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On the regularity of the principal value of the double layer potential *
by

H. Schippers

ABSTRACT

In the present paper we discuss the regularity of the principal value
of the potential due to a doublet distribution p along the boundary S of a
two—-dimensional (2-D) open connected set. Assuming S to be a Lyapunov bound-
ary and p to be bounded and integrable we prove that the principal value in
2-D is more regular than the one in 3-D. This result is applied to the aero-

dynamic problem of calculation of potential flows around 2-D bodies.
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I. INTRODUCTION

The solution of the Dirichlet problem for Laplace's equation in two
and three dimensions can be represented as a double layer potential, respec-—

tively:

(1.1.1) (2)(c)

1 I 3 .
3 Z

(1.1.2) (3)(;) 5%-J 1 (2) 32— I, | 45, © ¢ s,

s
S 4

where n, is the outward normal to the surface S at the point z, rZC =7 -z
and u(+) is called the doublet distribution. These potentials are discon-

tinuous across the surface. We denote the principal value of ¢d(c) by

1.2 M@ - @ —2 L as , e,

lm—]

22—m J cos(rz ,nZ)
S zZT

where m = 2,3 for the two- and three-dimensional case, respectively.
Assuming S to be a Lyapunov surface and U to be bounded and integrable
GUNTER [1,p.49] proves that ¢(3) (S), where Hk’ (S) denotes the class
of continuous functions whose derivatives of order k satisfy a uniform
Holder condition with exponent a. In section 2 of the present paper we prove
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that in the two-dimensional case ¢ (S), i.e. the principal value
is more regular than in the three- dlmensional case. This property of regu-
larity has an important application in aerodynamics: the calculation of
potential flow around aerofoils.

In this problem the doublet distribution p is the solution of the

following Fredholm equation of the second kind:

3=

(1.3) u(z) +

cos(n zZ-T)
J u(z) -——TE—EJ———'dS = -2U-z, ¢ € S,

S

where U is the velocity of the undisturbed flow. We write this equation in



operator notation as
(1.4) (I-K)u = g

with Ku(g) = ( )(C) and g(z) = -2U-z. The result of the present paper shows
that the 11near integral operator K maps from the Banach space Lw(S) of es-
sentially bounded functions into the Banach space Hl’a(S). Moreover, the
operator K is a bounded mapping from L_(S) into H (9.

In section 3 we shall approximate u by a piecewise constant function
]JN‘
use this result to supply error bounds for lu- “N" and maxlu(c ) - My |, where

From the results of section 2 it follows that KuN € H (S) We shall

cl,gz,....,c are the collocation points. This collocatlon method y1e1ds a
large linear system of equations. In [6] we have iteratively solved this
system by a multiple grid method. Using KuN € H]’a(S) we were able to esti-

mate the rate of convergence of the multiple grid process.

2. REGULARITY RESULT

First, we give some definitions which have been taken from GUNTER {1].

Let D ciR2 be an open connected set with boundary S and closure D.

DEFINITION 2.1. Ck(D)(Ck(B)) denotes the class of functions, which are k

times continuously differentiable in D(D).

DEFINITION 2.2. Ck’a(D)(Ck’a(ﬁ)) denotes the subclass of functions in

Ck(D)(Ck(ﬁ)), whose derivatives of order k satisfy a uniform Holder con-

dition with exponent a, 0 < a < 1.

DEFINITION 2.3. Lk’a (k = 1) denotes the class of boundaries S in 2-dimen-

sional Euclidean space with the property that for every point P on S there

exists a number € > 0 such that the part I of S within the circle BE P of
3

radius € and centre P, for some orientation of the axes of the coordinate

system (x,y), admits a representation

(2.1) y = F(x), X € De,P’



where F ¢ Ck’a(ﬁ ), D the projection of the part of S within B on
e,P g,P e,P

the line y = 0.

We give an illustration of definition 2.3 in the following figure:

figure 2.1 Illustration of definition 2.3.

