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Modified multilag methods for Volterra functional equations*) 

by 

P.H.M. Wolkenfelt 

ABSTRACT 

Linear multistep methods for ordinary differential equations in con

junction with a family of computationally efficient quadrature rules are 

employed to define a class of so-called multilag methods for the solution 

of Volterra integral and integro-differential equations. In addition, modi

fied multilag methods are proposed which have the property that the stability 

behaviour is independent of the choice of the quadrature rules. High-order 

convergence of the methods is established. In particular, a special class 

of high-order convergent methods is presented for the efficient solution of 

first kind Volterra equations. Numerical experiments are reported. 

KEY WORDS & PHRASES: Numerical analysis, Volterra integral and integro

differential equations, rrrultilag methods, convergence 

and stability 

*) This report will be submitted for publication elsewhere. 





1. INTRODUCTION 

(1. 1) 

Consider the second kind Volterra integral equation 

X 

f(x) = g(x) + J K(x,y,f(y))dy, 

0 

0 ::;; x ::;; X, 

whose kernel Kand forcing function g are assumed to be sufficiently smooth. 

In order to discretize (1.1) at x = x we need an approximation of the 
n 

Volterra integral operator at x = x. A conventional approach is to consider 
n 

a family of quadrature rules W with weights w. which yields the direct 
nJ 

quadrature methods 

n 
( 1. 2) f = g(x) + h 

n. n I 
j=O 

w .K(x ,x.,f.). 
nJ n J J 

Here, h denotes the stepsize, x. = jh are equidistant gridpoints and f. 
J J 

denotes a numerical approximation to f(x.). A wide variety of specific 
J 

methods (1.2) is discussed e.g. in [2]. 

The stability behaviour of a numerical method for (I.I) is analyzed by 

applying that method with a fixed positive stepsize h to the test equation 

(cf. [3 ]) 

(1. 3) 

X 

f(x) =I+\ J f(y)dy, 

0 

Thus applying (1.2) to (1.3) yields the equations 

(I. 4) f 
n 

n 
= l + h\ I 

j=O 
w • f.. 

nJ J 

It is well-known that the weights w. frequently display a certain structure 
nJ 

which makes it possible to reduce the discrete Volterra equation (1.4) to a 

finite term recurrence relation. Particular attention has been paid (cf. 

[16,20]) to the class of (p,cr)-reducible quadrature methods which have the 

property that the equations (1.4) reduce to the relations 

k 
(1.5) I 

i==O 

k 
= h\ I 

i=O 
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In (1.5) a. and b. represent the coefficients of a linear multistep (LM) 
]. ]. 

method for ordinary differential equations (see e.g. [14]) which we shall 

denote by (p,cr). Here, p and cr are polynomials defined as 

(1.6) p(,;):= 
k 

2 
i=0 

k-i 
a. i;; ' ]. 

k 
cr(i;;) := 2 

i=0 

k-i b. i;; • 
]. 

The main advantage of constructing methods for (I.I) which reduce to (1.5), 

lies in the fact that the stability behaviour, determined by the stability 

polynomial p(i;;) - hAcr(,;), can be prescribed by choosing a suitable LM method. 

For example, the backward differentiation methods generate highly stable 

quadrature rules (cf. [20]). A disadvantage of (p,cr)-reducible quadrature 

methods however concerns their implementation. For instance in the case of 

the backward differentiation methods just mentioned, either the weights 

must be generated numerically (cf. [20]) in each integration step which 

results in a rather awkward implementation and extra overhead costs, or the 

methods must be implemented following the imbedding approach described in 

[18] (see also §2) at the cost of a rather large number of additional 

arithmetic operations. 

In this paper, we propose two new classes of methods which are more 

efficient than the (p,cr)-reducible quadrature methods since they can be 

constructed and implemented in a simple and straightforward fashion. The 

methods, which we have called rrru.Ztilag methods and modified rrru.Ztilag methods, 

are composed of an LM method (p,cr) and a family of efficient quadrature 

rules W. 

It turns out, however, that the stability behaviour of the multilag 

methods is not identical to that of the (p,cr)-reducible quadrature methods. 

In fact, stability is determined by (p,o) as well as by the quadrature rules 

w*). Adopting the idea of "modification" proposed by VAN DER HOUWEN [11,12] 

in connection with mixed Runge-Kutta methods for (I.I), we change the multi

lag methods by adding suitable perturbation terms (residuals) to obtain the 

modified multilag methods the stability behaviour of which is determined only 

by (p,cr) irrespeative of the ahoiae of the quadrature rules W. As a result 

the modified multilag methods combine the advantages of the multilag methods 

*) We intend to report on the stability behaviour of the multilag methods 

for various choices of Win future work. 



3 

and the (p,cr)-reducible quadrature methods. To be specific, the methods are 

easy to construct, simple to implement and computationally efficient. 

Moreover, they reduce to (1 • 5) when applied to ( l • 3). 

The derivation of the multilag methods for (1.1) 1s essentially based 

on an appropriate approximation of the Volterra integral operator (see §2) 

and therefore it is not surprising that the same approximations can also be 

employed in connection with the numerical solution of other types of Volterra 

equations. To demonstrate this, we shall apply our techniques also to derive 

numerical methods for Volterra integro-differential equations 

(l. 7) 

X 

f'(x) = F(x,f(x), f K(x,y,f(y))dy), 

0 

and for first kind Volterra integral equations 

( l • 8) 

X 

J K(x,y,f(y))dy = g(x), 

0 

g(O) = 0. 

We shall establish, in §3 and 4, the order of convergence of the multi

lag methods as well as their modification for the solution of (1.1) and 

(1.7). 

It is well-known that for the solution of first kind equations (1.8) 

by means of direct quadrature methods special stabilized quadrature rules 

must be constructed (see e.g. [I,6]). In §5, we shall present a class of 

high-order convergent modified multilag methods which combine conventional 

quadrature rules with a highly stable LM method. 

To illustrate the theoretical results we have included in §6 some 

numerical experiments with modified multilag methods in which we chose for 

(p,cr) the highly stable backward differentiation methods and for W the 

Gregory quadrature rules. 

2. PRELIMINARIES AND NOTATIONS 

In this section we shall derive approximations of the Volterra integral 

operator f~ K(x,y,f(y))dy, which occurs in the functional equations (1.1), 

(1.7) and (1.8). For this derivation it is convenient to introduce the 

function '¥(t,x) defined as 
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(2.1) 

t 
( 

W(t,x) = J K(x,y,f(y))dy, 

0 

where (for the moment) f is a given function. Following Pouzet (see e.g. 

