (it=1 ! vl*:= ratio); vlold:=vl; FALSE

FI
DO SKIP OD ; .
vi:= 1.02%max((viold,v1)))s

PROC examine convergence = (REAL vl, INT levels, REF [] INT gamma)
BOOL :
(gamma[1]:= 0; BOOL conv;
FOR i1 TO levels+2
WHILE IF i1 <= levels
THEN FOR i FROM 2 TO i1 DO gammali]:= 3 OD
ELIF ii=levels+1 THEN gammal2]:= 4
ELIF ii=levels+2 THEN gammal[2]:= 5
Fr ;
REAL vp:= vl,wp:= vi;
IF conv:= (wp*wp <= vp)
THEN FOR p FROM 2 TO levels

WHILE vp *:= ratio;
wp := vptwp**gammalp]*(vp+normt);
conv:= (wp*wp <= vp)

Do SKIP oD

FI ;
(NOT conv) AND m0 = nOupper
DO SKIP OD ;
print(newline);
FOR i1 TO levels DO print((whole(gammaliil,4))) OD ;
eonv);

PROC v1 on level = (INT m) REAL :
(REAL vp:= vl, wp:= vl;
FOR p FROM 2 TO m
DO vp:= ratio*vp; wp:= vptwp**gammalpl*(vp+normt) OD ;
wp)s

14

INT levels:= level(nlupper); HEAP [1:levels] INT gamma;

FOR J TO levels DO gammaljl:= 2 OD ;

REAL ratio = 0.5**alfa;

REAL v1:=1.0,denvl,numvl,v2:=0.5,denv2,numv2:=1.0; error:= maxreal;
BOOL rapideonvergence;

VEC rhs, umml; MAT jacobian;

FERRARXARRAXRRAERR K XA stage a EXAXRAAXARRRARRRRRAARRRRRRARRRR KRS

FOR loop
WHILE um:= zero(0); rhs:=project(0,forcey);
Jacobian:= evaluate jacobian(0,um);
solve directly(jacobian,um, rhs);
IF loop>1 '
THEN denv2:=numv2; numv2:=norm(restrict(um)-umml);
(loop>2 ! v2:= max((ratio,min((0.5,num2/denv2)))));
error:=(v2/(1-v2)) *numv2
FI ;
IF error>tol
THEN rhs := project(1,forcey);
wmml := COPY um;
um := prolongate(umml);
determine v1(numvl,denvl,vl,um, rhe);
rapideonvergence:= examine convergence(vl,levels, gamma)
FI ;
error>tol AND (NOT rapideonvergence) AND nOupper >= 2*n0
DO n0*:= 2; levels-:= 1 0D ;

HARKIXRRRAXRRRRARRRE ond Of stage a AXARRAARARKARKARRKRRARRARK AR AY
IF NOT rapideonvergence

THEN print((newline, " multigrid convergence too slow "))
Fr

15

FARXAAAARARRRA AR AL AR stage b AEXAAXAARRAAARARAARRRRAARARRK AR R XY

IF error > tol AND rapideconvergence
THEN FOR m TO levels
WHILE denv2:=numv2; numv2:= norm(restrict(um)-umml);
REAL rt = min((ratio,v2));
REAL wm = vl on level(m);
REAL vim := wmg
FOR “imax TO 5
WHILE numvl > 0.1%*((1.0-vim)/vim)*(rt/(1.0-rt)) *numv2
extra iteration:
DO denvl:= numvl;
VEC umold:= COPY um;
mulgrid3(m,1, gamma, jacobian, um, vhe, FALSE);
numvl := norm(um-umold) ;
numvl := norm(restrict(um)-umml);
vim := min((wm, numvl/denvl))
oD ;
v2 := max((ratio,min((0.5,numv2/denv2))));
error:= (v2/(1-v2)) *numv;
error>tol AND m<levels
DO rhs := project(m+l,forcey);
umml := COPY um; um:= prolongate(umml);
VEC umold:= COPY um;
mulgrid3(m+1,1, gamma, jacobian, um, rhe, FALSE);
numvl := norm(um-umold)

oD
FIr
JARARRRRRRRARRARRRAE ond of gtage b ARRAKARAXARKARARAKAKAKAK AR AR A Y

error <= tol OR rapideonvergence
END # solve int eq # ;

TEXT 3. Implementation of solve int eq.

