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Application of the Osher-Engquist difference scheme and the full multi-grid 

method to a two dimensional nonlinear elliptic model equation*) 

by 

E.J. van Asselt 

ABSTRACT 

We consider a nonlinear boundary value problem in two dimensions. For 

the discretization of this boundary value problem the Osher·-Engquist difference 

scheme is used and the discrete equations are solved by a full multi-grid 

method (FMGM). In the FMGM a coarse to fine sequence of grids with uniform 

meshes is applied. 

The result obtained on a coarser grid serves as initial approximation 

to the solution on the finer grid. 

On each grid the discrete equations are solved by Newton iteration. 

The Newton equations are approximately solved by the iterative use of a 

linear multi-level algorithm. 

Numerical results are given and comparisons with the method of time 

steps show that the multi-grid approach is far more efficient than the 

method with explicit time steps. 

KEY WORDS & PHRASES: Osher-Engquist difference scheme, multi-grid method, 

incomplete LU-relaxation 

*) This report will be submitted for publication elsewhere. 
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1 • THE DISCRETIZATION 

(1. 1) 

Let n be the unit square in JR.2 : n = {(x,y)IO~x~l,O~y~l}. 

Consider the boundary value problem: 

au a (u) g(u) = 0 2 ay 

u(x,y) = h(x,y) on on. 

For the discretization of this problem we use the one sided Osher-Engquist 

difference scheme (cf. OSHER [5]). 

size 

(1. 2) 

with 

Let Gk be a uniform N1 x N2 grid ((N1-I)(N2-t) inner points) with mesh 

~ = (hkl, hkz). 
On Gk the discrete equation reads: 

El £2 
- 2 (u.+l . - 2u .. + u. 1 . ) + - 2 (u .. 1 - 2u .. + u .. 1) 
h 1. ,J 1.,J 1.- ,J h 1.,J+ 1.,J 1.,J-

l 2 

1 - -h [ /J. f _(u .. ) + /J. f +(u .. )] 
J X + } 1.,J X - J 1.,J 

1 - -h [ /J. f (u .. ) + /J. fz+Cu .. )] 
2 y + 2- 1.,J y - 1.,J 

- g(u. . ) 
1.,J 

f +Cu) = m 

f _(u) = m 

u 

I 
u 

f 

+ 
a (s)ds, m 

+ a (s) = max(O,a (s)), m m 

a-(s)ds, 
m 

a-(s) = min(O,a (s)), m = 1,2, 
m m 
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/j. 
y + u .. = 

l., J 

/j. u .. = 
y - l.,J 

u .. I l.,J+ 
- u .. , 

l.,J 

u. . - u. . I • 
l.,J l.,J-

2. THE FULL MULTI-GRID METHOD 

Equation (1.2) can be efficiently solved by the full multi-grid method 

(FMGM) in the following way. 

In the FMGM a coarse to fine sequence of grids is used: GO,G1 ••• ,GN. 

On each grid Gk we have the discrete nonlinear problem (1.2) which is solved 

by Newton iteration. 

On the coarsest grid GO, the Newton-equations are solved directly by 

Gaussian-elimination with partial pivoting. If the Newton process has suffi­

ciently converged the approximating solution on GO is interpolated to G1 
by linear interpolation and corrected on the boundary. The result serves 

as initial approximation to the solution process on G1• 

On Gk, k = 1,2, ••• ,N, we apply also Newton iteration, but now the linear 

equations are approximately solved by the iterative use of the CS-multi-grid­

algorithm with a fixed strategy (cf. BRANDT [I], HACKBUSCH [2]). 

The smoothing step consists of Incomplete-LU relaxation (ILU) (cf. 

HEMKER [3]). In fact we applied a more up to date version of the ILU­

relaxation which uses 7 diagonals in the decomposed matrix (HEMKER, to be 

published). 

The restriction R in the multi-grid algorithm is the adjoint of the 

linear interpolation matrix, and linear interpolation is used as the 

prolongation. 

On the lowest level the correction equations are always solved directly 

by Gaussian-elimination. 

In coarse-grid corrections each coarse grid operator is the last 

Jacobian of the Newton process before a next finer grid was introduced in 



the full multi-grid method. 

3. NUMERICAL RESULTS OF THE APPLICATION OF FMGM FOR e/h = 0(1) 

(3. 1) 

Consider the following problem: 

2 2 
eAu - (~ )x - (~ )y - u = O, on the unit square 

{(x,y)IO~x~t, O~y~l} with boundary conditions 

{-:, O~y<½ 
u(O,y) = ½~y~t 2, 

I 
l O~y<½ ?. , 

u(t ,y) = 1-l l~y~t I. , 

I-½, O~x<½ 
u(x,O) = 1. ½, ½~x~t 

{ ½, O~x<½ 
u(x, t) = -l, l~x~t 

G.(i=O,t, ••• ,4) are uniform grids with mesh-sizes 
1. 

