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On the practical value of the notion of BN-stability*) 

by 

J.G. Verwer 

ABSTRACT 

The oldest concept of unconditional stability of numerical integration 

methods for -0rdinary differential systems is that of A-stability. This 

concept is related to linear systems having constant coefficients and has 

been introduced by Dahlquist in 1963. More recently, since another contribu

tion of Dahlquist in 1975, there has been much interest in unconditional 

stability properties of numerical integration methods when applied to non

linear dissipative systems (G-stability, BN-stability, A-contractivity). 

Various classes of implicit Runge-Kutta methods have already been shown to 

be BN-stable. However, contrary to the property of A-stability, when 

implementing such a method for practical use this unconditional stability 

property may be lost. The present note clarifies this for a class of 

diagonally implicit methods and shows at the same time that Rosenbrock's 

method is not BN-stable. 

KEY WORDS & PHRASES: NumeriaaZ anaZysis, ImpZicit Runge-Kutta methods, 

Stiff probZems, NonZinear stabiZity 

*) This report will be submitted for publication elsewhere. 



1 • INTRODUCTION 

The s-stage implicit Runge-Kutta (IRK) method for numerically solving 

the initial value problem for systems of ordinary differential equations 

(1. 1) y' = f (t,y), N N 
f: ]Rx JR-+ JR, 

is given by 

(1.2) 

s 
k. 

l. 
= .f(t +c .• ,y + l a .. k.), 

n 1 n . 1 l.J J 
J= 

s 

Yn+l = yn + l 
i=l 

b.k .• 
1 l. 

i = 1, ••• ,s, 

The vector y denotes the numerical approximation to the exact solution n 
y = y(t) at t = t and T = t +l-t denotes the stepsize. We shall consider n n n 
systems (I.I) which satisfy the dissipativity condition 

(1. 3) <f(t,u)-f(t,v),u-v> s 0, all t E JR, all u, v E E.N, 

N where <.,. > denotes an inner product on JR • A typical consequence of this 

inequality is that any two solutions, say y and y, behave contractive, i.e., 

lly(t2)-y(t2)11 s lly(t 1)-y(t 1)11 for all t 2 ~ t 1• Here II ,II denotes the inner 

product norm. In what follows it is convenient to introduce C as the class 

of all (nonlinear) problems (I.I) satisfying (1.3). 

Burrage and Butcher [3] now call the IRK method BN-stable if for all 

members from Cit holds that 

(1.4) lly 1-y 1llslly-yll, n+ n+ n n 
~ N all t E R, all y ,y E E. , all • > 0. n n n 

Thus BN-stability means unaonditionaZ numerical contractivity on C. Since 

the first papers of Dahlquist and Butcher on this topic [2,5], contrac

tivity has received a lot of attention in the numerical literature (see e.g. 

[4,6,8,9,11,16] and the references cited therein). In these papers one 

usually concentrates on the implicit formulation (1.2), that is, in the 

investigations one assumes that the approximations {y} satisfy (1.2) n 
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exactly. However, in actual computation (1.2) has to be combined with some 

sort of Newton process in order to solve the implicit relations. Because 

BN-stability was introduced for nonZinear stiff problems it makes sense to 

question whether this property can be preserved when impZementing a BN-stable 

method for practical use. A closely related question is of course: given 

some BN-stable IRK method, is it then possible to solve the implicit rela

tions numerically on the whole class C without restrictions on T? It is to 

be feared, and for many certainly not surprising, that the answer to this 

question will be negative. 

In the author's opinion these aspects deserve more attention in the 

literature in order to find out under what circumstances unconditional non

linear stability can be realized in practice. To support this view the 

present note discusses a standard implementation of diagonally implicit 

(DIRK) methods having equal diagonal elements a ..• Such methods are more 
l.l. 

easier to implement than fully implicit ones (see e.g. [1,12]). We show 

that this implementation is not unconditionally stable on a subclass of C 
consisting of Zinear problems only, i.e., the implementation is not 

BN-stable. An immediate consequence of this result is that Rosenbrock's 

method is not BN-stable. This fact has been pointed out earlier in [16]. 

