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Instructive experiments with some Runge-Kutta-Rosenbrock methods*) 

by 

J.G. Verwer 

ABSTRACT 

The paper deals with certain boundedness properties of Runge-Kutta

Rosenbrock methods when applied to nonlinear stiff systems. It reports some 

instructive examples and numerical experiments performed with a number of 

simple 2-stage schemes and the Rosenbrock code ROW4A. Attention is paid to 

the conversion of non-autonomous problems to the autonomous form. An impor

tant conclusion is that this conversion may lead to a significant loss in 

accuracy. 

KEY WORDS & PHRASES: Numeriaal analysis, Numeriaal integration, Rosenbroak 

methods, Nonlinear stiff equations 

*) This report will be submitted for publication elsewhere. 





I. INTRODUCTION 

A substantial part of" the literature on numerical methods for stiff sys

tems of ordinary differential equations deals with Runge-Kutta-Rosenbrock 

methods. For the non-autonomous initial value problem 

. 
X = F(t,X), 

the originaZ m-stage Rosenbrock method (see [7]) is very similar to the 

Runge-Kutta type integration formula 

( 1. 2) 

x(j) = n 

X = n+l 

X , 
n 

X n 
+ '[ 

x<m) 
n , 

j-1 
I L K(,f.) 

l=O J ,l n 

n = 0, 1 , ••. 

, j = 

y. > o, j 
J 

1 (1 )m, 

= 0( 1 )m-1, 

Xn denotes the approximation at time t = tn and T > 0 denotes the stepsize; 

t(j) = t + v.-r, where, normally, 0 ~ v. ~ 1. Further 
n n J J 

J(j) = J(t(j) 5c(j)) J(t,X) = aF(t,X)/ax, n n ' n ' 
( 1. 3) j j 

A(j) I t(l) A(j) 
= I x<l) t = a. l X a. j,l n , 

n l=O J, n ' n l=O 

where the parameters a. 0 denote real scalars. Note that each stage involves 
J ,.(.. 

an F(t,X)-evaluation, a solution of a system of linear algebraic equations, 

and, possibly, a J(t,X)-evaluation. 

Up to now the literature on Rosenbrock type schemes mainly deals with 

the development of new schemes and, in particular, with the analysis of the 

appearing rational stability functions. In fact, it is now well-known that 

there do exist A-stable, or L-stable, Rosenbrock type schemes of high order 

of consistency. It is less known however that such a scheme, which according 

to the Dahlquist-Henrici theory ought to be judged as being reliable, may 
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behave real bad when applied to certain non-linear problem classes. Or, 

when we are given 2 schemes of the same order of consistency and having 

the same stability function, we may encounter large differences in their 

performance when applied to these non-linear problem classes. 

The present paper deals with these phenomena. We discuss a number of 

instructive examples and numerical experiments, most of which are based on 

results presented in a previous paper [12]. In that paper the author in

vestigated, following ideas put forward by Stetter [10] and van Veldhuizen 

[11], a so-called uniform boundedness property of method (1.2) for 2 model 

classes which are directly relevant to non-linear stiff problems. This 

boundedness property plays a key role in the examples and experiments we 

are going to discuss. 

In short, the contents of the paper are as follows. In section 2 we 

shortly discuss the boundedness property we are concentrating on. Sections 

3 and 4 review the model classes we investigated in [12]. In these sections 

we also discuss numerical examples. Section 5 deals with the conversion to 

the autonomous form which in the greater part of the literature is used 

when a genuine non-autonomous problem is met. An important conclusion of 

section 5 is that this conversion to the autonomous form may lead to a sig

nificant loss in accuracy, and even to instability. In section 5 we also 

report an experiment with the Rosenbrock code ROW4A. Here our aim is toil

lustrate how bad boundedness properties show up in practice when using an 

automatic code. 

2. THE PROPERTY OF e-BOUNDEDNESS 

In the analysis of numerical methods for stiff problems the study of 

model-equations have proved to be fruitful. For example, the simple well

known scalar model 

(2. I) 
. 
X = c5x, 0 E G:, Re(o) < 0, 

provides indispensable information on the absolute stability of integration 

methods for ordinary differential systems. For constant coefficient linear 

systems this scalar model already yields enough insight. For non-Unear 
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stiff systems however, this model has appeared to be too simple and there is 

a need for additional research on more refined models. Such a model (cf. 

[10,11]) should permit the simultaneous occurrence of smooth and transient 

solution components, and, in this connection, its Jacobian matrix should 

have a time-dependent eigensystem. Further it should be possible to consider 

a limit process by which one can introduce arbitrarily high stiffness. 

Finally, the occurrence of non-linear terms in the model could help us to 

increase our insight. 