[2]), we regard W(t,x) as the solution of the ordinary differential equation 

(with parameter x) 

(2. 2) d dt W(t,x) = K(x,t,f(t)) 

with initial condition W(O,x) = O. This observation suggests the use of 

methods for ordinary differential equations (cf. [9,18]). Using an LM 

~ethod (p,cr) (with normalization a0 = 1), we may define an approximation 

1jJ (x) of lj1 (x) (ljJ (x) := W(hh,x)) by the recurrence relation n n n 

(2.3) 
.... 
1jJ (x) 

'V 

k 
= - I 

i=l 

.... 
a.ljJ . (x) + h 

i v-1. 

k 

I 
i=O 

b.K(x,x .,f(x .)), 1. v-1. v-1. 

v = k(l )n, 

.... .... 
provided that the starting values iJJ 0 (x), ••• ,ljJk_ 1(x) are given. In the 

treatment of second kind Volterra equations WOLKENFELT et al. [18] discuss 

methods employing such approximations and indicate the equivalence with 

(p,cr)-reducible quadrature methods. A disadvantage of this approach is that 
.... 

for the computation of 1jJ (x) the recurrence relation (2.3) must be evalua-
n 

ted for v = k(l)n, which may give a considerable amount of overhead, 

especially when dealing with systems of Volterra integral equation. This 

drawback can be avoided by the following approach: instead of defining 

starting values ~0 (x), ••• ,;k_1(x) followed by a recursive evaluation of 

(2.3), we compute approximations~ k(x), ••• ,~ 1(x) by means of computa-n- n-
tionally efficient quadrature rules followed by one single application 

of (p,cr). To be specific, we define 

(2.4) 

where 

1jJ (x):= -
n 

k 

I 
i=l 

n 

a.~ . (x) + h 1. n-1. 

k 

I 
i=O 

(2.5) ~ (x):= h l w .K(x,x.,f(x.)). 
n j=O nJ J J 

b.K(x,x .,f(x .)) 1. n-1. n-1. 



Here, W = {w. In~ n0 , 0 s j s n} denotes a family of quadrature rules. 
nJ 

The value of n0 depends on the accuracy of these rules. Obviously, (2.4) 

can only be applied for n ~ I1iz = n 0 + k. 

5 

REMARK. Examples of computationally efficient quadrature rules are the rules 

with a finite repetition factor (see e.g. [3]). In the case of a repetition 

factor of one the weights satisfy 

w . - w . 
nJ n-1,J ={° 

Vw. 
nJ 

if OS J < n-K, 

if n-K s J s n, 

so that¢ k 1 (x), ••• ,$ 1(x) defined in (2.5) can be computed recursively 
n- + n-

as follows 

m 
(2.6) $ (x) 

m = ¢m-1 (x) + h I 
j=m-K 

Vw .K(x,x.,f(x.)), m = n-k+l(l)n-1. 
ill] J J 

Specific examples are the Gregory quadrature rules ([2]). It is easily 
A 

verified that for the evaluation of~ (x) by means of (2.4), (2.5) and (2.6) 
n 

roughly 2nk multiplications and additions are saved in comparison with (2.3). D 

So far we assumed that the function f is known. Now assume that only 

approximations f. to f(x.) are available. In this case we replace in (2.4) 
J 1 A ~ ~ 

and (2.5), f(x.) by f., ~ (x) by I (x) and~ (x) by I (x) to obtain the 
J J n n n n 

approximations 

A 

(2. 7) I (x) 
n 

where 

(2.8) I (x) := h 
n 

k 
2 a. I . (x) + h 

i=l 1. n-1. 

n 

k 

I 
i=O 

I w .K(x,x.,f.), 
nJ J J j=O 

b.K(x,x .,f .), 1. n-1. n-1. n ~ I1iz 

Since the function I (x) which depends on all previously computed f.-values, 
n J 

is usually called a lag term (or history term), we shall call the function 

I (x) a multilag approximation to~ (x). 
n n 
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For the convergence analysis of our methods we need the local trunca

tion error T (h;x) of (2.4) at t = nh defined as 
n 

k k 
(2.9) 1/J (x) = -n I a.1/J . (x) + h 1 n-1 i: b.K(x,x .,f(x .)) + T (h;x). 1 n-1 n-1 n i=l i=O 

Note that for an LM method of order p 

(2.10) p+l dp I p+2 
T (h;x) = C +lh - K(x,t,f(t)) t h + O(h ) ash+ 0 

n p dtp =n 

where C 1 IO denotes the error constant of (p,a) (cf. [8]). For the rules p+ 
(2.5) we define the quadrature error 

(2. I I) O (h;x):= 1/J (x) - $ (x). 
~ n n 

Furthermore we assume that the quadrature weights w. are uniformly bounded, 
nJ 

i.e. lw -I s w for all n and j. 
nJ 

In our theorems we shall establish a bound on the global discretization 

error in terms of quadrature errors, local truncation errors and errors in 

the starting values using the following notation: 

(2.12) o I (h) = max{lf(x.)-f.)I: 0 s j s no-I}; J J .. 

(2.13) o2(h) = max{lf(x.)-f.l: no s j s ~-1}; 
J J 

(2. I 4) TN(h) = max{IT (h;x )I:~ s n s N}; n n 

(2. 15) QN(h) = max{l~-i(h;xn)I: ~ s n s N, 1 < • - 1 s k}; 

(2. 16) ~QN(h) = max{!~ .(h;x) - ~ .(h;x .)!: ~ s n s N, -1 n -1 n-1 1 s i s k} 

In order not to distract the reader's attention from the main results, 

all theorems are stated without proof. However, for those interested, the 

technical details can be found in the Appendix of [21]. 

3. METHODS FOR SECOND KIND VOLTERRA INTEGRAL EQUATIONS 

The second kind Volterra equation (1.1) can be written as 



(3. 1) f(x) = g(x) + ~(x,x), 0 ::; x ::; X, 

where we have used the notation (2.1). 

3.1. Multilag methods 

In order to discretize (3.1) at x = x, we replace f(x) by f and n n n 
f(x ,x) = ~ (x) by I (x) defined in (2.7) to obtain the multilag method n n n n n n 

k 
(3. 2) I 

i=l 
a. I . (x ) + h 1. n-1. n 

k 

I 
i=O 

where I (x) 1.s defined in (2.8). The required starting values are f., 
n J 

J = 0(I)~-1. 