16

We could use a slight modification of the above program to implement
Atkinson's [1] FORTRAN code iesimp in ALGOL 68. Because of the modular
structure of solve int eq it is also easy to program other numerical methods
for integral equations (e.g. higher order formules for smooth kernel func-
tions). Furthermore, solve int eq can be applied to multi-dimensional in-
tegral equations (e.g. potential flow around three-dimensional bodies) and
non-linear integral equations, as was applied in [7] to the physical problem

of oscillating disk flow.
4 . NUMERICAL RESULTS

In this section we illustrate examples 1-3 on a variety of problems.
The problems contain a number of parameters A,p,U, which are chosen so that
"(I—TPKP)_lﬂ is large. This means that large linear systems are necessary
to obtain a reasonably accurate, approximate solution fp(s) (€XP) to the
true solution f(s).

For the problems 1-3 (taken from Atkinson [1]) we give the performances
of both solve int eq and Atkinson's program iesimp. In the tables we give
the highest level (NO and N,, respectively) and the number of work units
(WU), where 1 WU is defined by NE kernel evaluations.

"NOTE. For the examples 1 and 2 of section 2 the number of kernel evaluations

2
is N,, when the values are computed once and stored (example 3 & %—Nz).
However, when they are not stored the number of kernel evaluations is a
good measure for the computational complexity of the algorithms solve int

eq and iesimp.

Case (i):

-Ax(1-y), 0

IN
"
A
(%]
IA
-

k(x,y) =

-Ay (1-x), 0] 1.

IA
~
IA
]
IA

Since this kernel function is not continuously differentiable for x = y,
we define Kp by the repeated trapezoidal rule. Assumption B3 is satisfied

with o = 2. The interpolatory spline functions are defined by linear inter-

17

polation.
Thé right-hand side g(s) is chosen so that the solution of (1.1) is
f(s) = uzs“(l—s), p=1, '

NOTE. In [1] Atkinson solves this problem by Simpson's rule, but he remarks
that the order of convergence is O(hz). Therefore, in table I the numerical
results of iesimp (which are obtained by Simpson's rule) can be compared

with the results of sclve int egq.

Error Final
A Predicted Actual NO NK WU
solve i. |-10.0 8.48 (-4) 7.35 [+4) | 32 256 4;83(1)
lesimp -10.0 8.93 (-4) 1.03 (-3) | 1e 256 9.23

solve i. |[-30.0 5.52 (—4) 5.48 (-4) |16 128 5.61
iesimp -30.0 8.91 (-4) 8.93 (-4) 8 128 6.76
(2)
(2)

solve i. |-90.0 4.85 (-3) 3.86 (-3) |32 256 10.65
iesimp -90.0 7.71 (=3) 5.96 (-3) |32 256 13.60
(3)
(3)

solve i. 90.0 3.01 (-4) 2.93 (-4) |16 128 8.15
iesimp 90.0 3.78 (-4) 2.18 (-4) |32 256 8.06

Table I. Results for case (i), u = 5.
For iesimp KP is defined by Simpson's rule, for solve int
eq by the trapezoidal rule.
Tolerance (tol) = 1.0 (-3).

Notes to table I:

note (1): For this problem solve int eq needs 4.83 WU, which is already

close to the asymptotic value of 4.66 WU (see 3.3).

note (2): For the tolerance specified both iesimp and solve int eg cannot
solve this problem with 256 intervals on the highest level. In this case

we took nlupper = 256 and therefore both codes fail.