It is our purpose to support these views for Rosenbrock type methods 

by means of some instructive examples and numerical experiments. Most of 

these will be based on theoretical results presented in [12]. There we in

vestigated a so-called property of uniform boundedness for method (1~2) 

when applied to 2 model classes having the characteristics just mentioned. 

We shall now first describe the kind of boundedness we think of. Let 

. 
(2.2) X = F(t,X,e), EQ constant, 

represent some class of model equations we have in mind, where 

a) t E [t0 ,TJ, t 0 and T finite and constant, X(t0) = x0 = X0 (e). 

b) All problems in this class possess a unique bounded solution X = X(t,e) 

on [t0 ,TJ x (O,e0J, i.e., we suppose the existence of a constant K such 

that 

sup HX(t,e)U ~ K. 
tE[t0 ,TJ 

c) The stiffness ratio tends to infinity if E + 0 (1/e factors). 

Note that the initial vector x0 may depend on the stiffness parameter E. 

This case may be relevant in case we have non-linearities in X. In what 

follows it is convenient to represent scheme (1.2) in the operator form 
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(2. 3) 

X 
n+l 

X , 
n 

= x<m) 
,n 

j = 1 ( 1 )m, 

DEFINITION 2.1. Suppose we are given a method of type (2.3) and a class of 

stiff problems satisfying properties (2.2a-c). We then call this method e

bounded on this class if for all its problems the following statement holds~ 

for any point (t,X) in the region of definition of F, where X = X(e) is 

* bounded in£ E (O,e0J, a constant T exists such that 

(2.4) £ ➔ 0, j = 1 (1 )m, 

for all TE (o,.*J,.* being independent of£. D 

For clarity we wish to make 2 connnents on this definition. Firstly, in 

relation (2.4) we confine ourselves to fixed .-values, i.e.,the constant 

implied may depend on T (cf. [10], p. 192). In view of property (2.2b), our 

goal is to select methods which are able to produce a finite sequence of 

approximations over the interval [t0 ,TJ being bounded in£ E (O,e0J. If, for 

a given problem, none finite sequence will remain bounded if£+ O, we may 

expect large discretization errors in a non-limit situation. 

Our second connnent concerns the additional boundedness requirement for 

J < m. We prefer to define e-boundedness in this way as it facilitates the 

analysis (see [12]) and, of course, it is also obvious to ask for bounded

ness of ~(j), j < m, if ~(m) is required to be bounded (in general ~(m) 

depends in a non-linear way on ~(j), j < m). 

3. MODEL CLASS 1 

In order to obtain concrete results one-boundedness one has to select 

appropriate model classes. In [12] we investigated 2 such classes. The first 

of these is reviewed in section 3.1. In section 3.2 we present a specific 

example to be used in section 3.3 for a numerical illustration. 



3.1. A class of non-linear model equations 

The class is described by 2 coupled singularly perturbed differential 

systems of the form (see also [3]) 

f(t,x,y,e:) + 
-1 

x(O) X = e: A(t)y, = XO' 
(3. I) 

g(t,x,y,e:) + e: 
-1 

µ(t)By, y(O) y = = Yo• 

We consider (3.1) on the interval. [O,T] and, until further notice, x0 ,y0 
are assumed to be independent of e:. The right hand side functions are sup

posed to be sufficiently differentiable. The vector functions f and g are 

5 

allowed to be non-linear and, in particular, they are supposed to be bounded 
SJ s 2 1.n e: as e: + O. Further, f: [0,T] x lR x lR x (O,e:0] 

. SJ s2 s2 
[O,T] x lR x lR x (O,e:0] + lR , where s 1 ,s2 2: 1. A is a t-dependent 

]Rs l 
+ and g: 

(s 1,s2)-matrix andµ is a scalar function which is strictly positive, i.e., 

µ(t) 2: µ > 0 for all t E [0,T]. Finally, Bis a constant (s 2 ,s 2)-matrix 

whose spectrum A(B) lies in the negative half plane£-= {z!Re(z) < O}. It 

is not difficult to prove the following result [12]: 

THEOREM 3.1. Let a= max{Re(A) : A E A(B)} < O. Then, for all t E (O,T] and 

e: E (O,e:0], the solution functions x(t,e:) and y(t,e:) of problem (3.1) 

satisfy 

llx(t,e:)11 :,;; KO' 11:ic(t,e:)II :,;; -1 l K1[e: exp(2 ~ -:-1 ) l J aµe: t + , 

(3.2) lly(t,e:)11 :,;; ~ l 
Ko[exp(2 

~ -1 aµe: t) + e:l, 

lly(t,e:)11 :,;; ~ -1 l 
Kl[e: exp(2 

~ -1 aµe: t) + l], 

K0 , K0 , K 1 and K1 being positive constants independ.ent oft and e:. D 

These inequalities reveal that we can write 

(3.3) x(t,e:) = 0(1), y(t,e:) = O(e:), e: + 0, t E (O,T]. 

