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ABSTRACT 

Direct quadrature methods and classical and modified Runge-Kutta 

methods yield structured systems of equations when applied to a class of 

test equations with polynomial convolution kernels. Exploiting the struc

ture of the results obtained in the stability analysis for a basic test 

equation, we derive finite recurrence relations which enable us to relate 

the stability properties of the numerical methods to the location of the 

zeros of appropriate stability polynomials. 
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I . INTRODUCTION 

I.I Background and outline of the paper 

We shall discuss the stability of a general class of methods, and 

certain modified forms, for the numerical solution of the Volterra integral 

equation 

(I.I) 

X 

f(x) - f H(x,y)f(y)dy = g(x) 

0 

(x 2: O), 

where H(x,y) and g(x) are given and continuous. Convergence of the numerical 

methods has been discussed in the literature and will not be considered 

here. The literature also contains a number of contributions to stability 

theory, which vary in the class of methods considered and the special case 

of (I.I) adopted as a test equation. 

A test equation which has received particular emphasis 1.s the basic 

equation 

( I. 2) 

X 

f(x) - A J f(y)dy = g(x). 

0 

Results for this equation can be deduced from those for the equation 

(I. 3) 

X S 

f(x) - f L As(x-y)sf(y)dy = g(x) 
O s=O 

which we study here. We denote by K(x-y) the polynomial convolution kernel 

(I .4) 
s 

K(x-y) = l 
s=O 

occurring 1.n (I.3). 

s A (x-y) 
s 

Stability of quadra-t;ure methods and classical Runge-Kutta methods applied 

to (I.2) has been discussed in [6], and [2,6] respectively. The stability of 

quadrature methods with a finite repetition factor (see [4]) was discussed 

in [ 14], in the context of (I .3). The case S = I in (I .3) was investigated 

for a special class of quadrature methods in [17] and for a large class of 

Runge-Kutta methods in [13] (including Beltyukov methods and the modified 
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Runge-Kutta methods introduced in [10,11]). 

The institute report [3] was devoted to a study of stability of a 

rather wide class of quadrature and classical Runge-Kutta methods, applied to 

to (1.3) with arbitrary S. Our aim in the present work is to convey the 

structure of certain results in [3] and their extension to the modified 

Runge-Kutta methods. Our study thus covers a wide range of numerical methods. 

REMARK. The authors of [3] and [12] emphasize that the behaviour of the 

kernel which they rely on, in their studies, is the polynomial dependence on 

x of H(x,y). Although the convolution property yields simplification and 

structure, their techniques yield results for kernels such as 

(1.5) 

investigated in [1,10]. (Both (1.5) and (1.4) are particular cases of kernels 

of the form 

(1. 6) H(x,y) = 
s 
I 

s=O 
X (x)Y (y) 

s s 

studied in [5,12] by less direct means.) D 

1.2 Preliminaries 

The general form of the equations obtained by applying the quad:Pati!Pe 

methods and the aZassiaaZ Runge-Kutta methods (of the type considered by 

POUZET [9]) is given by fO = g(O) and 

(1. 7) j = 1,2, ••• , 

where{,.} are grid-points to be specified below. 
J 

(1.8) 

with 

The quadrature methods are defined by a family of quadrature rules 

nh 

J 
0 

~(y)dy ~ h' l w k~(kh), 
k~O n 

n= 1,2,3, ••• , 



(I. 9) = 0 fork> n. 

We then take nnk = wnk' Tk = kh in (I. 7). 

Our Runge-Kutta methods are defined by a tableau 

(I. IO) 

where 8 = I. (Such arrays with A = 0 for r = 0,1, ••. ,p, occur in Runge-p rp 
Kutta methods for differential equations.) 

The extended Runge-Kutta methods depend upon (1.10) whilst the mixed 

quadrature-Runge-Kut ta methods involve also the rules (I. 8). In each we 

take TO= 0 and 

(1.11) T. = ih + 8 h, 
J r 

j = i(p+l )+r+l. 

Thus 

(1. 12) i = [ (j - I) / (p+ I) ] , r - (j-I)mod(p+l). 