£ = 1.0. 

(Withe= 10-6, h = 0.1, this problem was suggested to us bys. Osher). 

On each grid the discretized equation reads: 

3 
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(3.2) 

with 

(3.3) 

E(u. I . + u. I . - 4u .. + u .. I + u .. I) 1.+ ,J 1.- ,J l.,J l.,J+ l.,J-

- h(f (u. 1 .) - 2f (u .. ) + 2£ (u .. ) 
- 1.+ ,J - l.,J + l.,J 

-f+ ( u. I . ) + f ( u. . + I ) - f ( u. . I ) ) 1.- ,J - 1.,J + 1.,J-

2 
- h u .. 

l.J 

f (u) = 

f+ (u) = 

2 u 
f 2 
1 0 

2 
u 

{ 2 
0 

= o, 

u < 0 

u 2: 0 

u > 0 . 
u s: 0 

In each Newton iteration steps cycles of the multi-grid iteration were 

applied and on each grid the Newton-process 1.s terminated when 

For the initial approximation on G0 we took the grid function u0 which 

satisfies the boundary conditions, and is zero on the inner points of 

In our numerical experiments with the multi-grid method we have used 

different values for the following parameters: 

p: number of relaxation steps before the coarse grid correction. 

a: number of coarse-grid correction steps. 

q: number of relaxation steps after the coarse grid correction. 

(cf. HEMKER [4]). 

Table (3.3) shows the number of Newton iterations on the grids G0 , ••• ,G4 
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for different values of s,p,a and q. 

The last column shows the effect of parameter-continuation with decreas­

ing values of the parameter E (cf. POLAK, WACHTERS, BEELEN, HEMKER [6], 

WACHER [7]). 

G. h E 
s= 1, p= 1 

E 
s=2,p=l 

E 
s=2,p=l 

£ 
s=2,p=l 

l. a=2,q=O a=2,q=O a=O,q=O a=O,q=O 

GO 0.5 1.0 2 1.0 2 1.0 2 10.0 2 

GI 0.25 1.0 3 1.0 3 1.0 3 8.0 3 

G2 o. 125 1.0 4 1.0 3 1.0 3 6.0 4 

G3 0.0625 1.0 4 1.0 3 1.0 5 3.0 4 

G4 J.03125 1.0 4 1.0 3 1.0 8 1.0 5 

Table (3.3). The number of Newton iterations to obtain an approximate 

solution with an accuracy of 0.5.10-3• 

We note that for a real multi-grid algorithm (a>O) the number of iteration 

steps is independent of the meshwidth, whereas it increases with h + O for 

a= O. 

If we use Gauss-Seidel relaxation instead of ILU relaxation for the 

inner points we get for E = 1.0, s = 2, p = 1, a= 2, q = 0 the results in 

table (3.4). 

Grids GO GI G2 G3 G4 

Meshwidth h 0.5 0.25 o. 125 0.0625 0.03125 

Newtoniterations 2 ?: _ 10 ?: 10 ?: 10 ?: 10 

Table (3.4) The number of Newton iterations by Gauss-Seidel 

relaxation. 
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4. NUMERICAL RESULTS OF THE APPLICATION OF FMGM FOR SMALL £/h 

For £/h small we obtain the following results for problem 3.1. 

We take£= 10-6• 

I G. h £ 
s= l, p= 1 s=l, p= 1 

1 cr=O,q=O cr=2,q=O 

GO 0.5 10-6 2 2 

GI 0.25 10-6 5 5 

G2 o. 125 10-61 6 6 

G3 0.0625 10-6 7 7 

G4 0.03125 j 10-6 8 8 

Table (4.1) The number of Newton-iterations to obtain an 

approximate solution with an accuracy of 0.5.10-3• 

On another mesh-sequence we obtain similar results. 

r---- -....-

s=l ,p=l s=l ,p=l 
H. h 

1 
£ cr=O,q=O cr=2,q=O 

HO 0.2 10-6 6 6 

HI 0. l 10-6 6 6 

H2 0.05 10-6 7 

I 
7 

H3 0.025 10-6 8 8 

Table (4.2) The number of Newton-iterations to obtain an 

approximate solution with an accuracy of 0.5.10-3• 



We notice that, with this value of the parameter£, the problem is of 

singular perturbation type. 

In its solution boundary-layers and corner-layers appear. This makes 

the problem hard for numerical solution, because these layers cannot be 

represented on coarse grids. 