A negative result on nonlinear stability of the most simple Rosenbrock 

scheme has already been given in 1968 by Sandberg and Shichman [15]. 

2. DIRK METHODS 

The class of DIRK methods we consider is defined by 

(2. 1) 

i-1 
k.· = Tf(t +c.T,Y + l a .. k.+ak.), 

1. n 1. . n j = 1 l.J J 1. 

s 

Yn+l = Yn + .l 
1.= 1 

b .k •• 
l. l. 

a> O, i = 1, ••• ,s, 

Two examples of such BN-stable DIRK methods have been independently given in 

[3] and [4]; see also [7] and [16]: 



A A 

+· (2.2) 1-A l-2A A order is equal to 3, A (3+/3) /6. = 
l I 
2 2 

(l+A)/2 (l+A)/2 
l -A/2 (l+A)/2 order is equal to 4, 2 

(l-A)/2 l+A -l-2A ( l+A) /2 2 1T 

(2. 3) A = /3" cos 18. 
l/(6A2) 1-1/(3:\2) l/(6A2) 

Because a. . ,= 0 for j > i, the increment vectors k. can be computed one 
l.J ]. 

after another. In actual computation this is done by means of the modified 

Newton process. Exploiting the equality a .. = a for all i, the usual 
1.1. 

approach in this solution process is to spend at most one af/ay-evaluation, 

plus corresponding LU-decomposition, per integration step (see [I ,12] for 

details). In practice one often integrates with a fixed Jacobian matrix 

over several steps. We now assume that we perform precisely one evaluation 

of J(t,y) = af(t,y)/ay per step at the point (t,y) = (t +c 1T,Y ), and that 
n n 

per stages. modified Newton iterations are performed. We thus proceed with 
l. 

the imp fomented DIRK method 
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(2. 4) 
i- 1 

Tf(t +c.T,Y + l n 1. n . 1 J= 

(sj) (m-1) 
a .. k. +ak. ) , 

l.J J l. 
1. = 1 , . • • , s and m = 1 , • • • , s . , 

l. 

s (si) 
Yn+l=yn+ l b.k. ' 

i= 1 1. 1. 

where J = J(t +c 1T,Y) and the starting vectors k~O) are still free to 
n n n . 1. 

choose. In the next section we shall show that (2.4) is not unconditionally 

contractive on a subclass of C consisting of linear problems only, i.e., 

implementation (2.4) is not BN-stable. 

In this connection it is worth noting that for the linear problem 

(2.5) y' = Jy + r(t), J constant, 

schemes (2. 1) and (2.4) are identical. This implies that implementation 



(2.4) is A-stable if the implicit scheme itself is A-stable. 

Observe that when we have to deal with unequal diagonal elements a .. , 
1.1. 

s say, we still have to performs matrix factorizations. This is the reason 

why in practice the equality a .. = a is preferred. Finally, for the sake of 
1.1. 

completeness, note that in a computer implementation the matrix expression 
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(1-z)-lz is replaced by (1-z)- 1-1. Herewith one saves a matrix vector opera

tion. 

3. THE CLASS SLC 

We define SLC as the class of all linear problems 

(3. 1) 
-1 

y' = s F(t,s)y, 

where, for all t E E. and s E (O,s0 J, F(t,s) is a synnnetric nonpositive 

definite NxN matrix. Furthermore, it is assumed that Fis continuous and 

bounded on E. x (O,s0 J. Then it is inunediate that, given a point 
N (t0 ,y0 ) E E. x E. , for all £ E (O,s0 J equation (3. 1) has a unique solution 

y(t,s) on E. such that y(t0 ,s) = Yo• 

Because F(t,s) is synnnetric nonpositive definite, any two solutions 

behave contractive, i.e., SLC c C. By counterexample we shall show that 

the implemented DIRK method (2.4) is not unconditionally contractive on 

SLC, i.. e., not BN-stable. Observe that class SLC bears a close resemblance 

to the problem class studied by Van Veldhuizen [17] (see also [18]). Also 

note that on SLC the increment vectors k. defined by (2.1) always exist 
1. 