3 

We shall reserve the integers i ,j, r for use according to (I. 12) henceforth, 

in this paper. The extended Runge-Kutta method results from the choice 

(I. 13a) -L 
O<k::;i (p+l) 

i(p+l)<k::;(i+I)(p+l) 

otherwise; 

the mixed quadrature-Runge-Kutta method from the choice 
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(1. 13b) 

k=m(p+ 1) , m::;;i 

i(p+l)<k:s;(i+l)(p+l) 

otherwise; 

with t = (k-l)mod(p+l) in (1.13a,b). 

Observe that for both cases 

(1.14) fork::;; i(p+l); 

(1. 15) njk = 0 fork> (i+l)(p+l); 

these we assume in what follows. 

The methods given above are classical. The modified methods [11] depend 

upon a choice of y £[0,1], r = 0,1, ••• ,p, defining 
r 

(1. 16) 

Here, the equations defining the values 

(1.17) f., j = i(p+l)+r+l 
J 

(r = 0,1, ••• ,p; i = 0,1,2~ ••• ) 

in terms of f 0 = g(O) and the values f 1, f 2, ••• , fi(p+l) previously comput

ed by the modified method involve the "lag term", or "history term", 

(1.18) 

With our convention i = [(j-1)/(p+l)], r - (j-l)mod(p+l), we define 

(1. 19) n, = n.(-r.), 
J l. J 

n. = n.(ih). 
l. l. 

(Observe that if e0 = 0 then ni = ni(p+l)+l") Then we set 

(1. 20) 

The last term in (1.20) is the "Runge-Kutta part" 



h I AtH(ih+Sh,ih+Sh)f.( 1) 1· t=0 r r t i p+ +t+ 

When Qjk are determined by (1.13b} we have 

i 
(1.21) n.(x) = g(x} + h l wikH(x,kh}fk(p+l)" 

1 k=0 

REMARK. The modified methods collapse to the classical methods if y = 0, 
~ 

if p = 0, or if Qjk are defined by (1.13a). Following [10,11,13] we regard 

n~ = n- + y {f.( ) - n.} as a revised lag term determined by (1.16) and 
J J r i p+l i 

by the residual 

In both classical and modified Runge-Kutta methods the values 

f., j = i(p+l)+r+l, are associated in blocks defining 
J 

(1.22) 

It is convenient to write also 

(1. 23) 
. T 

~i+l = [ni(p+l)+l' ni(p+1)+2' 000
' n(i+l}(p+l}J 

and to denote by 

(1.24) e 1, ••• ,e ,e 
roJ r-Jp rv 

□ 

5 

the successive columns of the identity matrix of order (p+l) and their sum. 

The principal purpose of the Runge-Kutta methods may be considered to be 

the generation of the "+'ull-step" values f e Tf. approximating 
J I i (p+ 1) - ""P "1}_ 

f(ih) (i = 1,2,3, .•• ). 

1. 3. Stability 

Stability properties, both of the integral equation (1.3) and the 

numerical methods discussed here, can be related to the location of zeros 
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of appropriate polynomials. 

For the integral equation, we may obtain the root conditions by reduc-
. ( ) · • · ( ) . s+l ing 1.3 to a system of differential equations. Thus 1.3 is, for 1 E JR , 

asymptotically stable if and only if ES(µ):= µS+l - I!=OAss!µS-s has its 

zeros int_:= {µE~IRe(µ)<O} and stable if and only if its zeros lie in the 

closure of~-' ~_:={µEtlRe(µ)~O} the zeros having Re(µ)=O being required to 

be simple. The requirements can be expressed in terms of conditions [1,2] 

on AO,A 1, ••• ,AS using the Routh-Hurwitz criteria. 

We can reduce (1.3) to a system of differential equations. Likewise, 

our analysis relies on the reduction of the corresponding "sunnnation" 

equations (1.7) to a finite term recurrence, of the form ,m X m = o, lf=O ,...;l "'11-l "'Il 

where !.e = Xl(h;A0 ,A 1, ••• ,AS) and the components of !n-l are values fj. 