Normally the x-solution shall consist of a rapidly decaying transient 
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component and a smooth one which determines x(t,e) everywhere outside the 

transient phase. The transient behaviour of x(t,e) is completely determined 

by the transient of they-solution. Further, to a large extent the magnitude 

of the smooth component is independent of the stiffness parameter e. For the 

y-solution the situation is somewhat different. Typically, it contains a 

transient component and a smooth one which is O(e) for all t E (O,T]. Hence 

in a practical situation it will be smooth x-solution in which we are mostly 

interested, E being so small that the transients can be neglected and that 

the smooth y-solution is of less practical interest. It shall be clear now 

that a suitable integration method for (3.1) should generate approximations 

to the smooth solutions which show a similar behaviour in E. In particular, 

the method should be capable to generate such approximations with some step

size T being independent of e, i.e. X(j) = [x(j) y(j)JT j = l(l)m, should 
n n ' n ' 

satisfy 

(3.4) x(j) = 0(1), 
n 

y(j) = O(e) as E + 0, n = l(l)T/T. 
n 

DEFINITION 3.1. Suppose we are given a method (2.3) which is e-bounded on 

a class of problems of type (3.1). We then call this method e-accurate on 

this class, if in relations (2.4) for ally-components of ~(j) an O(e) be

haviour appears. D 

Clearly, if a method is e-accurate it can be used to generate finite approx

imation sequences satisfying (3.4). The next theorem sununarizes the main 

results we obtained for method (1.2) when applied to class (3.1) [12]: 

_THEOREM 3.2. (i) Any Rosenbrook method (1.2) is E-bounded on the 2 classes 

of problems (3.1) for which, respectively, A= O and A,µ aPe constant. 

(ii) Any Rosenhrock method (1.2) is e-bounded on the whole class (3.1), if 

at eac.h stage J(t,X) is evaluated at the special point (t,X) = (t(j) ,X(j)). 

(iii) Any Rosenbrook method (1.2) is e-aoau:r>ate on the whole class (3.1), 

iff the stability function R(m)(z), as well as all internal stability funa~ 

tions R(j)(z), j < m, do have a zero at infinity. 

(iv) Any Rosenbrook method (1.2) evaluating J(t,x) once per step, is e

bounded on the whole class (3. 1), iff R(j)(00 ) = 0 for j < m. 



(v) Conside1~ class (3.1). Let the point X = (x,y) occurring in Definition 

2.1 be such that x = 0(1), y = O(E). Then any Rosenbrock method (1.2) is 

E-accurate on the whole class (3.1). 0 
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REMARK 3.1. As shown in [12], E-boundedness of (1.2) with respect to (3.1), 

is determined by the boundedness, in EE (O,E0 ], of 

(3. 5) 
-I -2 A -I A -I 

E A ( t) y + YT E A ( t )[ I -y TE µ ( t) B] µ ( t) By, 
A 

t 'ft. 

We shall usE~ this rule to select an appropriate example model for the ex

periments. It is needed because for a specific example the conditions of 

Theorem 3.2 may happen to be too strong. 0 

3.2. A non-linear test example 

We consider the system 

k -I 
µI (t)y, XI = a 1 (x 1+x2+y-I) + E 

(3.6) k -I 
11 2 (t)y, X2 = a 2(x 1+x2+y-I) + E 

k -I µ(t)y. y = a/x1+x2+y-1) - E· 

Here t 0 ~ t ~ T and EE (O,E0], x 1(t),x2(t),y(t) are scalar, ai and k ~ 

are constant, andµ= 1-1 1 + 1-1 2 . The sums= x 1+x2+y satisfies 

(3. 7) 

so that 

(3. 8) 

k 
:s = a(s-1) , 

If s (0) = s 0 f I, equation (3.6)· thus possesses a unique solution being 

bounded on any finite interval [O,T], uniformly in EE (O,E 0]. Furthermore, 

this solution satisfies the inequalities in Theorem 3.1. 
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Elaborating expression (3.5) for system (3.6) yields 

(3.9) 

-1 A A 

l ;• . { µ . ( t) +y't" € [ µ . ( t) µ ( t) - µ . ( t) µ ( t) J } 
- 1 1 · 1 

€ µi(t)y -1 A 'i = 
µ.(t)[l+y't"E µ(t)] 

1 

l, 2. 