(DE,P is given by s ee——————)

k,a

DEFINITION 2.4. H (S) denotes the class of functions f defined on S with

the property that the function f defined by

F(x) = £(x,F(x)), xc¢ De.p °

with F(x) and‘ﬁs as in definition 2.3, belongs to the class Ck’a(ﬁé ).

>P >P

REMARK 2.1. Let S € Lk’a with k > 2 and let z,Z € S. Then

2 COS(HZ,Z-C)

lz-z|

= k(2),

lim
>z



where k(z) is the curvature at z. Moreover, k belongs to the space
Hk—Z,a(s).

PROOF. Let (£,n) be a local coordinate system about a certain point P ¢ S
(see figure 2.1). By definition 2.3 the points z and ¢ may be represented

by (x,F(x)) and (£,F(£)), respectively. Now

F(x) - F(§) + (E-x)F'(x)
{x-8)2 + (F(x) - FENZU + @' )2

cos(n_,z-g) = r o,
Z 2

whence 2 cos(nz,z—c)

lim

>z lz-z]|

. 2{F(x) - F(§) + (E&-x)F'(x)}

1im 5 5 5T °

E>x {(x-8)" + (F(x) - F(&))"HI1 + (F'(x))"}?
Since 1

F(x) - F(§) + (Ex)F'(x) = (E-X)2 J t F'"(x + (E-x)t)dt
and 0

1
F(x) - F(§) = (x-&) J F'(x + (E-x)t)dt
0

we obtain

2 cos(nz,z-c)

1lim
c>Z

- Ly 2302
= = F"@ /{1 + @ @)Y

which is the definition of the curvature k. Since F € Ck’a(ﬁé P) it follows
t]

that k has continuous derivatives up to order k-2. [

In the two-dimensional case the potential due to a doublet distribution

u along the boundary is given by:

cos(nz,z-c)

(2.2) 4,0 = o= § W@ —r— 45,

S

with ¢ ¢ S. The contour integration is taken along the boundary in a



(2)

counter—clockwise direction. Since ¢d = ¢d

index (2).

we further omit the upper

LEMMA 2.1, Let S € Lz’a and u € Hl’u(s). If ¢t approaches S we have (Plemelj-

Privalov formulae):

(2.2.1) ¢y © = 4@ - §5,@@),

(2.2.2) ¢y (@) = @ - §4,(0),

with

cos(nz,z—;)
é w(@z) ——=——=——4s_, ¢ € S,

(2.2.3) —a)-d(C) == ,rlr [z-z] z
S

where ¢z and ¢; denote the limit from the outer and inmner side respectively.
PROOF. See MUSCHELISCHWILI [4, pp. 36-42, p.52]. [

For z = ¢ the integrand in (2.2.3) is defined by its limit value, 1i.e.
the curvature at . In lemma 2.1 we assume that S ¢ L2,a and taking into
account remark 2.1 we conclude that k € HO’G(S). Hence in (2.2.3) we may
include the point ¢ in the contour integration. Thus the integral in (2.2.3)
may be interpreted as a proper integral.

The main result of this section is theorem 2.2. The proof of this
theorem leans strongly on 3-D results given by GﬁNTER.D, p.312]1, who has
proved the following theorem: let S ¢ Lz’a and u € HO,a(S)’ then
523) € Hl’a(S). The reason why we cannot quote this theorem is that we

assume | to be essentially bounded, i.e. u e L_(S).

DEFINITION 2.5. L_(S) denotes the space of essentially bounded functioms

on S. The associated norm is

lul = vrai max |p(z)].
™ Z e S

THEOREM 2.2. Let S ¢ 1°°® and u ¢ 1_(S), then



by e als%(s).

PROOF. Let (£,n) be a local coordinate system about a certain point P € S.
Using definition 2.3 we split the boundary into two parts % and S-I.