Such a recurrence is "strictly stable" if and only if the zeros of the 

stabiZity poZynomiaZ det [}:~=O ~lµm-l] satisfy lµl<l and stable if and only 

if they satisfy lµl~l, those with lµl=l being semi-simple. 

The relationship between the conditions on (1.4) and the conditions 

on the numerical methods is of practical interest but is not pursued here. 

Our aim is to show how finite term recurrence relations can be obtained, and 

to derive the appropriate stability polynomials for the methods applied to 

(1.3). 

In what follows the advancement operator is denoted by E: 

for vectors 2n and scalars alike. Relations l~=O~l !u-l = 

2. QUADRATURE METHODS 

o thus give 
"'Il 

The classical quadrature method defined by (1.8) yields f 0 = g(O) and, 

when applied to (1.1), 

(2. 1) f 
n 

g(nh) (n= 1 , 2, ••• ) 
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wherein fk ~ f(kh) and 

(2.2) wnk = O, k > n. 

2.1. Reducible quadrature methods 

First we consider the case where parameters {al,Sl}~=O exist such that 

[8] 

(2. 3) 
m 

\ ao W O • = sn_J. l~O .(... n-.(...,J 
(j = 0, l , ••. , n) 

with the convention that Sl = 0 if l ~ {0,1, •... ,m}, a0 + 0. 

In this case the quadrature rules (1.8) are called {p,a}-reducibZe 

where 

(2.4) p(µ) = 

and the quadrature method (2. l) will be called a reducible quadrature method. 

REMARK. The polynomials p(µ),cr(µ) are the first and second characteristic 

polynomials of an associated linear multistep method [7] for which the 

usual conditions are p(l) = O, p'(l) = cr(l). We assume that p(µ), cr(µ) 

have no common factors. It can happen that p(µ) has a rootµ= 0 of multi

plicity v in which case al= 0 for l = m,m-l, ••• ,m0+1 where m0 = m-v and 

(2.3) reduces to its minimal form 

(2.5) 

The assumption of reducibility (varied later) imposes a structure on 

the quadrature method which we may exploit, to obtain from (2.1) a finite

term recurrence between successive values f. The main tool is the repeated n 
formation of linear combinations of (2.1) with varying n and corresponding 

weighting factors al. D 

In our present analysis we employ, in addition to (2.4), the poly-
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nomials 

(2.6a) 
m m-l 

crt (µ) = I lt B,e µ 
l=O 

(2.6b) 
mo m -l 

pt(µ) I ,et 0 = a.lµ 
l=O 

(2.6c) i\r(µ) = 

{(:)pt_r(µ) 

Here 

p(µ) 

ptt(µ) = p0 (µ) and m0 = max 

·m-mo 
= µ p0 (µ), cr0 (µ) = cr(µ). 

t = 0,1,2, ••• ; 

t = 0,1,2, ••• ; 

t = 0,1,2, ••• ; r = 0,1, ••• t; 

otherwise 

0 ~ l ~ m}. Thus, 

2.2. A stability polynomial for reducible quadrature methods 

Theorems 2.1 and 2.2 below state the required result·s for {p,cr}-reduc

ible quadrature rules applied to (1.3) and will be obtained as a consequence 

of a sequence of lemmata which are useful later. 

When H(x,y) is replaced in (2.1) by K(x-y) = }::=O As(x-y)s, equation 

(2.1) yields 

(2. 7) 

where 

(2.8) 

f = g(nh) + n 

s 
I 

s=O 

LEMMA 2.1. Let the quad.rature rules (1.8) be {p,a}-reducible. Then 

{a!s)}n~O satisfies a recurrence relation with constant coefficients of 

the form 

(2.9) 

where the polynomial Ns+l(µ) is defined recursively by 
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PROOF. The proof is by induction on s; details are given in the appendix. D 

A useful adjunct to Lemma 2.1 is the following result. 