A 

If µi(t)µ{t) ~ µi{t)µ{t), this expression is not bounded in£ E (0,£0], i.e., 

the conditions of Theorem 3.2 apply to the specific example (3.6). If 

µ.{t)µ{t) = µ.(t)µ(t) for all t,t E [0,T], any Rosenbrock method (1.2) is 
1 1 

able to generate finite approximation sequences being bounded in£ E (0,£0]. 

The eigenvalues of the Jacobian aF(t,X,£)/ax, evaluated on the exact 

solution, are given by 

-1 -1 o1 = o, o2 = ae (t), o3 = -£ µ(t), 

where 0(t) = k- 1[at(l-k)+ CJ. In the following we therefore take C > 0 and 

a< 0, so that o2 < O. Note that o2 does not depend on£. 

Obviously, much freedom is left in choosing the various defining para

meters in (3.6). We put(µ= µ 1+µ 2) 

(3. l l) 

Note that for all t,t we have µ.(t)µ(t) ~ µ.{t)µ(t), i = 1,2. Further, as 
1 · 1 

µ2 (0) = 0, x2 has no transient. There remains to choose a range of £-values 

and initial values at t = 0. The £-range will be given below at the actual 

experiments. Here we already define 2 sets of initial values, namely 

(3.12a) 

(3. l 2b) 

The initial values (3.12b) define a smooth solution (y(O) = £). 

3.3. Numerical illustration 

The lack of £-boundedness, or £-accuracy, manifests itself by unusually 

large errors and, typically, the smaller£, the larger the errors. We shall 
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illustrate this unwanted phenomenon for the problems (3.6,ll,12a) and 

( 3 . 6 , 1 1 , 1 2b) • 

For the experiments we selected 4 simple 2-stage formulas 

2. All are L-stable and R(l) and R( 2) are given by (y0=y 1=y) 

(1. 2) of order 

(3. 13) 
(1) l+(AlO-y)z 

R (z)=-----1-yz 
R(2) (z) = l+(l-2y~z , 

(1-yz) 

1 
y = 1 - 2✓ 2 • 

Note 

V = 
1 

that the formulas share the stability function R(2). We have A20 = 1- A21 , 
1 1 / 2A 21 and A 2 1 = ( 2 - y) / A 10 : 

formula 

a 1-2y 0 3y-1 
y 

J(t,X) 
e-bounded 
on (3. 1) 

e-accurate 
on (3.1) 

no no 

(3.14) b y 0 0 yes yes 

C 1-2y 0 3y-1 2 y yes no 

d y 0 0 2 yes yes 

The choice AlO = y implies R(l)(00 ) = 0. The choice AlO = (3y-1)/y is,for our 

purpose, rather arbitrary. Of importance is that in this case R(l)(00 ) IO. 
(I) 

The present A10-value implies 'lJl = 1 and R (00 )-c.! -0.4. The a.j,.l-values are 

self-evident. Recall that schemes using more than one J(t,X)-evaluation per 

step, are usually not recormnended. 

val 

ac y 

In the figure below we plotted, for a set of e-values from the inter-
-7 10 [10 ,1], the numbers ac = - log(max. abs. error of x-components) and 
10 X 

= - log(abs. error of y-component) for precisely 1 integration step of 

length 1/20. On purpose we do not give errors measured after a number of 

steps because we noticed cancellation of x 1-errors and x2-errors when per

forming more than 1 step. For our purpose it suffices to consider only 1 

step. Recall that problem (3.6,11,12a) exhibits a transient behaviour, where

as the solution of (3.6,11,12b) is smooth due to the initial value y(O) = e. 
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ac 
X 

t 
0 
0 

CD 

0 
0 

• 

0 
0 

0 o 00 2,00 

0 
0 

• I 
Fig. 3.1 Initial x-error, 

(3. 6 , I I , I 2a) • 

C 

a 

ac 
y 

t 
0 
0 

CD 

0 0 . 
00 

0 
0 . 
• I 

00 2,00 ,4.00 6 ,00 

Fig. 3.2 Initial y-error, 
( 3. 6 , I I , I 2a) • 

Let us first discuss the results for (3.6,Il,12a). Figure 3.1 clearly 

shows the lack of E-boudedness of scheme a, i.e., for increasing stiffness 

its accuracy strongly decreases, whereas the accuracy of band c remains 

constant. Also note that, in this case, schemed is much more accurate 

than band c. Figure 3.1 shows that d even takes advantage of increasing 

stiffness (this phenomenon cannot be explained from the notions of E-bounded

ness and E-accuracy). Figure 3.2 clearly shows the lack of E-accuracy of 

scheme a. It should be noted that scheme c, which according to (3.14) 1.s not 

E-accurate,yields the same initial y-errors as band d. This can be explained 

from the following (heuristic) observation. Consider the linear part of the 
. . -1 

third component of equation (3.6), 1..e., y = -E µ(t)y. Application of the 

2-stage schemes c and d to this equation, yields 

1 -
(3. 15) 