18

note (3): For this problem iesimp needs 256 intervals, whereas solve int eq,

return succesfully with 128 intervals on the highest level.

Case (ii):
2
k(x,y) =Acos(u mxy),

The oscillatory behaviour of this kernel function increases as U increases.
The value of A is chosen close to characteristic values; see ATKINSON [1].
Since k(x,y) is several times continuously differentiable we use Simpson's
rule and cubic interpolation to define K and TP, respectively (i.e. Example

2 of section 2 with a = 24) .

B=4and IT Il =
p ux

The right-hand side is so chosen that f(x) = e cos (7ux) .
Error Final

A u Predicted Actual No NE WU
solve i.|-2000 8.41 (-6) 8.37 (-6) 32 256 6.00(1)
iesimp ' |-2000 . 9.75 (-6) 8.68 (-6) 32 256 7.83
solve i.]|-1.42 2.0] 3.57 (-6) 3.56 (-6) 16 256 4.17
iesimp -1.42 2.0} 3.58 (-6) 3.57 (-6) 16 256 6.60
Table II. Results for case (ii).

The operator Kp is defined by Simpson's rule.

Tolerance (tol) = 1.0 (-5).

note (1): For this case solve int eq did not use the default values of
YP, (p =0,1,2), but on level 1 the value of Yp was adapted (i.e. Yl = 3,
Y2 = 2) °

Case (iii):

k(x,y) = u/[u2+(x—y)2], u X,y < 1.

This kernel is increasingly peaked as yu - 0. For u = 0.1 the ratio

19

k /k_. = 101.
max’ min . 5
We determine the right-hand side so that f£(x) = x - 0.8x + 0.06.
For the definition of Kp and Tp'we refer to example 2 of section 2. The

numerical results are given in table III.

Error Final

A Tolerance Predicted Actual N NE WU

solve i}0.52 | 1.0 (-7) 3.42 (-8) 3.40 (-8) 32 256 4.83
iesimp |0.52 | 1.0 (-=7) 3.43 (-8) 3.41 (-8) 32 256 7.83

solve i} 0.95 1.0 (-6) 1.55 (-7) 1.54 (-7) 32 256 5.22
iesimp } 0.95 1.0 (-6) 1.56 (=7) 1.55 (=7) 32 256 7.83

solve i10.0 | 1.0 (-6) 1.65 (-7) 1.59 (-7) | 32 256 s.1a(}

iesimp | 10.0 1.0 (-6) 2.90 (-7) 2.70 (-7) 32 256 7.83

Table III. Results for case (iii), u = 0.1.

The operator Kp is defined by Simpson's rule.

note (1): In this problem solve int egq adapted the values of y to: Yy = 5
and y2 = 3. Moreover, an additional iteration sweep was performed on the
highest level because test (2.10) was not satisfied after one iteration
sweep. Therefore, the computational work deviates from the asymptotic amount

given by (3.3).

From the tables I - III we conclude that Atkinson's code iesimp is on
an average about 50% more expensive than solve int eg. In all the experi-
ments both procedures very accurately predict the error of the obtained

solution.

Case (iv).

The kernel function is defined in example 3 of section 2. We apply solve
int eq to the calculation of non-circulatory, potential flow around a
Karman-Trefftz aerofoil, which is obtained from a circle by conformal map-
ping. For details about the derivation of the integral equation we refer

to [2,5,8].

20

Let the script-letters X, Z, etc. denote complex numbers. The Karmin-
Trefftz aerofoil is obtained from the circle in the X-plane, X = ceLe, by

means of the mapping
(4.1) z = £(0) = (x-x)"/ (x-c(6-ix)) "7,

where U measures the trailing edge angle, Yy the camber and § the thickness

of the aerofoil;

¢ = 22(s+/1y2) P L (214 H)H

X, = c(V1-y“=4Ly),

with £ the length of the aerofoil. To make f single-valued we take the
principal value in (4.1).