(a> 0). 

When applied to (3. I), method (2.4) yields 

(3.2) 

where 

(3. 3) 

(m- l) - l i-1 (s j) 
= (P+Q.)k. +a Q.(y + I a .. k. ), i = 

i i 1. n j=l 1.J J 

Yn+l = y + 
n 

s 

I 
i= 1 

(s.) 
1. 

b .k. , 
l. l. 

m= 

-1 -1 -1 p = -(I-Tas F(tn+c 1T,s)) Ta£ F(tn+c 1T,s), 

-1 -1 -1 Q. = (I-Ta£ F(t +clT,£)) Ta£ F(t +c.T,£). 
1. n n 1. 

1 , •.• , s and 

1, ••• ,s., 
1. 
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Note that P = -Q1• This implies that k~m) = -a-1Pyn for all m, i.e., the 

vector k 1 defined by (2.1) is obtained after precisely one Newton iteration, 

which is not true for the remaining increment vectors unless Fis constant. 

Equation (3.2) can be abbreviated to the form 

(3.4) y +l = G(t ,,,e)y, n n n 

G being a complicated rational matrix expression. The idea is now to con

struct examples from class SLC for which (cf. [17,18]) 

(3.5) IIG(t ,,,e)II + 00 as e + 0 for any fixed T. 
n 

If this occurs, the contractivity condition (1.4) is violated. Using the 

terminology of Van Veldhuizen, we can also say that method (2.4) is not 

D(SLC)-stable. As shown below it is not difficult to find appropriate 

examples: 

COUNTEREXAMPLE 1. Definition (3.1) does not exclude matrices F(t,e) which 

may become zero for some finite number oft-values. Now suppose that this 

is the case for F(tn+c 1,,e), all e E (O,e0J. Further suppose thats~ 2 and 

that for at least one integer i E {2, ••• ,s} we have that F(t +c.,,e) # n 1 

F(tn+c 1,,e), all e E (O,e0J. For such a stage the modified Newton process 

then degenerates to the simple Jacobi iteration process. This implies that 

II k ~j) II + 00 if e + 0, irrespective the number of iterations, i.e. , it is 
1 

always possible to let IIG(t ,,,e)II + 00 as e + 0. The possibility of zero n 
partial derivatives has also been pointed out by Vanselow [16] in an 

investigation on Rosenbrock methods. ■ 

COUNTEREXAMPLE 2. The previous example suggests to remove all members from 

C and SLC whose partial derivatives af/ay take zero values. However, it is 

then still possible to find a counterexample to BN-stability of implementa

tion (2.4). Let us again consider scheme (3.2). It is immediate that, for 

every T > O, Pis bounded in e E (O,e0J on the whole class SLC. Unfortunate

ly, this need not to be true for the matrices Q., even if we exclude zero 
1 

partial derivatives. To see this consider the problem 
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(3.6) 
-1 T y' = E(t)diag(d1 (t),s d2(t))E (t)y, 

where 

(3. 7) [
cos VT 

E (t) = 
sin vt 

-sin 

cos 
vtl , v constant, 
Vt 

and where d 1 ,d2: JR+ JR are strictly negative, bounded and continuous on JR. 