LEMMA 2.2. Fa~ s = 0,1,2, .•• , 

(2.10) s (-1) det 

oo(µ) 

ol(µ) 

0 (µ) 
s 

PROOF. Expand the determinant by the last row. D 

LEMMA 2.3. Let the qua.d:l'atu:re ruies (1.8) be {p,o}-reducibie and iet 

n S 
(2. 11) ~ = h l wnk{ l As(h)(nh-kh)s}fk 

n k=O s=O 

for arbitrary functions {As(h)} defining a vector ~(h) = [A0 (h),A1(h), 

.•. ,A8(h)JT. Then{~} >O satisfies the recurrence reiation 
n n-

(2.12) 

where R8~ 1(~(h);µ) is a poiynomiai inµ given by 

~ s S-s RS+l(~(h);µ) = l A (h)h {p0(µ)} N +l(µ). 
s=O s s 

PROOF. Write~ = I8 0A (h)a(s) and apply {p0 (E)} 8p(E) to both sides. 
n s= s n 

Application of Lenmia 2.1 yields the result. D 

REMARK. RS+l(~(h);µ) depends linearly upon ~(h). D 
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THEOREM 2.1. Let H(x,y) = I!=oAs(x-y)s, AS f O, and let {fn}n~O satisfy 

(2.1). If the rules (1.8) are {p,a}-reducible then 

(2. I 3) 

PROOF. Apply Lennna 2.3 with~ = f - g(nh) and ~(h) = 1· □ 
n n 

The following result is now an innnediate corollary of the previous 

theorem. Since our emphasis is on stability polynomials we state it as a 

theorem. 

THEOREM 2.2. Under the assumptions of Theorem 2.1 a stability polynomial for 

the sequence {fn}n~O is 

(2. I 4) 

2.3. Diagonally-block-reducible quadrature methods 

The assumption that the rules (1.8) are {p,cr}-reducible is somewhat 

restrictive. However, it is connnonplace [6] to find that the array of 

weights wnk in (1.8) can be written in the form 

. I I • : 1;0 IE: 
. 

w !io • E2 . . . w ~ ~P 
(2. 15) (.(I = w !io . Ea Ea E1 w Ep nk ~ ~p-I 

w 
Eal· 

. . . Ea Eo Eo . . . w w w ~ ~p-2 ~p-1 "'P 

where }i, g0 , ••• ,Jip are square matrices of order q, say, and we set 

EP+k = Q (k>a). Thus, defining the square matrices ~k with elements 

(2.16) eT V e = w 
~a ~nk ~S nq+a,kq+S (a,s=a,1, ••• ,q-I). 

and E-k = Eo fork= 1,2, •.• , we can describe (2.15) by the relation 

V k = WP +k (k=l,2, •.• ,n) and Va= W. ~n ~ -n ~n ~ 
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REMARK. Inconsequential changes in the above relations should be made when 

~ is rectangular rather than square and the pattern in (2.15) holds only 

for n ~ n0 I 0, Observe that (2.15) implies that the rules have a finite 

"repetition factor" [3]. D 

We may relate the rules with the above structure to a generalization 

of the {p,cr}-reducible rules. Quadrature rules are said to be b"lock

reducible when the matrices Yuk satisfy, for fixed matrices {~l'~l}l=O, 

with Lt=O At£= Q and §l = Q if l J {0,1, ••• ,m} the relations 

(2. I 7) 
m 

I AtYn-l,k = ~-k 
l=O 

(k = 0, I , ••• , n) • 

The stability polynomial for block-reducible methods applied to (1.2) 
\ m-l can be shown to be det [ll {Al - >..h§l}µ ]. In order to achieve a simple 

generalization for (1.3) further assumptions will be made. 

The rules in (2.15) are observed to be block-reducible on taking m = P, 

Ao = ,!, A1 = ··,! and At = Q, l =I O, I, §l = ~p-l-~p-l+I' Thus, they have the 

special feature that the corresponding matrices At are diagonal; this proves 

a useful assumption when considering (1.3). When each matrix At is diagonal 

we shall call the block-reducible rule diagonally-block-reducible; to 

emphasize we then write 

(2. I 8) (l = O, I , ••• , m) , 

kt being diagonal. 