Let £ € L. For (2.2.3) we obtain

_ 1 cos(n_,z-C) 1 cos(nz,z-C)
¢d(C) =T J;U(Z) ——l-z—_-c—l——— dSZ -5 J u(z) -—l'——r—z_; dSz
S-Iz z

In the first integral z € S-I and therefore |z-z| # 0. If we replace by
(E,F(E)) we obtain a function of £ which has bounded and continuous deriva-
tives up to order 2 (since S € L2,a); hence the first integral certainly
belongs to the class H]’a(S). We proceed to establish that the second inte-
gral also belongs to Hl’a(S). We denote the coordinateé of the point ¢

by £,n and those of the integration point z by x,y. Substituting n = F(£)

and y = F(x) we obtain

cos(nz,z—c)
IZ = J U(Z) ———E_—a-_ dSZ
5 .
- [ (%) PO D FE) Y EOT g
- {(x-8)" + (Fx)-F(E))"HI+F'(x))"}?
D
€,P

We define the following functions

F'(g+ (x-g)t)dt

[

wlca,x>

and

Oty = Oy =

¥, (£,%) tF" (E+ (x-E)t)dt.

Integrating by parts, we obtain:

2.3)  F@ - F(E) + E0F () = ~(E0° ¥, (£,x),



and

(2.4) F(x) - F(§) = (x-%) b, (€:3).

Hence, the second integral becomes

¢2(E,X)

(2.5) I, = - f u(x)
D
€

5 5T dx.
(1 + 97(Ex) U + F'(x))7)*
5P

Assuming lul < A we have to prove that:

| d12 I
(2.6) ‘ —dE- < C A,
and

First, we show that
a
I

I IIJZ(EI,X) - IDZ(EZ,X) | <¢C lg]—gz

Indeed, since F" ¢ CO’OL(B€ P), we have:
b

1
10, (85%) = ¥y (Epo) | = | f P (x + (£,70)) = F'(x + (£,-0)t) }dt]|
0

IA

O - O——— =

IF"(x + (E-x)t) - F'(x + (£,~x)t)|dt

IA

|x + (El—x)t—}{+(£2—x)t‘a dt

cleg-g, %



In order to prove (2.6) and (2.7) we first investigate the function

Y, (E,%)
(2.8) 2

1+ 9T (5D

We denote this function by R. Since Y, and Y, are bounded, it follows that
1 2

R is bounded too. We shall now prove the following inequalities:

3R C

(2.9) |l =] <« ——, _ for £ » x,
o0& |E-X|] o
2R

(2.10) Ia 5| < € g for £ » x.
13 le-x| '

Differentiating R we obtain:

(2.11) -%% - i;g (1+-¢f)'1 - 201+ wf)“zw] 2;} v,
v . 2
It can be easily proved that|2§;|< o Since |1+~¢]| > 1, |w1| < ¢y and
lwzj < ¢y (with Cp2CqsCy certain constants that depend on F) it follows
that
oY
5l < 5]+ 20000y

Inequality (2.9) will have been proved when we have shown that

Ny c

(2.12) | agl - .

From (2.3) we obtain

3, 20 F(®)-F'(x)
(2.13) 5E 2 =5) + (x—g)z

Since
1

PU(E) - F'(x) = ~(x-E) | FU(E+ (D)D),
0

it follows that



|

, 1 1
oY
2 {2 f tF"(g+ (x-g)t)dt - J F'"(g+ (x-g)t)dt}/ (x-¢)
0 0

1
TEéET J {F"(e+ (x-8)/) - F"(§ + (x-E)t)}dt

Hence 0
1
Sv
l agzl < lesl f le+ (x-£)/t - £ - (x-£)e|” dt
0
1
< C Jc a C
S —= J [Ye-t] dt < — =
|x-¢| |x-¢|

0

Using (2.9) and (2.12) we obtain by another differentiation of R the estimate:

? c

*3

5|+ — +c, .
3E 3E Ix-g|17* 4

Therefore it suffices to show that

2
[a wzl Cc
< ‘e
ser |x-g|2®

Differentiating (2.13) we obtain:

2
9%y 20 Y "
2-—lov s Rt m@-rwr s 5
3E (x-¢) (x-%) (x-8)
o "
3 2 1 F'"(8)
= 7= = + {F'() - F'(x)} + —==5
G 5 gy RN

1

S N . [F"(E) - f F'(g+ (x-a)t)dt]
G BE 2 )

Because of the mean value theorem the expression within square brackets

is equal to
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F"(£) - F"(£+ (x-E)t"), for some t* e [0,1].