This may explain the - probably inevitable - increase of the number 

of Newton iterations on the finer grids. 
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In order to give an impression of the solution of our singular pertur­

bation problem we give the solution on H1 in table (4.3). 

o.5oo o.5oo o.5oo o.5oo o.5oo -o.5oo -o.5oo -o.5oo ~o.500 -o.5oo -o.5oo 
0.500 0.406 0.311 0.127 -0.231 -0.412 -0.414 -0.419 -0.429 -0.452 -0.500 
0.500 0.402 0.300 0.122 -0.226 -0.330 -0.338 -0.354 -0.382 -0.429 -0.500 
0.500 0.392 0.279 0.126 -0.182 -0.259 -0.277 -0.308 -0.354 -0.419 -0.500 
0.500 0.368 0.242 0.108 -0.133 -0.201 -0.232 -0.277 -0.338 -0.414 -0.500 
0.500 0.307 0.173 0.063 -0.097 -0.157 -0.201 -0.259 -0.330 -0.412 -0.500 

-0.500 -0.000 -0.001 -0.015 -0.059 -0.097 -0.133 -0.182 -0.226 -0.231 0.500 
-0.500 -0.000 -0.000 -0.002 -0.015 0.063 0.108 0.126 0.122 0.127 0.500 
-0.500 -0.000 -0.000 -0.000 -0.001 0.173 0.242 0.279 0.300 0.311 0.500 
-0.500 -0.000 -0.000 -0.000 -0.000 0.307 0.368 0.392 0.402 0.406 0.500 
-0.500 -0.500 -0.500 -0.500 -0.500 0.500 0.500 0.500 0.500 0.500 0.500 

Table (4.3) The solution of problem (3.1) on H1; £ = 10-6• 

5. THE 1:1ETHOD OF TIME STEPS 

This method is based on convergence to the steady state soiution of 

(5. 1) 
a2 a2 au au au 

£1 - u + £ - u - a (u) - - a 2 (u) g(u) = ~t 
ax2 2 ay2 . 1 ax ay 0 

with the time independent boundary condition: 

u(x,y,t) = h(x,y) on aQ 

and initial condition 
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(5. 2) 

Discretization of (5.1) yields 

n+l 
u .. 
1,J 

e:1 n n n 
h2 (ui+l ,j - 2ui,j + ui-1,j ) 

1 

e:2 n n n 
+ - 2 (u. ·+t - 2u .. + u .. 1) 

h J.,J J.,J J.,J-
2 

__ 1 [6 n 
fl-(u •. ) + ht X + l. ,J 

1 n - - [ 6 f2-(u. . ) 
. h2 y + l., J 

n -g(u .. )]; 
l., J 

+ 

n 6 ft+ (u. . ) ] 
X - J.,J 

n 
y6_ f2+<u. . ) ] 

l. ,J 

The time steps 6tn are limited by the Courant-Friedrich-Levy (CFL) condition. 

Since the scheme satisfies a maximum principle it is sufficient to check 

this condition at t = 0 and take 6tn = 6tO for all n. Application of this 

method to problem (3.1) on the grid H1 (section 4) withe:= 10-6 and as 

initial approximation v 1 which satisfies the boundary conditions and is zero 

on the inner points, gives for 6t = 0.25 the same results as in table (4.3) 

after 300 time steps (Osher, private connnunication). 

6. COMPARISON OF THE EFFICIENCY OF FMGM AND THE METHOD OF TIME STEPS 

6.1 The method of time steps 

For problem (3.1) equation (5.2) becomes 

(6.1.1) n+l 
u .. 

l., J 
n n 6t n n n 

= u .. - 6tu .. - -h. [f (u.+l .)-2{f (u .. ) - f+(u •. )} 
J.,J J.,J - l. ,J - J.,J J.,J 

n n n 
-f+ ( u. 1 . ) +f ( u. . + 1 ) - f+ ( u. . 1) J ].- ,J - J.,J J.,J-

e: n n n n n + - 2 6t(u.+l . + u. 1 . - 4u .. + u .. 1 + u .. 1), 
h J. ,J 1- ,J J.,J J.,J+ J.,J-



with f and f+ as in (3.3). 

The number of operations and function evaluations for T time steps on 

a grid with N inner points is: 

additions 12TN, 

multiplications: 5TN, 

f+ evaluations TN, 

f evaluations TN. 

6.2 The full multi-grid method 

6.2.1 The matrix of the linearized problem and the right-hand side 

9 

First we determine the amount of work to compute the matrix and right 

hand side of the linearized problem on a uniform grid with N inner 

points. 