For the global error f(x )-f the following result can be derived. 
n n 

THEOREM 3.1. Assume that K satisfies the Lipschitz condition 

(3 .3) 

Let f(x) be the solution of (3.1) and let£ be defined by (3.2). Then for 
n 

h sufficiently small (X = Nh) 

max 1£(x )-f I s C max{hol(h),ho2(h),QN(h),TN(h)} 
< <N n n ~-n-

(3.4) 

Where C is a constant ind~pendent of N and h, and where o1 (h),o 2 (h),QN(h) 

and TN(h) are defined in (2.12) to (2.15). D 

Using this theo~em high-order convergence of the methods (3.2) 1.s now 

readily established. 

THEOREM 3.2. Let the condition (3.3) be satisfied and assume that g and K 

are sufficiently smooth. In addition., let 

(i) the LM method (p,cr) be convergent of order p; 

(ii) the quadrature rules W be of order q; 

(iii) the errors in the starting values be of orders. 

Then the multilag method (3.2) is convergent of order r, where 

7 
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r = min{s+l,q,p+l}. To be specific 

max lf(xn)-fnl s Chr ash+ O, N + 00 , Nh = X 
~SnSN 

where C is a constant independent of N and h. □ 

With respect to the stability analysis we remark that the application 

of (3.2) to the basic test equation (1.3) yields the relations 

(3.5) 

f 
n 

~ I 
n 

k 
= 1 - I 

i=l 
n 

= hA l 
j=O 

~ a.I . + h11. 
l. n-1. 

w .f .• 
nJ J 

k 

I 
i=O 

b.f . , 
l. n-1. 

which clearly indicates that the stability behaviour of (3.2) depends on 

(p,cr) as well as on the quadrature rules W. Under suitable assumptions on 

the quadrature weights (e.g. reducibility [20] or finite repetition factor 

[3]) the relations (3.5) can be reduced to a recurrence relation in terms of 

f -values only and the stability behaviour is then determined by a root n 
condition on the associated stability polynomial. A systematic study along 

these lines for various choices of quadrature rules W will be the subject 

of future research. 

In this paper we concentrate on a modification of (3.2) which has been 

constructed in such a way that the stability behaviour with respect to 

(1.3) is independent of the choice of the quadrature rules W used for the 

lag terms I (x). 
n 

3.2. Modified multilag methods 

In [12] a modification of mixed Runge-Kutta methods was proposed (see 

also [11]) with the aim of improving the stability behaviour. This modified 

method was derived by modifying the lag term by a suitable perturbation 

term which can be regarded as a residual (see [13]). Motivated by this 

approach, we present the following modification of (3.2) 

k 
(3.6a) f = g(x) -n n I 

i=l 

k 
a.{I .(x )+r .}+h ~ b.K(x ,x .,f .), 1. n-1. n n-1. .l 1. n n-1. n-1. 1.=0 
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(3.6b) r = f - g(x) - I (x ), n n n n n 

where I (x) is defined in (2.8). The modified multilag method (3.6) requires 
n 

the starting values fj' j = 0(1)¾-1. Note that rn defined in (3.6b) can be 

regarded as a residual. 

We remark that the class (3.6) includes as a special case the methods 

proposed by VAN DER HOUWEN [11 J (who chose, in the notation (3.6), 

a 1 = -1, a2 = ••• =ak = O). 

It is easily verified that application of (3.6) to the test equation 

(1.3) yields, due to cancellation of the I terms, the recurrence relation 
n 

(1.5). Thus the stability behaviour of (3.6) is determined only by (p,cr), 

and therefore identical to that of the (p,cr)-reducible quadrature methods. 

Before establishing the high-order convergence of the modified methods 

(3.6) we first state the following result. 

THEOREM 3.3. Let K satisfy the Lipschitz condition 

(3. 7) 

and let the LM method (p,cr) be convergent. Furthermore let f(x) be the 

solution of (3. 1) and let f be defined by (3. 6). Then for h sufficiently 
n 

smaU 

(3.8) max 
11ksnsN 

where C is a constant independent of N and hand where o1(h),o2(h), 

~QN(h) and TN(h) are defined in (2.12) to (2.16). D 

The Lipschitz condition (3.7) required in the above theorem is satis

fied if, for example, K satisfies a Lipschitz condition with respect to 
X 

f. We then may write the left-hand side of (3.7) as 

X 

f {Kx(t,y,~1) - Kx(t,y,~2)}dtl 

X 
n 
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from which the right-hand side of (3.7) is innnediate. It can also be shown 

that h-18QN(h) has the same order of accuracy as QN(h) provided that K 

and K are sufficiently smooth. This fact together with Theorem 3.3 yields 
X 

THEOREM 3.4. Let the asswrrptions of Theorem 3.3 and 3.2 be vaZid. Then the 

modified rrruZtiZag method (3.6) is convergent of order r*, ~here 

r* = min{s,q,p}. D 

Comparison of the results of Theorem 3.2 and 3.4 clearly shows the 

effect of the modification on the order of convergence: ifs~ p+l and 

q ~ p+l, the order of the modified methods is lowered by one. 

4. METHODS FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS 

Using (2.1), equation (1.7) can be written as 

(4. 1) f'(x) = F(x,f(x),,(x,x)), 

with initial condition f(O) = f 0• Application of an LM method for ordinary 

differential equations to (4.1) in which ,(x ,x) is replaced by a numerical n n 
approximation yields a wide class of numerical methods (cf. [5,15,16,20]). 

4.1. Multilag methods 

We shall employ a linear k*-step method (p*,cr*) with coefficients 
,., ,., * * . . . a. and b., and numerical approximations I 

i i n = I (x) as defined in (2.7) 
n n 

to obtain the methods 

k k * ,., 
(4.2a) I * I a. f = h b.F(x .,f .,I .), n ~ ~ = n + k 

i=O i n-i i=O i n-i n-i n-i 0 

,., k k 
(4.2b) I = - I a. r . ex > + h t b.K(x ,x .,f .), n ~ ~ n i=l i n-i n i=O i n n-i n-i 

.... ~ (4.2c) I = I (x) if no :s; n :s; ~-1, n n n 

where I (x) is defined in (2.8). Note that we have assumed, without loss 
n 

* of generality, that k = k. The required starting values for (4.2) are 



1 1 

f j , j = 0 (I ) 1\:- I. 

A bound for the global discretization error is established in the follow

ing theorem. 