The Karman-Trefftz aerofoil is not a smooth boundary because of the
presence of the trailing edge angle at Z = Z,. At this point the curvature

t
is not defined. In the present paper we remove the corner by the additional

>

mapping

Vu,, _51-1/u

(4.2) w=g(z) = (Z*Zt) (z-2)

where Z is a point inside the aerofoil. Here we locate it arbitrarily at
Z = -4. By means of (4.2) the aerofoil in the Z-plane is converted into a
quasi-circular shape in the W-plane. This has been done because the inverse
mapping of (4.1) converts real aerofoils (which do not belong to the family

of Kdrman-Trefftz aerofoils) into quasi-circular shapes too.

X-plane Z-plane W-plane

figure 4.1

21

In the present paper we only consider symmetric aerofoils (y=0) and
non-circulatory flow. The right-hand side of the integral equation is given

by
g(s) = - 2Um Eg_W(s), W e S.

In [9] we also consider non-symmetric aerofoils and circulatory flow.
The grid Gp is given by a uniform partition of the circle. On level
p the contour- and collocation points in the W-plane follow from Gp' (4.1)

and (4.2)1 with
G = {9, 6. = 2m1j/N 7 j = 0,1 eooysN }.
J I J J/ J 4 14 p

The tangential velocity vj at the point Z(sj), (z € K.T.-aerofoil) is ob-

tained in a numerical way by:

| £

R |)
(4.3) Y .3t pi3h /é@) , 5
| 2=z

!\dZ =1,...,Np—1,

0y 05|

where wj+li is the collocation point corresponding with Gj‘ In table

+%°
IV we compare the outcome of (4.3) with the analytical value. The predicted
error refers to the error in the approximate solution and not to the error

in the tangential velocity.

NOTE. For example 3 the operation counts per iteration sweep (with y=2) are
3.5 N;. Asymptotically for p + «, by condition (2.7) two applications of
(2.4) yield an approximation of O(hp). In order to obtain an 0(h;+p) ap-
proximate solution on the collocation points we have to perform an extra
iteration, so that the total amount of work is equal to

2 1/

11 2
(4.4) (1+Z+T6_+ ...),7Np—9

22

Predicted Actual error Final
u error invfp in ve10ci£y N, N, WU
1.90 4.23 (-5) 5.42 (-4) 8 256 8.99
1.95 8.60 (-5) 9.09 (-4) 8 256 8.99
1.99 1.84 (-4) 8.49 (-4) 16 256 8.73

Table IV. Results for case (iv).
The operators Kp and Tp are defined in example 3 of sec-
tion 2.
Flow around a Karman-Trefftz aerofoil with § = 0.05,
y =0.0, £ = 1.0, u, = 1.0.
Tolerance (= tol) is 1.0 (-4).

From table IV we conclude that the number of Work Units is in agreement
with the asymptotic amount of work (4.4) and our code solve int eg appears
to be applicable with respect to this aerodynamic problem.

The numerical examples of this section were computed on a CDC-Cyber 175

in single precision arithmetic.
ACKNOWLEDGEMENTS

The author wishes to thank dr. P.W. Hemker for his helpful discussions
and drs. P.M. de Zeeuw for his programming assistance and his continuous

interest in this work.
REFERENCES

[1] ATKINSON, K.E., An automatic program for linear Fredholm integral equa-
tions of the second kind, ACM Transactions on Mathematical Soft-

ware, 2, 1976, pp. 154-171.

[2] BOTTA, E.F.F., Calculation of potential flow around bodies, Ph.D. Thesis,

Rijksuniversiteit Groningen, 1978.

£3]

[4]

(5]

L6]

(7]

£8]

(sl

[10]

[11]

23

HACKBUSCH, W., Die schrnelle Aufldsung der Fredholmschen Integralgleichung
zweiter Art, Report 78-4, Universitdt zu Kdln (1978).

HEMKER, P.W. & H. SCHIPPERS, Multiple grid methods for the solution of
Fredholm integral equations of the second kind, Mathematics of

Computation (1981).