Hence the extra Jacobian evaluation yields extra damping, even if 

y(l)/y = 0(1). 
n n 

E ➔ 0. 



ac 
X 

t 
0 0 
CD 

0 0 

• 

0 0 
00 00 

d 

C 

b 

a 

➔ - l 0 log E 

2.00 4,00 s.oo 

Fig. 3.3 Initial x-error, 
( 3 . 6 , I 1 , I 2b) • 

ac y 
t 

0 0 
CD 

0 0 

• 

0 0 
00 00 

b-d 

➔ - l 0 log E 

2,00 4.00 6,00 

Fig. 3.4 Initial y-error~ 
( 3. 6, 11 , 12b). 
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The results for the easier problem (3.6,11,12b) have been plotted in 

figures 3.3, 3.4. For this problem all x-approximatipns are 0(1) and all 

y-approximations are 0(£) (cf. Theorem 3.2, part (v)). Note however that the 

£-bounded schemes b-d yield significantly more accuracy than scheme a. 

Finally it is worthwile to observe that for the larger £-values, say 

£ E [I0-2,JJ, all 4 schemes yield approximately the same errors. 

4. MODEL CLASS 2 

The second model class we are interested in, and which was also dis

cussed in the previous paper [12], is reviewed in section 4.1. Section 4.2 

deals with a specific example which is used in section 4.3 for a numerical 

illustration. 

4.1. The class of D-stability model equations 

The following class of linear stiff model problems, class S, was pro

posed by van Veldhuizen [11] (cf. (2.2)): 

(4.1.) [ 

a 
• l 11 
X = F(t,£)X = £-

a21 

2 X(t) E C , 
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where 

a) a .. € ( depends smoothly on t € [O,T] and E € (O,e0J. 
iJ -1 

b) F(t,e) = E(t,e)D(t,e)E (t,e), where 

0 l . 
-1 

d1, d2, E and E depend smoothly on t, E and the derivatives from order 

zero up to a sufficiently high order are bounded on [O,T]x (O,e0]. 

Van Veldhuizen used class Sin his D-stability investigations. Though 

presented in a somewhat different setting D-stability may be viewed upon 

as a uniform boundedness property, like e-boundedness. However, it only . 
applies to linear homogeneous problems X = F(t)X. For reasons of presenta-

tion we therefore do not make use of van Veldhuizen's definition which is 

slightly different from ours (see [11,12]). 

As pointed out in [II], a nice feature of model (4.1) is the possibili

ty to define subclasses of -S which describe certain types of couplings be

tween smooth and stiff solution components. Because these couplings may be 

of decisive importance for the performance of a Rosenbrock type method, we 

give a short description of these subclasses. Consider a problem from class 

S. Denote Y(t) = E- 1(t)X(t). Then Y satisfies 

(4.2) Y = [D(t) - C(t)]Y, 

In case C(t) is diagonal on [O,T], the problem from S has been uncoupled by 

the transformation X = EY, i.e., there exists no coupling between smooth 

and transient components. Otherwise we employ 

DEFINITION 4. I. The coupling from the smooth to the transient component, at 

t = t*, is weak if c21 (t*) = O(e). The coupling from the transient to the 

smooth component, at t = t*, is weak if c 12 (t*) = O(e). If a coupling is not 

weak, we call it strong. Wst(Wts) denotes the subclass of S for which on the 

whole time interval c21 (t) = O(e)(c 12 (t) = O(e)). D 



13 

Due to assumptions (4. la,b) the matrix C(t) is at least 0(1) as e: + O. Hence 

problem (4.2) is of type (3.1). By means of Theorem 3.1, and the bounded 

transformation X = EY, it thus follows that all solutions of (4.1) are bound

ed in e: E (O,e:o]. 

THEOREM 4.1. Consider an arbitrary 2-stage Rosenbrock method (1.2) whiah 

evaluates J(t,X) once per integration step. This method is 

(i) e:-bounded on Wt . 

(ii) e:-bounded on W s' iff R(l)(00 ) = O. 
st 

(iii)not e:-bounded on S. 

PROOF. This theorem is a special case of Theorem 3.1 in [11]. D 

THEOREM 4.2. An m-stage Rosenbrock method (1.2) is e:-bounded on S iff at 

each stage J(t,X) is evaluated at the special point (t,X) = (t(j) ,X(j)). 