THEOREM 4.1. Let K satisfy the condition (3.3) and let F satisfy the 

Lipschitz conditions 

(4. 3a) 

(4. 3b) 

and assume that the LM method (p*,cr*) is convergent. Let f(x) be the solution 

of (4.1) and let f be defined by (4.2). Then for h sufficiently small 
n 

I I -1 * ~:N f(xn)-fn ~ C max{hol(h),o2(h),ho3(h),QN(h),TN(h),h TN(h)} 
~-ll-

(4.4) 

Where C is a constant independent of N and hand where o1(h),o2(h),QN(h) and 

TN(h) are def,~ned in (2.12) to (2.15). Furthermore 

(4.5) 

(4. 6) 

* where T (h;x) denotes the local truncation error at x = x of the LM method 
n n n 

(p *., cr *) when applied to ( 4. 1) • □ 

An innnediate consequence of the above theorem is 

TtlEOREM 4 • 2 • De t the conditions (3 • 3) and ( 4 • 3) be satisfied and assume 

that F and Kare sufficiently smooth. In addition., let 
* * * (i) the LM method (p .,cr) be convergent of order p; 

(ii) the LM method (p,cr) be convergent of order p; 

(iii) the quadrature rules W be of order q; 

(iv) the errors in the starting values be of orders. 

Then the muUiZag method (4.2) is convergent of order r, where r = 

= min{s,q,p+l,p*}. D 
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Concerning the stability behaviour we note that the application of 

(4.2) to the basic test equation (cf. [16]) 

(4. 7) 

X 

f'(x) = ~f(x) + n f f(y)dy, 

0 

yields relations which depend also on the quadrature rules W. In order to 

eliminate the effect of these quadrature rules on the stability behaviour 

we construct a modification of (4.2). 

4.2. Modified multilag methods 

Along the same lines as in §3.2 we define the modified multilag methods 

by 

(4.8a) 

(4.8b) 

(4.8c) 

k k .... 

I * a.f . h I b *. ( f I ) = Fx ., ., . , 1. n-1. n-1. n-1. 
i=O 

l. n-1. 

k 
I = - I 
n i=l 

i=O 

a. { I . (x ) +r . } + h 1. n-1. n n-1. 

.... 
r = I - I c~ ), n n n n n ~ 

k 

I 
i=O 

b. K (x , x . , f . ) , 1. n n-1. n-1. 

.... 
As in (4.2c) we define In= In(xn) if nO ~ n ~ ~-1, which implies that 

rn = O if nO ~ n ~ ~-1. 
Due to this modification the method (4.8) applied to (4.7) yields the 

recurrence relations 

k k .... 
I * h I b~ (~f .+nI . ) , a. f = 

i=O l. n-i i=O l. n-1. n-1. 
(4. 9) k k ... 

I a. I = h I b. f . . 
i=O l. n-i i=O l. n-1. 

... 
Elimination of I yields a recurrence relation inf -values only whose 

n n 
characteristic (or stability) polynomial is given by 

(4. 1 O) 



which is independent of W. Note that the same stability polynomials were 

found by MATTHYS [16] who considered (p,cr)-reducible quadrature rules. 

We shall now deal with the convergence of (4.8). First we give the 

following bound for the global error. 

13 

THEOREM 4.3. £.et K satisfy the condition (3. 7) and Zet F satisfy (4.3) and 
* * let the LM methods (p ,cr) and (p,cr) be convergent. Fu.rther3 let f(x) be 

the solution of (4.1) and let f be defined by (4.8). Then for h suffieientn 
ly small 

(4.11) If (xn)-fn I ~ C max {ho 1 (h), o2 (h), o3 (h), h -l t.QN(h), 

-1 -I * 
h TN(h),h TN(h)} 

where C is a constant independent of N and h, where o1(h),o 2(h), TN(h) and 

tQN(h) are defined in (2.12) to (2.16) and where o3(h) and T;(h) are 

defined in (4.5),(4.6). D 

As a consequence we have 

THEOREM 4.4. Let the assumptions of Theorem 4.3 and 4.2 be valid. Then the 

modified rrruU'.ilag method (4.8) is convergent of order r* 3 where 
* . { *} r = min s,q,p,p • D 

From the results of Theorem 4.2 and 4.4 it is evident that the modified 

methods may lose one order of accuracy (cf. §3.2). 

5. MODIFIED MULTILAG METHODS FOR FIRST KIND VOLTERRA INTEGRAL EQUATIONS 

In section 3 and 4 we considered general LM methods in conjunction with 

general quadrature rules. It turned out that convergent LM methods together 

with convergent quadrature rules generate convergent methods for second kind 

Volterra equations and integro-differential equations. 

It is well known, however, that for the solution of first kind equa

tions convergence of the quadrature rules does not generally imply conver

gence of the associated direct quadrature method and additional assumptions 

are necessary (see e.g. [I,6,7,10,17,19]). 
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In this section we do not pursue complete generality and present the 

convergence results of a particular class of modified multilag methods. To 

be specific, we consider the methods 

k 
(5.la) - ~ a.{I .(x) + r .} + hb0K(x ,x ,f) = g{xn), l 1 n-1 n n-1 n n n 

i=l 

(5. lb) r = g(x) - I (x ), n n n n 

where I (x) is defined in (2.8). The required starting values are f., 
n J 

j=O(l)~-1. 

The methods (5.1) can be derived as follows. Using (2.1) the first kind 

Volterra equation (1.8) can be written as 

(5.2) 'Y(x,x) = g(x), 0 :,; X :,; X. 

Discretization of (5.2) at x = x using the approximation (2. 7) in which we 
n 

take b2= ••• =bk = O, and modification by the "residual approach" then yields 

(5.1). Note that we have chosen a particular class of LM methods (i.e. 

cr(z;) = b0z;k) which includes the well-known backward differentiation methods. 

We emphasize that the quadrature rules Ware still free to choose. 

For the global error the following bound can be derived. 

THEOREM 5.1. In addition to the aonclition (3. 7) assume that 

(5.3) 

Let the LM method (p,cr) with a{z;) = b0z;k be convergent. Fu:r>therrnore let 

f(x) be the solution of (1.8) and let fn be defined by (5.1). Then for h 

sufficiently small 

(5.4) max lf(xn)-fnl :,; C max{ho1(h),ho2{h),h-lAQN{h),h-lTN(h)} 
~:,;n:::;N 

where C is a constant indepenclent of N and, h, and, where o1(h),o2(h),AQN{h) 

and, TN(h) are defined in (2.12) to (2.16). D 

We remark that the Lipschitz condition (5.3) is implied by the condi-



tions for the existence of a unique continuous solution to (1.8) given in 

[7]. To be specific, one of the conditions is that l¾f{x,x,f)I should be 

bounded away from zero. 