The matrix A= (a .. ) has a 5-diagonal form with 
1] 

- + 2 a .. = -4E + 2h(a (u .. ) - a (u .. ))-h (main diagonal elements), 
i,J i,J i,J 

+ a. 1 . = E+h a (u. 1 .) , 
i- ,J i- ,J 

-
(u.+1 .) a. 1 . = E-h a 

i+ ,J i 'J 
+ 

a. . I = E+h a (u .. 1) 
i, J- i,J-

-
(u. ·+1) a. . I = E-h a , 

i ,J+ i,J 
+ max(O,u) , a (u) = 

a -(u) = min(O,u) • 

The right-hand side reads: 
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Thus, for one Newton linearization we need: 

additions 17N, 

multiplications: 12N, 
+ evaluations N, a 

a evaluations N, 

f+ evaluations N, 

f evaluations . N • . 

6.2 • .2. !LU-relaxation 

The decomposition. 

In our version of the !LU-relaxation the matrix A is decomposed as 

follows: 

A = LU + R. 

The lower triangular matrix L has 4 nonzero diagonals, the upper 

triangular matrix Uhas 4 nonzero diagonals with main diagonal­

elements 1, and the matrix R has 2 nonzero diagonals. 

On a uniform grid with N inner points the number of operations of 

this decomposition including the determination of R (which need 2N 

multiplications) is: 

additions 7N, 

multiplications: 9N, 

divisions 3N. 



6.2.2. l 

6.2.2.2 

6.2.3 

The relaxation sweep. 

The relaxation procedure for Au= breads 

= (I - BA)u. + Bb, 
l. 

with B = (LU) -l. 

This defect correction process can be written as 

LUu. l = -Ru. + b. 
l. + l. 

Since Land U are triangular the solutions of these systems can be 

easily obtained. 

The number of operations for one relaxation sweep on a uniform 

grid with N inner points is: 

additions SN, 

multiplications SN, 

divisions N. 

Coarse grid .corrections 

Let the uniform fine grid have N = O(h2) inner points, and the 

uniform course grid have M = O(h2/4) inner points. 

The right hand side for the coarse grid correction reads: 

R(b - Au) n , 

11 

where u is the last iterate of the defect correction process 6.2.2.1. 
n 

-
The 7-points restriction R. 

-The 7-points restriction R is the adjoint of the linear interpolation 

matrix: 
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The value of the coarse grid function~ in the coarse grid point p 

is determined by the values of the fine grid function~ in 7 points 

(See figure 6.2.3.1). 

j;x ~(p) = O.S(~(a)+~(b)+~(f) 
~ 

a b 
+ ~(c) + ~(e) i;y ~ 

f p ~ 
+ ~(p). e <l 

Figure 6.2.3.1. The ?-points restriation R. 

The number of operations for R is: 

additions 6M, 

multiplications M. 

The Residual. 

The residual is determined by means of the matrix R: 

b - Au = R(u l - u ). n n- n 

The number of operations is: 

additions 2N, 

multiplications: 2N. 

+ ~(d)) 

6.2.4. Linear interpolation 

Each value of the find grid function~ in a point that does not 

belong to the coarse grid, is determined by 2 neighbouring points, 

whereas the function value is copied at a point that does belong to 

the coarse grid (see figure 6.2.4.1). 

The number of new points in the fine grid is 3M. 

Thus the number of operations is: 



additions 3M, 

multiplications: 3M. 

j ;x 

➔ 

i; y {-

~ (d) = uH(d). 

uh(c) = 0.5(uH(a) + uH(b)). 

~(e) = 0.5(uH(d) + uH(a)). 

figure 6. 2. 4. I • Linear interpo Zation. 

6.2.5. Direct solution by Gaussian-elimination with partial pivoting 
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Let the number of gridpoints by M. Then the number of operations is: 

additions 

multiplications: 

divisions 

Here we use the fact that the matrix A has a band structure. 

6.3. The total number of operations for the method of time steps and FMGM 

In table (6.3.l) we compare the total number of operations for both 

methods, applied on problem (3. I) with only two grids H0 and H1 and 
-6 

parameters s = I, p = I, cr = I, q = 0, E = 10 • 

Method of time steps on H1 FMGM 

additions 291600 23676 

multiplications 121500· 20868 

divisions 2712 
+- evaluations 582 a 
-· evaluations 582 a 

f evaluations 24300 582 
+ 

f evaluations 24300 582 
-· 

Table (6.3.1) The number of operations for the method of time 
steps and FMGM. 
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7. CONCLUSIONS 

The total number of operations for FMGM is much less than the total 

number of operations for the method of time steps (Table 6.3.1). 

!LU-relaxation is faster than Gauss-Seidel relaxation for these problems 

(Table 3.4). 

For finer grids the advantage of the multi-grid method is even more 

pronounced than for the relatively coarse IO x IO grid for which the explicit 

operations count was made in section 6.3. 
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