2.4. A stability polynomial for diagonally-block-reducible methods 

To exploit (2.17), (2.18), we wish to write the equations (2.1) with 

H(x,y) = K(x-y) in vector form involving the matrices Yuk· We define 

(2.19) 

and the matrices 1\ik with entries 

(2.20) eT K e = K((nq+a)h-(kq+S)h) 
~a. ~nk ~s (a,S = 0,1, ••. ,q-l). 
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We also write 

(2.21) T g = [g(nqh), g((nq+l)h), ••• ,g((n+l)qh-h)]. 
~n 

Since K(x-y) 

(2.22) K = 
~nk 

s 
I 

s=O 

where elements of~~~ are 

(2.23) 

Now let G, H be two matrices of the same size with elements G 8, H B ~ ~ ct ct 
respectively. Then the pointwise (or Schur) product denoted Q * fl is the 

matrix with elements GctBHctB" With this notation, 

n 
(2.24) ID = g + h l (V k * K k)Wk• 

"'n ~n k=O ~n ~n ~ 

Employing (2.22), 

(2.25) 

where 

(2.26) (s) 
a 
~n 

To proceed, we introduce 

(2. 27) ~ m-l 
f(µ) = l ~,e µ 

l=O 

(2.28) 
mo m -l 
, t 0 
l (lq) ~,e µ 

l=O 

where m0 denotes the largest integer such that~ 1 Q, and 
~mo 



(2. 29) 

LEMMA 2.4. Let the rules (1.8) be diagonally-block-reduaible. Then 

{~8 )}n~O satisfies a recurrence relation with constant coefficients of 

the form 

(2.30) {P (E)} 8 P(E)a(s) = hs+l N 
~O ~ ~n ~s+l (E) ~' 

where ~s+l(E) is defined recursively by 

s-1 
~s+l(µ) = {fo(µ)l 5fs(µ) - I <:) fs-t(µ){fo(µ)}s-l-t~t+l(µ) 

t=O 
(2.31) 

PROOF. See Appendix. D 

LEMMA 2!5. Let the rules (1.8) be diagonally-block-reducible and let 

(2. 32) 
n S 

m = h I (y k* { I A (h)M(~k)})tk· 
"'11 k=O n s=O 8 ~n 

Then{~} >O satisfies the recurrence n n_ 

(2.33) 

where 

(2.34) Bs+1 <~(h) ;µ) 

PROOF. Apply Lemma 2. 4. 0 

Our principal results for this section now follow. 

s 

13 

THEOREM 2.3. Let H(x,y) = I A (x-y) 8 • If the vectors (2.19) satisfy (2.24) 
s 

and the quadrature rules cJ~0diagonaUy-block-reducible, then 

(2.35) 
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PROOF. Use Lemma 2.5 (compare with the proof of Theorem 2.1). D 

As a corollary we find 

THEOREM 2.4. Under the assumptions of Theorem 2.3, a stability polynomial 

for the sequence {w = [f , f +1, ••• ,f( +l) 1JT} >O is ~n nq nq n q- n-

(2.36) 

3. MIXED QUADRATURE-RUNGE-KUTTA METHODS 

We now consider the classical and modified mixed methods defined by 

(1.7), (1.13b) and (1.19), (1.20), (1.21) respectively. The analysis 

presented for the quadrature methods can be adapted to treat these methods 

applied to (1.3). We rely in particular on Lenma 2.3 and Lemma 2.5. Thus, 

for the classical mixed method employing {p,cr}-reducible rules, we can find 

(see [3]) a relation of the form of (2.11), namely 

(3. 1) f(n+J){p+J) • h k!O wnk{s!O A6 {h)(nh-kh) 6}fk(p+l) + 8(nh). 

s . 
Thus, see (2.12), {pO(E)} p(E)f(n+l)(p+l) - h RS+t(A(h);E)fn(p+l) = on (for 
some term on depending on g(x)) and obtaining a stability polynomial is 

immediate when the values of A (h) are determined from{\}. s s 
Here, we shall treat the classical and modified mixed methods assuming 

either {p,cr}-reducibility or diagonal-block-reducibility of the rules (1.8). 