As an immediate consequence of Theorem 5.1 we have. 

15 

THEOREM 5.2. Det the assUJIT{?tions of Theorem 5.1 be valid and let Kand' g be 

sufficiently smooth. In addition, let 

(i) the LM method (p,cr) with a(~)= b0~k be convergent of order p; 

(ii) the quadrature rules W be of order q; 

(iii) the errors in the starting values be of orders. 

Then the method (5.1) is convergent of order r*, where r* = min{s+1,q,p}. □ 

It is easily verified that the methods (5.1) applied to the test 

equation 

X 
( 

(5.5) j f(y)dy = g(x) 

0 
-1 k 

reduce to f == (hb0) ~- 0a.g(x .), irrespective of the choice of the 
n 1= 1 n-1 

quadrature rules W. As a result, the methods (5.1) correspond to "local 

differentiation formulae" which is a desirable property with respect to 

stability (see e.g. [17,p.417]). 

6. NUMERICAL EXPERIMENTS 

In this section we report on numerical experiments with modified 

multilag methods (3.6), (4.8) and (5.1). For the LM method (p,cr) and the 

quadrature rules W we chose, for p = 2 (t) 6, the pth order backward differ

entiation (BD) methods ([14]) and the pth order Gregory quadrature rules, 

respectively. In the methods (4.8) we took (p*,cr*) identical to (p,cr). The 

methods are denoted by BDGp (p=2(1)6). 

The methods were applied to test problems (taken from [5],[6] and [20]) 

with known exact solution. Integration was performed with a constant step

size, and the necessary starting values were computed from the exact solu

tion. In consequence of the Theorems 3.4, 4.4 and 5.2 the methods BDGp are 

of order p, asymptotically. 

In the t:ables of results we have tabulated for different orders and 
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a sequence of stepsizes, the number of correct decimal digits cd (defined 
10 by - log (absolute error)) at the endpoint of integration. Moreover we 

have listed in the convergence experiments the computed order p* (defined 

by· {cd(h) - cd(2h)}/ 101og 2). 

All calculations have been performed on a CDC CYBER 750 installation 

using 14 significant digits. 

6.1. Second kind Volterra integral equations 

In order to test their high-order convergence we have applied the BDG 

methods to the following problem 

(6.1.1) 

X 

f(x) = ½x2 exp(-x) + ½ J 
0 

2 (x-y) exp(y-x)f(y)dy, 

with exact solution f(x) = ½ - ; exp(-3x/2){cos(½xv'3) + v'3 sin(½xv'3) }. In 

Table 6.1.1 the results are tabulated for various choices of h. 

-1 h p=2 p=3 p=4 p=5 p=6 

4 1.89 1.86 2.34 2.97 3.51 

8 2.22 1• 1 2.572•4 3.253•0 4.21 4•1 4.924.7 

16 2.101•6 3.372•7 4.31 3•5 5.6o4 •6 6.555 •4 

32 3.251•8 4.232•9 5.443•8 7.054•8 8.285•8 

64 3.83 1•9 5. 112.9 6.61 3•9 8.534•9 10.106• 1 

Table 6.1.1. Number of correct digits at x=6 and the computed 
order p* for the BDG methods applied to (6.1.1). 

From this table lt is obvious that the computed order tends to the theoret

ical order of convergence. 

The favourable stability behaviour of the BDG methods is demonstrated 

in the following example: 

X 

(6. 1.2) f l+x 2 
f(x) = g(x) - A l+y f (y)dy, 0 ~ x ~ xe, 

0 



with exact solution f(x) = 
! 

[ 1 + (1 +x)exp (-x)] 2 if we choose 

g(x) = f(x) + A(l+x)[ln(l+x) + 1-exp(-x)]. We considered the values 

A = 1,10,100,1000 and 10000 which makes (6.1.2) increasingly stiff. The 
endpoint of integration was 192h. The results are given in Table 6.1.2. 

h -1 A p=2 p=3 p=4 p=5 p=6 

l 3.23 3.83 4.97 5. 10 5.84 

10 3.23 3.84 4.98 5.11 5.85 

4 100 3.24 3.84 4.98 5. 11 5.85 

1000 3.24 3.84 4.98 5. 11 5.85 

10000 3.24 3.84 4.98 5.11 5.85 

3.84 4.93 6. 19 7.01 8.21 

10 3.87 4.96 6.22 7.04 8.24 

16 100 3.87 4.97 6.23 7.05 8.24 

1000 3.87 4.97 6.23 7.05 8.24 

10000 3.87 4.97 6.23 7.05 8.24 

5. 18 6.41 8.06 9.29 10.46 

10 4.99 6.42 8.08 9.35 10. 65 

64 100 4.99 6.42 8.09 9.37 10.36 

1000 4.99 6.42 8.09 9.43 10.63 

10000 4.99 6.42 8.09 9.40 10.44 

Table 6.1.2. The number of correct digits at x = 192h 
fo~ problem (6.1.2) 

The results show that for fixed h the accuracy is hardly affected by in

creasing stiffness and justify the conclusion that the BDG methods are 

highly-stable. 

6.2. Volterra integro-differential equations 

To test high-order convergence we applied the BDG methods to 

17 
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X 

(6.2.1) f' (x) = - x - (l+x)-2 + _1_ ln 2+2x + 
f(x) 2+2x f dy O~x~lO. 

1 + (I +x) f (y)' 
0 

Taking f(O) = I yields the exact solution f(x) = (l+x)-l. The results 

summarized in Table 6.2.1 clearly show that the computed order tends to 

the theoretical order of convergence, except for the sixth order method. 

h -1 p=2 p=3 p=4 p=5 p=6 

4 5.85 5.76 6.32 
1.8 

7.00 
2.0 7.60 2.3 0.8 1.4 

8 6. 10 6. 19 6.86 
2.7 7.59 3.2 8.30 3.4 1.0 2.2 

16 6.40 6.84 7.67 8.51 9.33 4.4 
1.6 2.6 3.3 3.9 

32 6.89 7.61 8.65 
3.6 

9.67 
4.3 

10.65 
7. 1 1.9 2.8 

64 7.45 8.45 9.73 10.97 12.79 

Table 6.2.1. Number of correct digits at x=lO and computed 
order p* for the BDG methods applied to (6.2.1). 

For th1e stability test we applied the methods to 

r (x) 
[d(x) 3 

1 ' f(O) = - af(x) - Sz(x)J - = 

(6.2.2) X 

z(x) f 
o 3 = (x+yy) f (y)dy. 