MARTENSEN, E., Berechnung der Druckverteilung an Gitterprofilen in
ebener Potentialstrdmung met einer Fredholmschen Integralgleichung,

Arch. Rat. Mech. and Anal. 3, pp. 235-279, 1959.

PRENTER, P.M., A coliocation method for the numerical solution of in-

tegral equations, SIAM J. Numer. Anal 10, (1973), pp. 570-581.

SCHIPPERS, H., Multiple grid methods for oscillating disk flow (In:
Boundary and Interior Layers - Computational and Asymptotic
Methods, J.J.H. Miller, ed., Boole Press, Dublin), 1980.

-

SCHIPPERS, H., On the regularity of the principal value of the double
layer potential, Report NW ;, Mathematisch Centrum, Amster-
dam, 1981 (Preprint).

SCHIPPERS, H., Multiple grid methods for the calculation of potential
flow, to be published.

SLOAN, I.H., E. NOUSSAIR & B.J. BURN, Projection methods for equations
of the second kind, Journal of Math. Anal. and Appl. 69, (1979),
pp. 84-103.

VAN WIJNGAARDEN et al., Eds. (1976), Revised Report on the Algorithmic
Language ALGOL 68, Springer-Verlag, New York, Heidelberg, Berlin
(1976) .

24

APPENDIX
BEGIN # automatic solution of fredholm equations of the second kind #

MODE INTERVAL = STRUCT (REAL begin,end);
MODE VEC = REF [] REAL ;
MODE MAT = REF [,] REAL ;

OP ** = (REAL x,y) REAL : (x <= 0.0 ! 0.0 ! exp(y*in(x)));

op + = (VEC a,b) VEC :

(INT 1= LWB a, u= UPB a; VEC ¢ = HEAP [l:u] REAL ;
FOR 7 FROM 1 TO u DO el[i]:= ali] + b[<1] OD ;
c) # vee + vee #;

OP - = (VEC a,b) VEC :

(INT 1= LWB a, u= UPB a; VEC ¢ = HEAP [l:u] REAL ;
FOR © FROM 1L TO0 w DO el[i]:= ali] - b[i] OD ;
¢) # vee - vee #;

op / = (VEC a, REAL b) VEC :

(INT 1= LWB a, u= UPB a; VEC ¢ = HEAP [l:ul] REAL ;
FOR © FROM 1 TO w DO elid:= ali] / b OD ;
c) # vee / real #;

OP * = (REAL b, VEC a) VEC :

(INT 1= LWB a, u= UPB a; VEC ¢ = HEAP [l:u] REAL ;
FOR © FROM 1 TO u DO elid:= b * ali] OD ;
c) # real * vee #;

OP * = (VEC a, b) REAL :

(INT 1= LWB a, u= UPB a; REAL c:= 0.0;
FOR © FROM 1 TO u DO e +:= al11*b[i] OD ;
c) # vee * vec #;

OP * = (MAT a, VEC b) VEC :

(INT 1=1 LWB a, u=1 UPB a; VEC ¢ = HEAP [l:u] REAL ;
FOR © FROM 1 TO u DO e[i] := alZ, J*b[] OD ;
¢) # mat * vee #;

OP COPY = (VEC u) VEC :

(INT 1 = LWB u, up = UPB u; VEC ¢ = HEAP [l:up] REAL ;
FOR © FROM 1 TO up DO e[i]:= ul[i] OD ;
e)

PROC prvee = (VEC x) VOID :

(print((" vee bounds ", LWB x, UPB x,newline));
FOR 1 FROM LWB x TO UPB x
DO print(x[i]) OD ;
print(newline));

25

PROC max = ([J] REAL a) REAL :

(INT 1= LWB a, u= UPB a; REAL s:=alll];
FOR © FROM 1+1 TO u DO (alil>s ! s:=ali]) OD ;
g);

PROC min = ([J] REAL a) REAL :

