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The construction of an accurate lower bound for the real parts of the eigen

values of an M-matrix *) 

by 

**) 
Pieter P.N. de Groen 

ABSTRACT 

Let A b,e an M-matrix, i.e. A is non-singular, real, irreducible and 

weakly diagonally domainant and has positive diagonal and non-positive off

diagonal elements. Via the graph of A we construct a vector W such that AW 

is positive. This yields a lower bound of the spectrum, which is optimal in 

certain problems. 
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1 • INTRODUCTION 

In this note we shall derive a lower bound for the real parts of the 

eigenvalues of a real matrix, which is invertible, irreducible and weakly 

diagonally dominant with positive diagonal elements and non-positive off

diagonal elements. Such a matrix is usual~y called an M-matrix, cf. [l, ch. 

6]. 

If A is such a matrix of dimension n x n (n> 1), then its matrix ele

ments satisfy 

(1) a .. ~ o, i,j = l, ... ,n with i 'F j; 
1.J 

(2) n 0 and n o, i 1 ••• n; r. := E. 1 a .. ~ E. 1 a •. ~ = 
1. J= l.J J= J 1. 

(3) 3k: rk 'F O; 

(4) Vi 3j 'F i: a .. 'F O. 1.J 

We note that the third condition is equivalent to the invertability of A. 

The problem arose in a singularly perturbed boundary value problem, in 

which we could reduce the approximation problem to a finite dimensional sub

space by a Galerkin method, cf. [2,3]. In this finite dimensional subspace 

we had to find a lower bound for the bilinear form xTAx in which A satisfies 

the conditions stated above and whose non-zero row-excesses and non-zero 

off-diagonal matrix elements are of the form ±exp(pij/£). By the method 

which we shall describe here, we were able to derive a lower bound which is 

asymptotically (for£+ +O) of optimal order. 

Without loss of generality we may assume that A is synnnetric. If A is 

not synnnetric, its eigenvalues are contained in the numerical range 

Since A is real we have AT= * A and 

* l * * Rex Ax= 2 x (A +A)x. 

Hence, a lower bound for the smallest eigenvalue of the synnnetric part of A 

is also a lower bound for A itself. 
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2. THE CONSTRUCTION OF A LOWER BOUND 

We shall construct a positive vector W, such that AW is positive too, 

and derive from this vector the lower bound; a positive vector is a vector 

with positive components. The method is analogous to barrier function tech

niques for elliptic differential equations of second order. 

Let G be the graph of the matrix A, which has the vertices g1, ••• ,gn. 

The vertices g. and g. are connected by an edge if£ a •• ~ O. We shall' call 
1 J 1J 

gk a boundary vertex if the sum of the k-th row has a positive excess, i.e. 

if rk > O. 

We shall call g. and g. neighbours of each other, if they are connected 
1 J 

by an edge. We shall devote by v. the valency or number of neighbours of the 
J 

vertex g .• Since A is irreducible, its graph G is connected. 
J 

We define Fas the class of all spanning rooted trees in G, whose roots 

are a boundary vertex; we note that F contains as many copies of a spanning 

tree in G, as there are boundary vertices. For a given rooted tree T €Fall 

vertices located on the path in T from the root to the vertex g. are called 
1 

the ascendants of g. in T, and all vertices for which g. is an ascendant in 
1 1 

Tare called the descendants of g. in T. The ascendant neighbour is called 
1 

the predecessor and a descendent neighbour is called a successor in T. 

For a given rooted tree T € F we define recursively the functions wT 

and Yr on its vertices by: 

(1) if 8k is the root of T, then 

(2) if g. is a successor of g. in T, then 
J 1 

We define the vectors Wand r in lR.n in such a way, that the pair of com

ponents (Wk,rk) is equal to the pair (wT(k),yT(k)) for which wT(k) takes its 

minimal value if T ranges over the class F. The k-th component of AW satisfies 



3 

the equation 

Let TE F be such that Wk= wT(k). If~ is not the root of T, then it has 

a predecessor in T, say g. Since W is minimal, we have: W :::; wT(p). For a p p p 
neighbour gs of gk in G, which is not the predecessor of gk in T, we have 

the following possibilities: 

(1) gs is a successor of gk in T; hence, the minimality of W implies: 

w :::; wT(s). s 

(2) gs is an ascendant of gk in T, hence 

(3) gs is n1ei ther successor nor ascendant of gk; then another rooted tree 

t E F exists, which has the same root as T has, in which the path from 

the root to gk is the same as in T, and in which gs is a successor of 

gk. Hence 

Altogether this implies 

We see that both Wand AW are positive vectors. 

THEOREM. The constant A, defined by 

is a lower bound for the smallest eigenvalue of A. 

PROOF. Assum1e, that an eigenvector x exists with Ax = >..x and A < A; x has at 

least one positive component, otherwise we take -x instead. 
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We consider the vector tW-x, in which t is chosen such that tW. -x. ~ O, 
1 1 

Vi, and tWk - ~ = 0 for some k. By the assumption A < A this vector satis-

fies the inequality 

On the other hand, tWk - ~ = 0 and the non-positivity of the off-diagonal 

elements of A imply: 

(A(tW-x))k =la. .(tW.-x.) < O. 
j kJ J J 

Hence the assumption A< A is false. D 

3. OPTIMALITY OF THE LOWER BOUND 

In the case where the non-zero row-excesses and the non-zero off

diagonal elements of the matrix A are exponentials of the form ±exp(p •• /E), 
1J 

the lower bound is asymptotically of the same order for E + 0 as the smallest 

eigenvalue is. 

Since the smallest eigenvalue Al is equal to the minimum of the numeri

cal range of A, 

we find 

where Wis the positive vector constructed in the previous section. It is 

easily seen that WTAW is of the order of the largest component of Wand that 

WTW is of the order of the square of this component, hence WTAW/WTW is of 

the same order as A is and Al is squeezed in between. 

This optimality remains true if A is not synnnetric, since the smallest 

eigenvalue of A is real and the associated eigenvector has positive compon

ents, cf. [4, ch. 13]. 
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The algorithm presented here for computation of a lower bound, may not 

look very practical, since the number of trees on G can be very large. There

fore, we remark that every tree in G also yields a (possibly smaller) lower 

bound, namely m~ yT(k)/wT(k). 

Moreover, in the case where the matrix elements are exponentials, as 

stated above, it is relatively easy to find the asymptotic order of A as fol

lows. Augment the graph G with as many external vertices as there are bound

ary vertices (or non-zero row-excesses), and connect to each boundary vertex 

exactly one external vertex. Denote the external vertices by gn+1, ••• ,gn+m 

and denote the augmented graph by G. Assign to the edge between g. and g. 
]. J 

the value of la .• l if g. and g. are in G and assign to the edge between the 
1.J ]. J 

boundary element~ and the external element connected with it the value of 

rk. Now we skip from G the edge with smallest value and repeat this skipping 

as long as in the resulting graph there remains from each vertex at least 

one path to an external vertex. The minimum value of all remaining edges is 

of the same order (for E + 0) as A is. 
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