PROOF. The necessity follows from Theorem 4.1 , part (iii). Recall that 

boundedness of them-stage result implies, by definition, boundedness of 

the preeeding m-1 results. The sufficiency has been proved in [12], Theorem 

3. 1. □ 

These 2 theorems show that if we have a strong coupling from stiff to smooth, 

and vice versa, e:-boundedness cannot be guaranteed if we restrict ourselves 

to one J(t,x)-evaluation per integratior. step. Unfortunately, schemes which 

reevaluate the Jacobian per stage are usually not recommended because of 

their considerable computational overhead. 

So far we did not yet attempt to prove part (i) and (ii) of Theorem 

4.1 for methods (1.2) using more than 2 stages. We do conjecture however 

that these methods are also e:-bounded on Wt, and e:-bounded on W , iff s st 
R(j)( 00 ) = O, j < m. For example, the class consisting of all problems 

. 
(4. 3) X = 

satisfying properties (4. la,b), is a subclass, sa~ S2, of Wst [ 12]. Because 

(4.3) may also be viewed upon as a prototype of the first variational form 
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of model (3. I), part (iv) of Theorem (3. 2) applies. It thus follows that an 

m-stage Rosenbrock method (1.2), using one J(t,X)-evaluation per step, is 

e-bounded on S 2 , iff R(j)(00) = 0 for j < m~ 

Because s2 c wst' class s2 does not describe strong couplings from 

smooth to .transient. This fact may be considered as a shortcoming of equation 

(4.3), and thus also of (3.1), when used as a model. 

4.2. A test example exhibiting only strong couplings 

Consider the problem (see also [6,8,12]) 

(4. 4) [ 

d 1 (t) 

X = E(t) O _: l E-1 (t)X, E(t) = [ cos et 

e d2(t) sin et 

e being constant. Then Y(t) = E- 1(t)X(t) satisfies (cf. (4.2)) 

(4.5) 
y = [ d 1 (t) 

-e 

-sin et ] , 

cos et 

Hence c 12 (t) = -e, c21<t) = e. Consequently, we have to deal with a strong 

coupling from stiff to smooth, and vice versa. It is not difficult to verify 

that for this specific example part (iii) of Theorem 4. I applies. Note that 

equation (4.5) belongs to s2. Let d1 = d2 = -1. Then 

(4.6) [ 

l+eA+ 

Y(t) = 

-ee 

• .t.. c± b" d ~::!: -- l<-1-,,. -l + 1(1-,,. - 1) 2 - 40 2,). wuere are ar itrary_constants an A 2 ~ ✓( ~ 
-1 + + Note that A ~ -e and A ➔ -1 as e ➔ O. Next we set C = 0, C = 1. Then 

(4.7) X(t) • E(t) [ 

-t 
e cos 

e-t sin 

et l 
et 

+ O(e), € ➔ o. 
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We see that solution (4.7) is smooth and, to a great extent, independent 

of the stiffness parameter£. The same remark applies to the first component 

of tbe corresponding solution of (4.5). Its second somponent is 0(£). In 

what follows we shall refer to the X-example and Y-example. 

4.3. Numerical illustration 

We integrated the X-example and Y-example for 8 = 1 and for a set of 

£-values from [l0-8 ,10- 1] with all 4 two-stage formulas (3.14) over the t

interval [0,2TI], using a constant stepsize T = TI/25. Note that for the Y

example the formulas (3.14) are identical. 
10 In figure 4.1 we plotted the value ac = - log(max. abs. error at t = 

2TI) against£, The a-curve and b-curve clearly show the lack of £-bounded

ness of methods a and b (instability for small£). »ethods c and dare£-

ac 
+ 

0 
0 

m 

a-d 

0 
0 d 
~ 

C 

a b 
0 ~ - lOlog E 
0 

~ 

0 
0 

• I 

00 3, 5,00 

Fig. 4.1 - X-example; 

---- Y-example. 

5. THE AUTONOMOUS NOTATION 

7,00 

bounded on s·(see Theorem 4.2). 

They produce approximations which 

are nearly independent of£, Re

call that, for small£, the exact 

solutions share this property. 

Finally, this example nicely 

shows that a simple transforma

tion of the differential equation 

may lead to a qualitatively dif

ferent behaviour of a Rosenbrock 

method. 

Many authors prefer the autonomous notation. It facilitates the anal

ysis of the consistency conditions, while every non-autonomous equation (1.1) 

can be converted to the autonomous form by introducing t as a new dependent 

variable. For example, the Rosenbrock code ROW4A requires the autonomous 
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form [1]. When we rewrite problem (1.1) to the autonomous form the deriva

tive Ft enters into the computation. It is easily seen that the Rosenbrock 

approximation (1.2) then can be defined by the (non-autonomous) scheme 

X(O) = X ' n n 

K(j) = [I-y .-rJ(j) ]-l [F(t (j) X('j)) + y.-rG(j)J j = 0 ( 1 )m-1, n J n n ' n J n - ' 
(5. 1) j-1 

x<j) = X + -r I A K(l) j = 1 (1 )m, n n l=O j ,l n ' 

xn+l = x<m) 
n ' 

where G(j) = G(t(j) X(j)),G(t X) = aF(t X)/at. Furthermore t(j) is now de-
n. n 'n ' ' 'n 

fined by t (J) = t + -r (L O + .•• + A. . 1). All other quantities are defined 
n n J, J,J-

as in scheme (1.2). It is convenient to use notation (5.1) (cf. [5,9]). 