(INT 1= LWB a, u= UPB a; REAL s:=alll;
FOR 7 FROM 1+1 TO u DO (alil<s ! s:=ali]) OD ;
s);

PROC norm = (VEC a) REAL :

(INT 1= LWB a, u= UPB a; REAL s:= ABS alll];
FOR © FROM 1+1 TO u
DO REAL b = ABS alil; (b>s ! s.=b) OD ;
8);

PROC m = (INT 1) INT :(nm0 * 2**1);

PROC level = (INT nb) INT :

(INT s8:=n(0), l:= 0;
WHILE 8 < nb DO l+:= 1; s: 2*8 0D ;
IF s > nb THEN error FI ; 1);

PROC zero = (INT 1) VEC :
(INT nl = n(l); VEC bb = HEAP [0:nl] REAL ;
FOR 1 FROM 0 TO nl DO bb[i]:= 0.0 OD ;bb);

PROC pinject = (INT L, PROC (REAL) REAL f) VEC :
(INT nl= n(l); HEAP [0:nl] REAL yl;
REAL a:= begin OF int; REAL h = (end OF int - a)/nl;
yZ[O]:= fla);
FOR 1 TO nl
DO yllil:= f(a+:=h) OD ; yl);

PROC injeet = (VEC vp) VEC :
(INT np = UPB vp, nq = np OVER 2;
VEC vq = HEAP [0:nq] REAL ;
FOR i1 FROM 0 TO nq DO vqlil:= vp[2*] OD ; vq);

HEAEXRARRAKAXRRRRARRARRR example 1 ***&*************&******#&*&****#

PROC lin int = (VEC vp) VEC :

(INT np = UPB vp; INT nq = 2*np;
VEC vq = HEAP [0:nq] REAL ;
vql0]:= vpl[0];

FOR 1 TO np
DO wvql2*i] := vp[il;

vql[2*i-1]:= 0.5*(vp[i~-1] + vp[i])
oD ;

vq);

26

PROC trap = (#to level # INT p, VEC v) VEC :
(INT np = n(p), nq = UPB v;
VEC vp = HEAP [0:np] REAL ;
INT st = (np=ng ! 1 !: 2%*np=nq ! 2 ! error; 0);
REAL a = begin OF int, b = end OF int; REAL h = (b-a)/ng;
FOR 1 FROM 0 BY st TO nq
DO REAL s, tJj; REAL ti = a + 1*h;
8 := kk(ti,tj:=a,v[0]1)/2;
FOR § TO ng-1
DO s +:= kk(ti,tj+:=h,v[5]) OD ;
g +:= Kkk(ti,tj+h,vingl)/2;
vp[i1 OVER st] := s*h
oD ;
vp) ;

R EELELEE R EL L LS example 2 ARXAAARRRRARAARRRARARRARRARRRRRR KA RS

PROC cub int = (VEC vp) VEC :

(INT np = UPB vp; INT nq = 2*np;
VEC vq = HEAP [0:nq] REAL ;
vql0] := vpl0];
vq[1] := (5.0*(vp[0]+3.0%*vp[1]-vp[2])+vp[3])/16.0;
vgqlng-2]1:= vplnp-171;
vqlng-1]1:= (5.0*(vp[npJ+3.0*vp[np-1J-vp[np-2]1)+vplnp-31)/16.0;
vglng] vplnpl;

FOR i TO np-2
DO vql2*i]
vql2*i+1]:
oD ;
vq) ;

vpli];
(-vp[i~-1]+9.0*(vp[i]+vp[i+1])-vp[i+2]1)/16.0

PROC simp = (#to level # INT p, VEC v) VEC :