0 

Choosing d(x) = 1 +a+ y- 1(1+o)-1sx0+1{(1+y)o+l_l} yields the exact solu

tion f(x) =I.As in [20] we considered the values a= 40, S = 15, y = 2 and 

o = 3/2, and integration was performed with h = 1/8. On the basis of the 

stability r1egions of the BDG methods (which are identical to those of the 

[BD;BD] methods given in [20]), we expect the methods to yield stable 

results. In Table 6.2.2 the results are given at some gridpoints. 
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x 1p=2 p=3 p=4 p=S p=6 

1.0 3.23 4.37 5.44 6.17 * 

3.0 ,4. 25 6.07 6. 72 8.54 7.72 

5.0 4.45 6.93 7.06 8.47 8.25 

7.0 4.60 7.49 7.28 8.68 8. 15 

16.0 5.00 8. 15 7.79 9.23 9.82 

Table 6.2.2. Number of correct digits for problem 
(6.2.2) obtained with the BDG methods 
with h = 1/8. 

The asterisk in this table indicates that x = 1 is a point where an exact 

starting value was given. The numerical results clearly display the stable 

behaviour of the BDG methods. 

6.3. First kind Volterra integral equations 

We applie!d the BDG methods to the following problems taken from [6] 

X 

(6.3.1) 2 J cos(x-y)f(y)dy = exp(x) + sin(x) - cos(x), 

0 

X 

(6.3.2) J exp(y-x)f(y)dy = sinh (x). 

0 

Both problems have the exact solution f(x) = exp(x). The endpoint of 

integration was x = 4. The correct order of convergence of the BDG methods 

up to order five is shown by the Tables 6.3.1 and 6.3.2. 

h 
-1 p=2 p=3 p=4 p=5 p=6 

10 0.87 2.3 
1.50 2.8 2.20 3.9 3.20 4.9 4.55 6.6 

20 1.55 2.2 2.33 2.9 3.36 3.9 4.68 5.0 6.54 6.5 
40 2.20 2. 1 3.20 3.0 4.54 4.0 6.18 5.0 8.50 3.5 
80 2.83 4.09 5.73 7.68 9.54 

Table 6.3.1. Number of correct digits at x=4 and the computed 
order p* of the BDG methods applied to (6.3.1) 
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h 
-1 p=2 p=3 p=4 p=5 p=6 

10 -0.02 1. 9 0.81 2.8 1.64 3.8 2.45 4.7 1.81 1 .4 
20 0.54 1.9 1.66 2.9 2.77 3.9 3.87 4.8 2.23 13.9 
40 1. 12 2.0 2.54 3.0 3.94 3.9 5.32 4.9 6.40 6.8 
80 1.71 3.43 5.12 6.80 8.43 

Table 6.3.2. Number of correct digits at x=4 and computed order 
p* of the BDG methods applied to (6.3.2) 

Although not displayed in the tables of results, the global error turns 

out to be a smooth function except for the sixth order method when his 

small (h = 1/40, 1/80). This may explain the uncertain behaviour of BDG6. 

7. CONCLUDING REMARKS 

The results of section 6 justify the conclusion that the construction 

presented in this paper yields high order convergent methods which can be 

made highly stable by choosing a highly stable LM method. 

To emphasize we repeat that the modified multilag methods applied to 

the basic test equations of (1.1), (1.7) and (1.8) yield exactly the same 

stability polynomials as those obtained with (p,cr)-reducible quadrature 

methods. As a consequence, all stability results previously derived for 

(p,cr)-reducible quadrature methods (e.g. A-stability results [16], stability 

regions [4,5,20]) also hold for the modified multilag methods. 

Finally we remark that the class of methods presented here can easily 

be extended by considering cyclic LM methods for ordinary differential 

equations. In this case the method (3.6) for example takes the form 

(7. 1) f = g(x ) -
n n 

k 

I 
i=l 

(n) ~ } kl (n) a. {I .(x )+r . +h b. K(x ,x .,f .), i n-i n n-i . i n n-i n-i i=O 

with r defined as in (3.6b) and where a~n) and b~n) are periodic functions 
n i i 

of n. The proof of high-order convergence of (7.1) will probably be more 

complicated than for the methods presented in this paper. On the other hand, 

the stability properties of cyclic LM methods are well-known for ODE-theory 
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and thus can be exploited to construct in a straightforward fashion highly 

accurate, highly stable modified multilag methods for the efficient 

solution of Volterra equations. 

ACKNOWLEDGEMENTS 

The author would like to thank Professor Dr. P.J. van der Houwen for 

his constructive remarks and valuable advice. He is also grateful to Mrs. 

Joke Blom who carried out the computations summarized in section 6 of this 

paper. 

REFERENCES 

[1] ANDRADE, C. & S. McKEE, On optimal high accuracy linear rrrultistep 

methods for first kind Volterra integral equations, BIT 19 

(1979), 1-11. 

[2] BAKER, C.T.H., The numerical treatment of integral equations, Oxford, 

Clarendon Press, 1977. 

[3] BAKER, C.T.H. & M.S. KEECH, Stability regions in the numerical treat

ment of Volterra integral equations, SIAM J. Numer. Anal. 15 

(1978), 394-417. 

[4] BAKER, C.T.H., A. MAKROGLOU & E. SHORT, Regions of stability in the 

numerical treatment of Volterra integro-differential equations, 

SIAM J. Numer. Anal. 16 (1979), 890-910. 

[SJ BRUNNER, H. & J.D. LAMBERT, Stability of numerical methods for Volterra 

integro-differential equations, Computing 12 (1974), 75-89. 

[6] GLADWIN, C.J., Quadrature rule methods for Volterra integral equations 

of the first kind, Math. Comp. 33 (1979), 705-716. 

[7] GLADWIN,, C.J. & R. JELTSCH, Stability of quadrature rule methods for 

j~irst kind Volterra integral equations, BIT 14 (1974), 144-151. 

[8] HENRICI:, P., Discrete variable methods in ordinary differential 

equations, New York, Wiley, 1962. 



22 

[ 9 J HOCK, W. H. , Asymptotic expansions for mu:l tistep methods app Ued to rum

Unear Volterra 1,,ntegPal equations of the second kind, Numer. 

Math. 33 (1979), 77-100. 