This example was taken from Kreiss [10] and has also been studied in [14, 

18,19]. It certainly belongs to SLC. We now select a stage for which ci:fc 1 
and take, for example, tn+c 1T = 0. The elements of the 2x2 matrix Qi are 

then given by 

(Qi) I 1 
2 -1 2 = Ta[d 1(t)cos (vt)+s d2(t)sin (vt)]/(l-Tad 1(0)), 

' 

(Qi) 1,2 
-1 = Ta[(d 1(t)-s d2(t))sin(vt)cos(vt)]/(l-Tad1(0)), 

(3.8) 

(Qi)2 1 
-1 -1 

= Ta[(d 1(t)-s d2(t))sin(vt)cos(vt)]/(l-Tas d2(0)), 
' 

(Qi)2 2 
2 -1 2 -1 = Ta[d 1(t)sin (vt)+s d2 (t)cos (vt)J/(1-Tas d2(0)), 

' 

where t = t +c.T. We see that, by an appropriate choice of v, the first-row n i 

elements ar1~ bot bounded in E. If we take si, the number of modified Newton 

iterations, finite, the increment vector k~si)(s) is then also unbounded in 
l. 

s. This means that it is possible to let IIG(t ,T,s)II + 00 ass+ 0 for any 
n 

fixed T. Now suppose that we do not prescribe the number of modified Newton 

iterations beforehand; then we have to show that it is possible to let 

llk~m)II + 00 as m + 00 for at least one value of sand T, i.e., divergence to 
l. 

infinity. Divergence to infinity appears if the spectral radius of P+Q. is 
l. 

larger than 1. Because the first-row elements of P + Q. are unbounded in 
l. 

EE (O,s0], contrary to the second-row elements, we can make this spectral 

radius as large as we wish. This observation completes our second counter

example. ■ 

If we sets.= 1 and k~O) = 0 (an appropriate initial vector) in (2.4), 
l. l. 

there results 



i-1 
= Tf(t +c.T,Y + l a .. k~ 1)), 

n i n. 1 iJ J 
J= 

s 

Yn+1 = Yn + l 
i=1 

b.k~ 1). 
i i 

i = 1, .•• ,s, 

In literature this scheme is called a Rosenbrock scheme. It differs from 

the original one [13] in two ways. That scheme has been defined for auto

nomous problems and allows, in principle, a new Jacobian evaluation at each 

stage while also the parameter a may depend on the index i (for reasons of 

computational overhead this possibility is ruled out in practice). 
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A counterexample to E-stability of such a scheme can be constructed by means 

of a one dimensional non-increasing function f(y) [16]. Such a function is 

dissipative. The idea is to selects y-values such that f becomes zero. The 
y 

scheme then degenerates to an explicit RK scheme (see also [15] for another 

instructive example). 

4. FINAL REMARKS 

Nonlinear stability has become an important subject in the literature 

on numerical methods for stiff nonlinear problems. Various classes of IRK 

methods have already been shown to be EN-stable, e.g. the DIRK-methods (2.2) 

and (2.3). A difficulty arises when implementing a EN-stable method on a 

computer. Contrary to the property of A-stability, the property of EN-sta

bility can in general not be proven for an implemented IRK method. This 

makes it difficult to decide whether in practice a EN-stable scheme should 

be implemented instead of an A-stable one. In order to exploit the nice 

theoretical results on unconditional nonlinear stability for practical use, 

these aspects should therefore be given more attention. 

In the present paper we explained the situation for an interesting 

class of DIRK methods. We still wish to emphasize that, for a given EN

stable DIRK method, the implementation (2.4) can be modified to become 

unconditionally stable on SLC by allowing a new Jacobian evaluation per 

stage. On SL.C the implementation then can be made identical to the corre

sponding implicit scheme. However, in view of the large computational over

head, we do consider such a modification as being not realistic. Therefore 

it makes sense to study implementation (2.4) when applied to class SLC. 
Finally, if one still wishes to consider implementations allowing a new 
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Jacobian per stage, or even a new Jacobian per Newton iteration, the one

dimensional dissipative functions discussed in [15,16] can probably be used 

to construct counterexamples to BN-stability. 
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