When H(x,y) is replaced in (1.21) by K(x-y) we obtain 

i 
(3.2) ni(x) = g(x) + h k!O wik K(x-kh) fk(p+l) 

Thus, writing .e~+l = [g(-ri(p+l)+l),g(-ri(p+l)+2), ••• ,g(-r(i+J)(p+l))l and 
employing the notation (1.23) we find from (3.2) 

i 
(3.3) n = g~ 1 + h I w f K 

~i+l .-1.+ k=O ik k(p+l) ~i-k 

where 



(3.4) K. k = [K((i-k)h+0oh), K((i-k)h+01h), ••• ,K((i-k)h+e h)]T. 
~i- . p 

Further, (1.20) then yieids for 

the relation 

(3.5) 

where !o = !o(1;h) has elements 

(3.6) e KT e = K((e - e )h) ~r ~O ~t r t (r,t = O,1, ••• ,p), 

and 

(3.7) 

and n. is defined in (1.19). In consequence 
i 

(3.8) 

15 

Since~ !i+l = f(i+l)(p+l)' (3.8) permits us to derive the following Lemma. 

Lemma 3.1 requires no assumptions on the quadrature rules (1.8). Setting 

X = Q gives a result for the classical mixed method. 

LEMMA 3.1. Suppose {fj}j~O to be defined by the modified mixed method 

applied to (1.3). Let 

# T -1 
y = e (I - hA*Ko) ~y """'P,...,, ......, ......, 

a:nd denote by~- the expression 
i 

(3.9) 
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where gi+l 

i 
(3. l O) qp. = h I Wik K(ih-kh) fk(p+l)' 

1. k=O 

where 

(3. l 1) R(ih-kh) 

PROOF. Applying eT 
T - "'P 

e f. l = (f:. ( ) ~p ~1.+ i p+l 

+hLk~O wik fk(p+l) 
yields the result. □ 

3.1. Mixed methods with {p,cr}-reducible rules 

We now consider the case where the rules (1.8) are {p,cr}-reducible. To 

proceed we require a convenient expression for K(ih-kh). 

Then 

s 
(3. 12) B:(ih - kh) = I 

s=O 
A (h)(ih-kh)s, 

s 

where 

(3. 13) 

with 

s 
(3. 14) A (h) = 

s I 
t=s 

PROOF. Expand K(ih-kh) in powers of ih - kh. D 

THEOREM 3. l • If the quadrature rules in the mixed methods defined by ! in 

(1.16) are {p,cr}-reducibZ.e then the "fuU-step" values {fn(p+l)}n~O satisfy 

the constant term recurrence 



(3. 15) 

PROOF. Employ (3.9), (3.10) and (3.13) in Letmlla 2.3; note that Efn(p+l) = 

f (n+l )(p+l). □ 

A consequence of Theorem 3.1 is the following result. 

THEOREM 3.2. Under the assumptions of Theorem 3.1 a stability polynomial 

for the sequenae {fn(p+l)}n2:0 is 

(3.16) 

using the notation (2.14). 

the result follows from Theorem 3.1. The term in QS+t(1;µ) drops out for 

the classical methods (x = Q). □ 

3.2. Mixed methods with diagonally block-reducible rules 
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The relations (3.9), (3.10) continue to be applicable when the quad

rature rules of the mixed methods satisfy the assumptions (2.17) and (2.18) 

of section 2.3. 

If we write 

(3.17) 

then (3.10) may be re-expressed as 

(3.18) m = h l. (V * K(n-k) ik 
NJt . k2:O · r-.nk ~ 

T ... ... 
where ~a !Sic,~e = K((kq+a-6)h) and 

(3. 19) 

On the other hand, (3.9) may be re-expressed as 



18 

(3.20) 
A # A. 

<pn=l/J -y ~1/Jn-g 
roJ _,n _,n 

where 

(3.21) 

It follows from Lemma 2.5 that 

(3.22) 

.... 
We wish to express either~ or :t'.ri in terms of the other and introducing 

the matrices 

I~ 0 . 0 10 . 
0 0 0 • 

(3.23) J = 0 0\ i = 

l~ lo o 1 O_j 0 OJ 

we write 

(3. 24) 
... # .... 

1/J = J 1/J + J 1/J • ,....,n _, ,..,,n ,..._, ,....,,n-1 

We may then deduce the following result. 