0,0 = )
Since F" ¢ C**"(D_ ) and | | < < it follows that
e,P 13 lx—Ell_a
2
9
=«
13 |x-€|
We now consider the integral
dI
2 oR 1
755'(5) =“J u(x) gg'(E,X) 5T dx.
N ' I+ (F'(x)M)*
D
€,P

Without loss of generality we can take ﬁ; equal to [0,1].

P
t]
Since "ull00 < A and |1 + F'Z(x)l > 1 it follows that

dI
2 oR
|E‘ < A [ |§(E,X)|dx.
0
Using estimate (2.9) we conclude that the singularity in %% is integraﬂle.
dIl
Hence, ?E? is bounded. We proceed to establish (2.7). Ket & = lg]-gzl,
then
1
dI dI
2 2 oR oR
(2.14) Ijﬁf (El)"azf (Ez)l <A f lgg‘(&l,x) - Sg'(izax)ldx
0
g]+26 E1+26
oR oR
<A [ 15z (Eps®)[dx + A J 5z (5s®)[dx +
51—26 51-26
51?26 1
3R 5R 3R _ 3R
A ] Isg €% - 3% (E,>x) [dx + A J Iag(gl,x) 3E (5,%) |dx.
0 g1+26

Because of inequality (2.9) we obtain for the second integral on the right-

hand side of (2.14):
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g1+26 = g1+26 »
{ IEE-(EI)‘dX < j IEl—xla dx < c(26)a.
51_26 51—26
Since the interval !gl—xl < 28 is contained in the circle IEZ—XI < 38 we
obtain for the first integral the estimate c(36)a. Therefore the sum of the

first two integrals is less then a number of the form cs”.

Finally, we have to estimate the last two integrals of (2.14). For

X ¢ [51,62] the mean value theorem yields

BZR

3R dR _ _ R %
Fé(glsx) - 'gg(gzax) = (gl gz) 352 (g ,X)a

where E* denotes some point of the interval [51,52]. From inequality (2.10)
oR oR * o2
ng(ﬁl,x) - SE(EZ’X)I < 8c|lg-x | >

so that for the third integral the following estimate is obtained:
£,~28

cd [ (£*-x)*%dx = é@%»[(a*-el+2a)“"l - E*a"l] << s
0

.In the same way we obtain a similar estimate for the last integral. Hence,
the left-hand side of (2.14) is less than a number of the form c s A. By
definition § = IEI-EZI and thus inequality (2.7) has been proved. This
completes the proof of theorem 2.2. [

One of the most important applications of potential theory is solving
Dirichlet and Neumann problems. The solution of a Dirichlet problem can
be sought in the form of the double-layer potential ¢4 (2.2). In the case
of an interior Dirichlet-problem the boundary value ¢£ is prescribed and
the solution ¢d follows from (2.2) as soon as the doublet distribution u
has been determined from equation (2.2.2). Let the integral operator in

(2.2.3) be denoted symbolically by K:
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-1 cos(n,,z-T)
(2.15) Ku(z) = ;;-§ u(z)

S

—-ETET-——dSZ, z € S.