[10] HOLYHEAD, P.A.W., S. McKEE & P.J. TAYLOR, Multistep methods for solving 

linear Volte.1:"ra integral equations of the first kind, SIAM 

J. Numer. Anal. 12 (1975), 698-711. 

[11] HOUWEN, P.J. VAN DER, On the numerical solution of Volterra integral 

equations of the second kind, I. Stability, Report NW 42/77, 

Mathematisch Centrum, Amsterdam (1977). 

[12] HOUWEN, P.J. VAN DER, Convergence and stability results in Runge-Kutta 

type methods for Volterra 1,,ntegPal equations of the second 

kind, BIT 20 (1980), 375-377. 

[13] HOUWEN, P.J. VAN DER, P.H.M. WOLKENFELT & C.T.H. BAKER, Convergence 

and stability analysis for modified Runge-Kutta methods in the 

numerical treatment of s-econd kind Volterra integPal equations, 

Report NW 96/80, Ma.thematisch Centrum, Amsterdam (1980). (to 

appear in IMA Journal on Numerical Analysis) 

[ 14] LAMBERT, J .D., Computational methods in ordinary differential equations, 

London, Wiley, 1973. 

[15] LINZ, P., Linear rrrultistep methods for Volterra integro-differential 

equations, J. Assoc. Comput. Mach. 16 (1969), 295-301. 

[ 16] MATTHYS, J., A-stable Unear rrrultistep methods for Volterra integro

differential equations, Numer. Math. 27 (1976), 85-94. 

[17] TAYLOR, P.J., The solution of Volterra integral equations of the first 

kind using inverted differentiation foPrrtUlae, BIT 16 (1977), 

312-320. 

[18] WOLKENFELT, P.H.M., P.J. VAN DER HOUWEN & C.T.H. BAKER, Analysis of 

numerical methods for second kind VolteXTa equations by 

inwed.ding techniques, J. of Integral Eqns. 3 (1981), 61-82. 

[19] WOLKENFELT, P.H.M., Reducible quai/,rature methods for Volterra integral 

equations of the first kind, BIT (1981), to appear. 



[20] W0LKENFELT, P.H.M., The constr-uction of reducible quadrature r-ules 

for Volterra integral and integro-differential equations, 

submitted for publication. 

23 

[21 J W0LKENFELT, P .H.M., Modified rrrultilag methods for Volterra functional 

eq:u,ations, Report NW 108/81, Mathematisch Centrum, Amsterdam 

(1981). (preprint) 





APPENDIX Proofs of the theorems 

In our proofs we shall apply the following well-known lennnas. 

n 

l. 

LEMMA I. If IV'nl :::s hAlj=O lvj I + B for n = m(l)N, where h > O, A> 0, B > 0 

and Iv-I :::s V for j = O(l)m-1, then for h sufficiently smali 
J 

max 
m:::sn:::sN 

I I * * * v :::s (hA mV + B )exp(A x), 
n 

PROOF. See e.g;. BAKER [2, p.925]. 0 

LEMMA 2. Let the sequence {v }N satisfy n n=m 

k 

I 
i=O 

= z for n ~ m+k, 
n 

where v , •.• ,v k 1 are m m+ - given and where {z }N_ k is an arbitrary sequence. 
k k-· . n n-m+ 

Let the polynomial p(z;) = Ei=Oaiz; 1. satisfy the root condition, then 

n 
Iv I :,; C n I 

j=m+k 

m+k-1 
lz-1 + D L 

J j=m 
IV. I , 

J 
m+k :,; n :,; N, 

where C and Dare uniformly bounded constants independent of N. 

PROOF. Along the lines indicated in HENRICI [8, p.243]. □ 

Note that z may depend on vO, ••• ,v, i.e. z =z (vO, ••• ,v ). We shall n n n n n 
frequently us1: this convenient property in our proofs. 

To save space, we also introduce the following notation: 

(A. I) e := f(x) - f n' n n 

(A. 2) t.K := K (x , x. , f (x. ) ) - K (x , x. , f . ) ; 
nJ n J J n J J 

(A. 3) tir ex ) := i/J (x) - r Cx ), m = n-k(l )n-1; 
:n m n m n m 

tiF (I) 
,.. ... 

(A.4) := F(x ,f(x ),I) - F (x , f , I ) ; 
n n n n n n n 

t.F (2) 
,.. 

(A.5) := F(x ,f(x ),i/J (x )) - F(x ,f(x ),I); 
n n n n n n n n 

,.. 

(A. 6) tiI := i/Jn (xn) - I n n 
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For the quantities defined above, the following useful inequalities can be 

derived. In view of the Lipschitz conditions (3.3) and (3.7) 

(A. 7) 

(A.8) 

IAK -Is L11e.l, nJ J 

I AK . - AK . . I s L *1 ib I el. I . nJ n-1.,J 

Since AI (x) = w (x) - I (x) = w (x) ~ ~ (x) + ~ (x) ~ I (x ), n m n m n m n m n m n m n m 
where ~n(x) is defined in (2.5), we may write using (2.11) and (A.2) 

n 
AI (x) = O (h;x) + h l w .tu{ •• 

n m ""n m j =O nJ mJ 

As a consequence 

(A.9) It.I <x >I n m 

n 
s QN<h> + hL 1w r 

j=O 
I e. I , 

J 

where QN(h) is defined in (2.15) and w is the uniform bound of lw ,I. 
nJ 

Analogously we can derive, using (A.8), that 

(A. 10) 
n-i 

~ ~ I 2 *- r IAI .(x) - AI .(x .) s AQN(h) + h L1w n-1. n n-1. n-1. j=O 

where AQN(h) is defined in (2.16). 

From the Lipschitz conditions (4.3) it follows that 

(A. 11) 

I e. I, 
J 

We remark that C. occurring in the proofs below denotes a generic uniformly 
l. . 

bounded constant. 

PROOF.OF THEOREM 3.1. The solution of the continuous problem (3.1) satisfies 

f(x) = g(x) + w (x ), or using (2.9), n n n n 

(A. 12) 

k k 
f(x) = g(x) - \ a.w .(x) + h \ b.K(x ,x .,f(x .)) + 

n n i~l 1. n-1. n i~O 1. n n-1. n-1. 