(INT np = n(p), nq = UPB v;
VEC vp = HEAP [0:np] REAL ;
INT st - np=nq ! 1 !: 2*np=nqg ! 2 ! error; 0);

o

(
REAL a = begin OF int, b = end OF int, wé43 = 4/3, w23 = 2/3;
REAL h = (b-a)/ng;
FOR 1 FROM 0 BY st TO nq
DO REAL e, tJ; REAL ti = a + 1*h;
8 = kk(ti,tj:=a,v[0]1)/3;
FOR § TO ng-1
DO s +:= (ODD § ! w43 ! w23) * kk(ti,tj+:=h,v[F]) OD ;
g +:= Kk(ti,tj+h,vingl)/3;
vp[i OVER st] := s*h
oD ;
vp) ;3

#*****#&*********** end Of example 2 k*****&*****************&**é#

PROC solve directly = (MAT jacobian, VEC um, rhem) VOID :

BEGIN # gaussian elimination #

(1 UPB jacobian /= UPB rhsm OR 2 UPB jacobian/= UPB rhsm !

error);
MAT jb= jacobianl[AT 1, AT 11;
INT n = UPB 4b;
[1:n,1:n+1] REAL a;
VEC v = al,n+1]; al,1:nl:= Gb; v:= rhem[AT 11;
FOR j TO n
DO INT jpl= j+1; INT pgj:= Js
REAL si,s:= ABS algj,dl;
FOR i FROM jpl TO n
DO ((si:= ABS ali,j]) >s ! s:=8i; pj:=i) OD ;
IF § /= pj
THEN REAL t;
FOR k TO n+1
DO t:= alpj,kl; alpg,kl:= alj,k1; alj,ki:=t OD
FIr ;
s :=alg,dl;
FOR i FROM jpl TO n
DO si:= ali,gl/s;
FOR k FROM j§ TO n+l
Do ali,k] -:= alj,k]*si OD
oD
oD ;
FOR § FROM n BY -1 TO 1
DO vLgl /:= alg,dls
FOR 1 FROM g-1 BY -1 TO 1
DO v[i] -:= alz,g]*v[j] OD
oD ;
um:= v[AT (1 LWB jacobian)]
END # solve directly # ;

PROC evaluate jacobian = (INT m, VEC um) MAT :
BEGIN INT nm = n(m); [0:mm] REAL wmd := um;
VEC qm = q(myum); HEAP [0:nm,0:nm] REAL jac;
FOR 1 FROM 0 TO nm
DO REAL delta = max((wum[1]*0.001, 0.001));
umd[i1] +:= delta;
Jael,i1] := (qm - q(m,umd))/delta;

Jaeli,7]+:= 1.0;
umd[1] := um[1]
oD ; Jjae

END # evaluate jacobian # ;

27

28

PROC mulgrid3

= see text 2 #
PROC solve int eq = see text 3
#*%&&#****##**%#*** gZobaZ variables **&*#&**********é*********#*#

INT n0:= 4; REAL tol:=1.0e-6;

INTERVAL int;

PROC (REAL , REAL , REAL) REAL kk;

PROC (REAL) REAL forcey;

PROC (INT , PROC (REAL) REAL) VEC project;
PROC (VEC) VEC restrict; '
PROC (VEC) VEC prolongate; REAL normt;
PROC (INT , VEC) VEC q ; REAL alfa ;

AR R L EL T implementation Of exampze 1 %*#************&#******#

project:=pinject; restrict:=inject;
prolongate:= lin int; normt:= 6; q:=trap; alfa:=2;

AL LR LR E L L] implementation Of exampze 2 #**&**&*****#******&#**#

project:=pinject; restrict:=inject;
prolongate:= cub int; normt:= 24; q:=simp; alfa:=4;

#**%***&****&**#*#*é***#***#****&****&**&****&***&#**i#***#****#***#**#

HARRXAARRAXKAAAR AR R end Of Zibnary ****&******#*******é*&****##*&#

PR prog PR SKIP
END

TEXT 4. An ALGOL 68 program for the automatic solution of Fredholm equa-
tions of the second kind, in which the linear system is iteratively solved
by a multiple grid method.

Example 1: Approximation of the integral by the trapezoidal rule,

Example 2: Approximation of the integral by Simpson's rule.