From theorem 2.2 it follows that Ky ¢ Hl’a(S) if S € L2,a and u € Lm(S). We
conclude that the operator K maps from the Banach space L _(S) into the

class H]’a(S), which is a Banach space too if it is equipped with the

following norm:

1 2 i
e, = 77 “E_EH .
2@ p=0 i=0 ' ott

£
1,

£=0 "5t %

where é% denotes differentiation in the tangential direction and

lf(zl) - f(22)|

HfHa =lI£l + sup
Z)»2 €S !Zi_zzla

2
Since K is a linear operator corollary 2.3 follows directly from

theorem 2.2:

COROLLARY 2.3. Let S ¢ L2?°

u'2%(s) is bounded, i.e.:

> then the operator K mapping from L_(S) into

||Ku||1 oS C hul _,  for all w e L_(S).

We note that the space Hl’a(S) is compactly imbedded in the space

L _(S). From this property and the previous corollary follow:

2,0

COROLLARY 2.4. Let S € L°°", then the operator K mapping from L_(S) into

L_(S) is compact.

REMARK 2.2. From the Fredholm alternative theorem for compact operators

it follows that equation (2.2.2) has a unique solution for each boundary
function ¢; e L_(S) if S ¢ LZ,a (see also ZABREYKO 8, p.218]). In addition,
the operator (I—-K)_1 is bounded on the space Lm(S),

I(1- K)'lll°° < C.
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COROLLARY 2.5. Let S € Lz’a and ¢; € H]’G(S), then the solution of (2.2.2)
belongs to H]’u(s).

PROOF. From remark 2.2 we have y € Lm(S). But (2.2.2) can be written as
= 2¢. + Kp.
u ¢d il
By theorem 2.2 it follows that the right-hand side belongs to H]’a(S). g
3. AERODYNAMIC APPLICATION

For incompressible and irrotational flow around a two-dimensional body

there exists a velocity potential ¢ satisfying Laplace's equation
(3.1) Ap = 0,
with boundary conditions

(3.2) 29 . 0 along the boundary S,
3n£

and

(3.3) o) ~ U . ¢ for |z| » =,

where S%Z denotes differentiation in the direction of the outward normal to
S and .z denotes the real part of the complex number (/. The velocity

potential ¢ is given by the superposition
(3.4) $() = ¢4(0) + U . z,

where ¢d is defined by (2.2) and p the solution of equation (3.6.1). By
standard arguments the above Neumann problem for the exterior of the bound-

ary S is transformed to a Dirichlet problem in the interior.

LEMMA 3.1. Let S € Lz’a and u € Hl’a(S), then the boundary condition (3.2)

can be replaced by:

(3.5) ¢ () =0, ¢ eS.
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PROOF. See Martenmsen [3, p.247]. [

From lemma 3.1 and the equations (3.4) and (3.5) it follows that condi-
tion (3.2) is satisfied if the doublet distribution p is the solution of the
following Fredholm integral equation:

cos(nz,z-;)

ds_ = -2U.z.

1
(3.6.1) u(g) + T § u(z) —__TE:ET_—_ z

S

We write this equation in operator notation as
(3.6.2) (I-Ku-=g,

where g(z) = -2U.z and K the integral operator defined by (2.15). From
remark 2.2 it follows that (I - K) has a bounded inverse on Lw(S). Further
it can be verified that g € H]’G(S) and as a consequence of corollary 2.5

we obtain | € Hl’a(S).

Now we discuss the convergence of a sequence of approximations to the
unique solution of (3.6.2). We divide the boundary S into N segments Si’
so that § = §, + S, + .... + S.. The begin- and end-points of the ith geg-

1 2

ment are Z. and Z:s which are called nodal points. We approximate the

1
function u(g), ¢z € S, by a step~function and we solve the resulting equation
by a collocation method. The collocation points ci,i =1,2,...,N, are taken

to be the mid-points of the segments Si'

DEFINITION 3.1. Let (x,y) be a local coordinate system about a certain point

P e Si and let the coordinates of the nodal point Zi be given by (xi’F(Xi))
with F(x) as in definition 2.3. The coordinates of the collocation point

¢; are defined by (§,F(£)) with & = (xi—l + xi)/2.
We write the approximating step—function in operator notation as

follows:

N
(3.7) T (E) = izl u(z;) u; (0)

with
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1, Cesi’

u. (¢) = {
i
0, c¢ Si'

We define TN as a linear mapping from the space C(S) of continuous func-
tions on S (with the supremum norm Il .l) to Xy = span(u],....,uN). It is

noteworthy to remark that T_ is not a projection operator in C(S), because

N
XN is not a subspace of C(S). However, XN c L _(S) and it is easy to prove

the following.