Because we deal with non-autonomous models, the following interesting 

question arises. When we apply (5.1) to the model classes (3.1) and (4.1), 

do we then preserve the boundedness results summarized in the 2 preceding 

sections? For the most interesting results the answer to this question is, 

peculiarly, negative. It is even negative for schemes using more than 1 

Jacobian evaluation per step. This matter will be discussed in section 5.1. 

By way of illustration, we also repeat the experiments presented before. 

Section 5.2 reports an experiment with the automatic code ROW4A. 

5.1. Boundedness results for method 5.1 

THEOREM 5.1. No Rosenbrook method (5.1) is E-aaaurate on aZass (3.1). 

. -1 
PROOF. By counterexampie. Consider the simplified problem y = -E µ(t)y. 

Application of any method (5.1), at a point (t,y), delivers 

(5. 2) 
(1) 

y = y. 
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We see that if (A 10-y0)µ(t)+ AtOYOT ~(t) IO, then y(l) = 0(1) as e + 0. By 

definition, e-accuracy of an m-stage method implies y(l) = O(e). D 

If we apply relation (5.2) repeatedly, we may easily encounter instabil

ity. For example, substituting AlO = y0 (L-stability) and µ(t) = exp(-t/Ty0) 

yields y(l) = y. On the other hand, when using the non-autonomous notation 
(1) -1 -1 

the substitution AlO = y0 delivers IY /yl = l(l+y0T e µ(t)) I < 1 for 

all T > 0 and e E (O,e0J. In other words, the stability of the I-stage scheme 

may be lost by conversion to the autonomous form. Without doubt this conclu

sion also applies tom-stage schemes, m > 1. As we do not discuss stability 

properties we do not pursue this subject further. 

THEOREM 5.2. (i) No method (5.1) is e-bounded on class s2 • Consequently, no 

method (5.1) is e-bound,ed on class Sand class (3.1). 

(ii) Any method (5.1) is e-bounded on the 2 classes of problems (3.1) for 

which, respectively, A= 0 and A,µ are constant. 

(iii) Consider class (3.1). Let the point X = (x,y) occurring in Definition 

(2.1) be such that x = 0(1) and y = O(e). Then any Rosenbrock method (5.1) 

is e-accurate on the whole class (3.1). 

PROOF. The proofs of (ii) - (iii) go along the same lines as the proofs of 

the corresponding parts of Theorem 3.2 (see [12], section 4). The proof of 

part (i) goes by counter-example. It suffices to take m =I.Consider the 

problem (cf. (4.3)) 

(5. 3) 
-] 

y = -e y. 

The I-stage scheme, applied at a point (t,x,y), yields the increment vector 

(5. 4) 

By an appropriate choice of a 12 (t), the first component becomes unbounded 

in e E (O,e0]. This simple observation proves part (i). D 
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ac 
X 

t 0 
c:, 

CD 

0 
c:, . 
00 

0 
0 

• I 

ac 
X 

t 
0 
0 

CD 

0 
0 . 

lOlog £ 

00 2.00 

b 

Fig. 5.1 . Initial x-error, 
·(3.6,11,12a). 
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Autonomous notation 
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~;::;:;;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;~a 

b 

+ - 1010g £ 

0 o 00 2.00 4,00 6,00 

ac 
t 

0 
0 . 
CD 

01 

0 
0 

• I 

Fig. 5. 3 

00 3,0 

Fig. 5.5 

Initial x-error, 
(3.6,Il,12b). 
Autonomous notation 

c-d 

a ➔ - 1010g £ 

5,00 7,00 

X-example. 
Autonomous notation 

ac 
y 

t 
0 
0 

CD 

a 

b 

c-d 

g ➔ - 1010g £ 
•4---..---....-------r----,-..;::;...--, 

0 o OD 

0 
0 

• I 

2,00 4,00 5.00 

ac 
y 

Fig. 5.2 Initial y-error, 
(3.6,ll,12a). 
Autonomous notation 

t 

0 
0 ➔ - 1010g £ 
•4---..---....-----.---r----.----, 

0 0 DO 2.00 

Fig. 5 .4 

4,00 6,00 

Initial y-error, 
( 3 • 6 , 1 I , I 2b) • 
Autonomous notation 

By way of illustration we repeated 

the afore-mentioned experiments 

with the 4 two-stage schemes (3.14), 

but now using the autonomous form. 