+ T (h;x ). 
n n 
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Subtract f defined by (3.2) from (A.12) to obtain the equation for the 
n 

global error e 
n 

(A. 13) 
k 

e = - I 
n i=l 

k 
a. bl . (x ) + h I b. bK • + T (h; x ) , 

i n-1 n i=O i n,n-1 n n 

where bl (x) and bK. are defined in (A.3) and (A.2). Using (A.9), (A.7) 
n nJ 

and (2.14) yields 

n 
(A. 14) lenl ~ hC 1 j~O lejl + c2QN(h) + c3TN(h), 

Finally, application of Lermna to (A.14) yields the result (3.4). D 

PROOF OF THEOREM 3.3. Analogous to (A.12) the solution of the continuous 

problem (3.1) satisfies 

(A. 15) f(x) 
n 

= g(x) -n 

k 

k 

I 
i=l 

+ h L b.K(x ,x .,f(x .)) + T (h;x ), 
. 0 i n n-1 n-1 n n 
i= 

where we have used that f(x .) = g(x .) + ~ .(x .). Subtract f defined n-1 n-1 n-1 n-i n 
by (3.6) from (A.15) to obtain after some manipulations 

k 
(A. 16) I 

i=O 
a. e . 

i n-1 

k 
= - L a.{bl .(x) - 61 .(x .)} 

i=l i n-1 n n-1 n-1 

k 
+ h I b.bK . + T (h;x ), n. ~ n ~ N. 

i=O i n,n-1 n n K 

Let z denote the right-hand side of (A.16) then lz I can be bounded by 
n n 

(A. 17) 

where we have used (A.IO), (A.7) and (2.14). Now equation (A.16) can be 

written as I~=O aien-i = zn (n~=n0+k) and application of Lermna 2 yields 

the inequality 

(A.18) le I n I e. I, 
J 
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Substitution of (A.17) into (A.18) yields 

(A. 19) 

where we have used that nh s X and where o2(h) is defined in (2.13). Finally, 

application of Lemma 1 to (A.19) yields the result (3.8). D 

PROOF OF THEOREM 4.1. The solution of the continuous problem (4.1) satisfies 

k k 
(A. 20) I 

i=O 
* a. f(x . ) = h 1 n-1 I 

i=O 
* . * b. F(x .,f(x .), w .(x .)) + T (h;x) 1 n-1 n-1 n-1 n-1 n n 

* * * where T (h;x) denotes the local truncation error at x=x of (p ,cr ). n n n 
Subtract (4.2a) from (A.20) to obtain 

(A. 21) 
k * k * (l) l a. e . = h l b.{~F . + . 0 1 n-1 . 0 1 n-1 

1= 1= 

AF(2).} T*(h ) u + ;x , n-1 n n 

where we have used the notation (A.4) and (A.5). Let z denote the right-hand 
n 

side of (A.21), then lz I n can be bounded by 

(A.22) 

k * where we have used (A.11) and (4.6). Writing equation (A.21) as L 0 a. e .= 1= 1 n-1 
= zn (n0+kSnSN) and applying Lennna 2 yields the inequality 

n ~-1 

(A.23) le I s c2 I lz. I + c3 I I e. I, ~snsN. n j=~ J j=n J 
0 

Substitution of (A.22) in (A.23) gives the inequality 

(A.24) 

- - -Next we derive an inequality for ~I := w (x) - I, where I is defined n n n n n 
by (4.2b). Thus subtracting (4.2b) from (2.9) gives 

~I n 

k k 
= - l a.~I .(x) + h l b.~K . + T (h;x ). 

i=l 1 n-1 n i=O 1 n,n-1 n n 
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Use of (A.9) and (A.7) then yields the inequality 

(A.25) 
n 

lbinl ~ c7QN(h) + hC8 .l leJ. I + TN(h), ~~n~N. 
J=O 

... 
Furthermore we have, in view of (4.2c), bin= bln(xn) if n0~n~~-1, which 

yields using (A.9) 

(A.26) I e. I , 
J 

Substitution of (A.25) and (A.26) into (A.24) gives 

(A. 27) 
n 

~ hc 10 I lejl + c 11 ho 3 (h) + c 12QN(h) + c 13TN(h) 
j=O 

where o3 (h) is defined in (4.5). Application of Lennna 1 to (A.27) yields 

the result (4.4). D 

PROOF OF THEOREM 4.3. The error equation fore is the same as in the proof 
n 

of Theorem 4.1. (equation (A.16)), so that we arrive at the inequality 
,. 

(A.24). The error equation for bl, however, is different and is derived 
n 

as follows. Write (2.9) as 

(A.28) 

k 
+ h l b.K(x ,x .,f(x .)) + T (h;x ), ~~n~N. 

i=O i n n-i n-i n n 

Substituter defined by (4.8c) into (4.8b) and subtract the resulting n 
equation from (A.28). We then obtain 

k k 

I = - I 
i=O i=l 

(A.29) k 
+ h I 

i=O 
b.bK . + T (h;x ), i n,n-i n n 
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Let z denote the right-hand side of (A.29), then 
n 

n-1 k 
lznl ~ c7~QN(h) + h2Csj1o lejl + hC9 i~O len-il + TN(h), (A.30) 

k -where we have used (A.10) and (A.7). Writing (A.29) as L O a.~I . = z 
i= i n-i n 

(~~n~N) and applying Lennna 2 yields 

(A. 31) 

(A.32) 
n 

1~rn1 ~ l~(h;xn)I + hC12 I 
j=O 

I e. I, 
J 

Substitution of (A.30) and (A.32) into (A.31) yields after some manipulations 

(A.33) 1~1 I n 

~ ~ n ~ N. 

Next we substitute (A.32) and (A.33) into (A.24) to obtain 

(A.34) 
n 

lenl ~ hC16 jio lejl + c17h-l~QN(h) + c18h-1TN(h) + 

-1 * 
+ c19o3(h) + C5h TN(h) + C6o2(h), ~~n~N. 

Finally, application of Lennna 1 to (A.34) yields the result (4.11). D 

PROOF OF THEOREM 5.1. The solution of the continuous problem (5.2) satisfies 

k 
- 2 a.{ljJ .(x) + g(x .) - ip .(x .)} + hb0K(x ,x ,f(x)) + 
i=l i n-i n n-i n-i n-i n n n 

(A. 35) 
T (h;x) = g(x ). n n n 

Subtract (5.1) to obtain 
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k 
hb0.l1K = 2 a. { !11 . (x ) - !11 . (x . ) } - T (h; x ) • 

nn i=l i n-i n n-i n-i n n 

which yields the inequality 

(A.36) 
n-1 

hlb0 IL4 lenl s c1t1QN(h) + c2h2 j~O lejl + TN(h), ~snsN, 

where we have used (A.IO) and (2.14) and the fact that IL1K I ~ L4 le I nn n 
(see condition (5.3)). Dividing through by hlb0 I and applying Lennna 1 

yields the result (5.4). D 