LEMMA 3.2. The mappings Ty and 1 - Ty are bounded from C(S) <nto L_(S).

PROOF. For all f € C(S) we have

sup ||T$fllm= max |f(t_',i)| < Ihgh, 0O

feC(S) " 1<i<N

Let hN be a measure of the mesh-size defined by:

hN = max | 2,72, ﬂ .

1<i<N -

We assume that the partition of the boundary is such that 1]'.mN_)°° hN = 0.

2,0

LEMMA 3.3. Let S € L and £ € H]’u(s), then

(- TN)fIIoo < C hy “fnl,a as Now,

PROOF. Draw a circle with centre c; and radius hN. The proof follows from

definition 2.4. [

For a given N an approximate solution of equation (3.6.2) is obtained

by solving:

(3.8) (T = TRuy = Tygs By € Xy
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REMARK 3.1. In aerodynamics this collocation method has become very popular
because TNKuN can be easily calculated. In the two-dimensional case angles
have to be measured.

REMARK 3.2. As a consequence of theorem 2.2 an approximation in the space

H]’a(S) can be obtained by a single iteration

where My is the solution of (3.8). It is easily verified that

~

uN=g+KT

NHN®

For the case that TN represents a projection operator and K a sufficiently
regular integral operator the convergence properties of Hy are discussed

by SLOAN [77.

REMARK 3.3. Real aerofoils are given by a data-set of points {xi,yi}?=1.
Usually a continuous boundary is obtained by a polygon connecting the points
of the data-set. However, this polygon does not belong to the class L2,a
and a single iteration does not yield an approximation in the space H]’a(S).
Therefore, if one wants the approximate solution ﬁN in Hl’a(s), it is
necessary to construct a smoother boundary through the points {xi,yi},

e.g. a cubic spline approximation so that S ¢ Lz’a, except for a small

region near the trailing edge.

LEMMA 3.4. Let the finite-dimensional subspace X © L_(S) be sufficiently

large (L.e. the mesh—size of the discretization 18 sufficiently small) and

let S € Lz’a. From the existence of a bounded inverse of I-K on L_(S)
follow:

(1 - 'I.‘NK)_1 exists on L_(S)
and

c, = sup (I - TnK)"n
n=N

< oo,

L (S) > L_(S)
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PROOF. For each f ¢ Lw(S) we have by Lemma 3.3 and Corollary 2.3:
I - I <
(1 TN)Kf o S cth llell]’u < CBhN IIflIm

I I © i
But then IK- TNK Lo(S) + L(S) -0 gs N »> and existence and boundedness on

L _(S) follow from Neumann's theorem. See also PRENTER [5, p.574].

LEMMA 3.5. et S ¢ 1L2°% and £ e B °%(S), then

2+,
| J {f(z) - f(ci)}dszl <G, "ful,a’ as N » o,
S.
i
PROOF. Let (x,y) be a local coordinate system about a certain point P € Si'
We denote the coordinates of the point zs by (£,n) and those of the inte-
gration point Z by (xX,y). Using definition 2.4 we can represent f(z) - f(ci)
by 1
£G) - £(8) = (-)E'(E) + (x-8) f {£'(g+ (x-)t) - £'(£)}dt.
0
We recall that s is the midpoint of S, . Following definition 3.1 we denote

the coordinates of the nodal—pointzi by (Xi’yi)' Letting h = (x - X )/2

the above integral can be estimated as follows:

E+h
| f {£(2)- £(g;)}ds,| < | { {Ex) - £(8)}dx|

Si E-h

E+h £+h 1
| f (x-)E' (E)dx| + | f (x-E) f {£'(e+ (x-§)t) - £'(£)}dt dx|
E-h £-h 0 '

The first part is equal to zero. We proceed to estimate the second part.