Figures 5.1-5.4 and 5.5 correspond 

with figures 3.1-3.4 and 3.5, re-

' spectively. Note that all 4 schemes 

now behave more or less equal. 
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5.2. An experiment with ROW4A 

ROW4A is an automatic Rosenbrock code based on the algorithm GRK4A 

published in [4]. Gottwald and Wanner [I] provided it with a so-called back

step strategy to obtain a more reliable stepsize and local error control. 

The underlying integration method is A-stable and of order 4. Its increment 

vector~ are of the (more general) form (cf. (1.2)) 

(5.5) 

and assume the autonomous notation ((5.5) can also be rewritten like formula 

(5. I), see [SJ). The method is note-bounded on class (3.1) and class S. 
It uses 3 F(X)-evaluations and I J(X)-evaluation per step. We implemented 

ROW4A on a CDC Cyber 750 in single precision (14 decimals). Our version com

putes J from the analytic expression. n 
Our aim of reporting an experiment with an automatic code, like ROW4A, 

is to illustrate how the lack of e-boundedness shows up in practice. When 

this property is missing, one may encounter unusually large local errors, 

even when the solution to be integrated is smooth. A reliable code should 

detect these errors and should, at the cost of the number of integration 

steps of course, deliver a result of the desired accuracy (see also [II], 

section 5). In view of this, ROW4A seems to suit our purpose as it has been 

equipped with the back-step strategy. 

The experiment consists of the automatic integration of the X-example 

and Y-example of section (4.3), over the interval [0,2~], for a set of e-
-7 -1 values between 10 and 10 • The tolerance parameter TOL of ROW4A and the 

initial stepsize were in all integrations equal to I0-3 and I0-2 , respec

tively. Figure 5.6 shows results of the experiment. 

The plots clearly show the lack of e-boundedness of ROW4A when applied 

to the X-example. Though the exact solution is smooth, and nearly indepen

dent of£, the numbers IPAS and I'REP strongly increase as£ decreases. As 

observed above, such a behaviour was to be expected. However, more dramatic 

is that the code looses its accuracy. The local error control clearly fails 

on this example. This experiment confirms that it can be very dangerous to 

rely on local error control mechanisms. 
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ac 0 
0 

t 0 
0 Y-example 

l) 
...... • ········ 

v 

0 

ctl 
CJ 
rJ) 

CJ 
•.-l 

0 s 
..c: 0 . 

IPAS ••• •• .... •· ... ·· .... •··· .. .. .... .... 
1010g 

0 
o;---,---r--.-----,_.;;:=-,o::::---, 

E: ~ 
•,-l 

H 
ctl 

c,J 
•·•···· ··········· ·········· ........ •• IREP 

.... l 00 3.00 tlO 

0 
0 

• I 

0 ...... 
0 .... 
0 -+--------r----.------.-~ 
0 

1.00 3.00 s.oo 7,00 

Fig. 5.6 Results for ROW4A. In the right figure we plotted IPAS = the 
number of accepted steps and IREP = the number of repeated 
steps needed by ROW4A on the X-examp1e. For the Y-example 
these numbers are 16 and 0, respectively, and do not change 
with£. 

6. SOME FINAL COMMENTS 

The question arises how to employ our experiences in order to improve 

the Rosenbrock methods when applied to real life problems. Let us first con

sider methods based on the non-autonomous notation (1.1). For this type of 

Rosenbrocks methods our results strongly suggest to take care of £-bounded

ness and £-accuracy when dealing with problems where the stiffness origi

nates from t-dependent parts in the equation. However, if one wishes to con

struct such a method, one has to face an additional difficulty, i.e., the 

solution of extra order conditions due to the presence of derivatives tot. 

To solve these extra conditions, for a given order, it may well be necessary 

to add extra stages. From this point of view the autonomous notation should 

be preferred. Unfortunately, for the type of problems mentioned above the 

conversion to the autonomous form may lead to a significant loss in accu

racy, as shown in our experiments. This circumstance makes it difficult to 

decide which approach should be preferred. In the author's opinion, an ac

countable decision can only be made if one has a typical problem class at 

hand. In this connection we should also remark that Kaps and Rentrop [4] 

and Gottwald and Wanner [1] report promising results with their 'autonomous' 

codes GRK4A and ROW4A. Gottwald and Wanner [2] even show that on a set of 4 
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real life problems from chemical kinetics and physiology, their code ROW4A 

is more efficient and more reliable than a popular backward differentiation 

one. 
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