Letting x = £ = v we have

h 1
I, < | f v f {£' (g+vt) - E'(&)}dt av]
-h 0
h 1 ‘
< [ {vl J |E'(£+vt) - E'(E)[dt dv
-h 0
h
1+ 2+
<2 f |v| 0‘nfnl’u dv < C,hy 0‘ufu .0

0
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In theorem 3.6 we discuss the convergence of the approximate solutions
~ 1 . . .
Wy € XN and My € H ’u(S) to the exact solution p. We give error estimates for
(YRR U & A TIer | [
L L and lu=uy

THEOREM 3.6. [Approximation theoreml. Let the boundary S e Lz’u

N > o

, then for

(Z) Ilu—leI°° < Cghy “u"l o’ where u 1s the solution of (3.6.2) and Hy

H

of (3.8).
.. 1+o 1,0
() IR(T - TN)fH < C,hyg Hfﬂl’a, for all £ € H > (8).
(47) IT I < c.nl*® It

WM e T 5
+0o,
Iy

9

(iv) - T < C6hé

ul,a'
PROOF .

(1) From (3.6.2) and (3.8) we get:

(I - TNK)(u M) =R TyKu = Tyg = w - T

Use lemma 3.4 and 3.3 to obtain:
< - I .
Iy o Clllu TNu"mJ < C3h'N|u“1,0L
(ii) From the construction of TNf it follows that

b
R(I - TOE(R) = ] {£(2) - £(z;)}

i=18.
i

cos(n_,z-t)

Tz dSZ.

Without of loss of generality we can take [ ¢ Si' Taking into account

remark 2.1 we estimate the (i)-th part of the above sum by:

cos(nz,z—c)

ds
[z-z |

| f {f(2) - £(z)} <

z I

e

E+h
C j |£(z) - £(z) a8, < ¢ J e Dl dx < C"hé hel,

s, E-h

5 O
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where £, h are defined in the proof of Lemma 3.5.

In the other parts of the above sum we replace z by (x,F(x)). Since

S € 12°% the kernel-function cos(nz,z—g)/[Z-cl has bounded and con-

tinuous derivatives up to order 2 with respect to x. Hence this
function can be written as a series expansion involving powers of

(x-£). Applying Lemma 3.5 we obtain
IR(T - TOEl < c"h2 1el.  + @=1)C.h2™® I gl
) N N 1,0 2 1

£

1+a
< £l .
C4hN £ 1,0

(iii) From equation (3.6.2) we get
(I - TNK)TNu = TNg + TNK(u - TNu)
and subtract (3.8) to obtain
(I - TR (Tgn - wy) = TG - To).
Applying Lemma 3.4 and 3.2 we have
||'][‘Nu - UN“m ol T TNu)".

Since U € Hl’a(S) the proof follows from part (ii) of this theorem.

(iv) From (3.6.2) and (3.9) it follows that

Iy - EN" = K@ - uN)ll

< Ik - TNu)“ + - "K(TNU - uN)“.

Using part (ii) and (iii) we obtain the proof of (iv). [

With respect to the smoothness of the boundary S, part (ZZ) of theorem 3.6

is a modification of results given by KANTOROWITSCH [2, p.127]. He has
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proved the following: let the boundary S be given by the parametric equa-
tions

z(t) = X(t) + LY(t), t € [0,1],

and let w(s,t) = arg(z(s) - z(t)). If w is three times continuously differ-
entiable with respect to s (this assumption is stronger than S ¢ LZ,u 1)
and the function f is two times continuously differentiable (i.e.

f e C(z)[O,IJ) then
IK(T - T.)El e ¢ hZ Il
N © hN 2°

where H-H2 is the usual norm of the space C(Z)EO,I}.

Usually part (Z2Z7) of theorem 3.6 is called super-convergence on the
collocation points. Performing a single iteration of type (3.9) the order
of super-convergence is extended to all points of the boundary as has been
shown by part (zZv).

So far we did not say anything about how to solve equation (3.8).

When the dimension of XN is small it can be solved by a direct method (e.g.
Gaussian elimination). However, when the dimension is large one usually
uses iterative techniques. In [6] we have applied a multiple grid iterative

proces to (3.8) and we have estimated its reduction factor n by

= | - I .
n @ TN)K XN N XN
Using Corollary 2.3 and Lemma 3.3 we obtain that n <C hN’ as N » «, Indeed,
the reduction factor decreases as N increases. Then, asymptotically for
N + o, the multiple grid method needs only 2 iterations to obtain a result

for which the superconvergence on the collocation points is preserved.

We have applied the numerical method of this section to the calcula-
tion of non—circulatory, potential flow around a Karman-Trefftz aerofoil.
A9
e

This aerofoil is obtained from the circle in the X-plane, X = ¢ s by

means of the mapping

(3.10) z = f(x) = (x—xt)k/(x-c(a—xiv))k_l,
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where k measures the trailing edge angle, vy the camber and § the thickness

of the aerofoil;
¢ = 205+ Vi1 21Dk

2 .
xt = c(V1-y"=4y),

with £ the length of the aerofoil. To make f single-valued we take the
principal value in (3.10).
The Karmidn-Trefftz aerofoil does not belong to the class LZ,a because

of the presence of the trailing edge at z = z_. At this point the curvature

t
is not defined. In the present paper we remove the corner by the additional
mapping
(3.11) w=g(2) =21 - 2/2) V¥,

where z is a point inside the aerofoil. Here we locate it arbitrarily at

z = -1.95. By means of (3.11) the aerofoil in the z-plane is converted into
a quasi-circular shape in the w-plane. This has been done because the in-
verse mapping of (3.10) converts real aerofoils (which do not belong to the

family of KarmiAn-Trefftz aerofoils) into quasi-circular shapes too.

X-plane Z-plane W-plane

figure 3.1

We divide the circle in the X-plane uniformly into N segments.

Hence the nodal-points in this plane are given by:

x; = ce I, 0, = 2m§/N, § = 0,1,...,N.
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Substituting xj, j=0,1,...,N, into (3.10) and (3.11) successively, we ob-
tain the nodal-points {Zj} in the z-plane and {ug} in the w-plane.

The tangential velocity Vj at the point Zj (zj e K.T.-aerofoil) 1is

obtained numerically by:

3o Ty oy 25

V. = Iust"'] ~ ustl * lj‘ﬂ
dz

2 2
Vj is obtained by numerical differentiation. Therefore, from theorem 3.6

where ug+, is the collocation point corresponding with xj+l' We note that
(Zv) we obtain the following error estimate

o
3.12 max V. -V Z. <c as N » o,
Ga12) - max V) Ve 1 S e

We have taken the following test cases:
(a) k=1.90, 6§ =0.05, £=1.0, y=0.0, U=1.0,

(b) k=1.99, ¢

0.05, £=1.0, vy =0.0, U=1.0.

In table I we give the maximum error in the tangential velocity (i.e. the
left-hand side of (3.12) for increasing values of N. For the above test

cases the error estimate (3.12) is found to be too pessimistic.

k

N 1.90 1.99
32 J12 (-1 .53 (-1)
64 .62 (-2) .26 (1)
128 .16 (-2) .66 (-2)
256 .39 (-3) .19 (-2)

Table I. Maximum error in tangential velocity

(6 = 0.05, £ = 1.0, y = 0.0, U =1.0)

For N = 64, 128 and 256 the above results have been obtained by a

multiple grid iterative proces.
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