THEOREM 3. 2 •. Assume that the quadx>ature rules are diagonally-block-reducible, 

and let f 0 (11), f(µ) and Bs+t(~(h);µ) be the matrix polynomials of Lerro-na 2.5. 

Then the sequence{~} >O satisfies a recurrence relation whose stability ~n n_ 
polynomial -z:s 

(3. 25) 

wherein 
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4. EXTENDED RUNGE-KUTTA METHODS 

The analysis of extended Runge-Kutta methods defined by (1.13a) may 

be deduced from the analysis of section 2.4 by means of a systematic adap

tation of our earlier technique. 

For the extended methods discussed here modified methods reduce to the 

classical methods so we may assume y = O. ~ ~ 
With (1.4) in place of H(x,y) in (1.7) and the choice (1.13a) the 

vectors (1.22) satisfy 

(4. 1) 
n-1 

f = 0 * + h ' At* K* f + hA * K* f 
~n+l Zn+l k~O ~p ~nk ~k+l ~ ~nn ~n+l 

wherein 

(4. 2) 

(4. 3) 

* and g. is defined as in (3.3). 
~l. 

Equation (4.1) is of the form of (2.24) under the replacement of w by 
* * t ~n f + l , g by g + l , K k by K k and, further, V by A and V k by A ~n ~n "'11 ""ll ""ll . ~nn ~ ~n ~p 

(k = O,t, ••• ,n-1). Evidently, (2.17) is then satisfied with m = 1, 

A0 = A1 = I, B0 = A, and B1 = At-A. Since A0 , A1 are diagonal it is possible ,..,,,, ,..,,,, . ,..,,,, ,..,,,, ,..,,,, ,..,,,, ~p ,..,., ,..,,,, ,..,,,, 

to deduce from (2.36) a stability polynomial for the extended Runge-Kutta 

method. 

Thus, we now set 

but note that (2.28) is now replaced by 

- I ~ (t = 1,2, ••• ). 
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(Replace q by 1 in (2.28)!). Further, we set 

where 

t 

= I 
l=O 

The expression for kt(µ) depends upon~*~?) and (~ - ~) * ~~l), 

l = 0,1, ••• ,t. For an arbitrary matrix Q, 

can be determined on setting~= diag (80 ,e 1, .•• ,8p) from 

if t = 0 

(4.5) Q[It] 

Q[I t-11] J t = 1,2, .•. 

where [~,Q[I t-1] J is the commutator ~ Q[I t-1] - Qlt t-1] ~

In this notation we have the following result. 

THEOREM 4. ll. A stability polynomial, for the extended Runge-Kutta method 

applied to (1.3) is 

(4. 6) 
S+l 

<let [(µ-1) ,! - h :S-s+l(~;µ)J 

where 

s 
I 

s=O 
" hs ( -1)S-s N 

s µ ~s+l (µ) 

s 
~s+l (µ) = (µ-l) I: (µ) + 

~s 

s-1 
I 

t=O 
(s) (µ-l) s-1 -t ( ) 
t ~t+l µ 
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APPENDIX 

Although Lemma 2.1 is a consequence of Lemma 2.4 (it is a special case) 

we shall indicate the proof of both results for clarity. 

PROOF OF LEMMA 2.1. Our proof is by induction on S. Using the reducibility 

property (2.3) it is easily verified that the lemma is true for S = O. As 

induction hypothesis, suppose that the result is true for s = 0,1, ••• ,S-l. 

In order to establish the result for S we write 

and use the relation 

(A. 1) 

to obtain 

(A.2) 

s 
(n-R.-k) 

_ hS+l 

Using the reducibility property (2.5) and the definition of a(s) for n 
s=O(l)S-i°, relation (A.2) can be written 

Equivalently, using the polynomials (2.6), 

n-m. S-1 m-m. ( 
p (E)E oa(S) = hS+l crs(E)fn - I hS-sPs (E)E oa s). 

0 n s=O s n 
(A. 3) 

Em-m.Oa(s) 
In order to eliminate in (A.3) for s = 0,1, ••• ,S-l, apply Lemm.a 

n 
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2.1 which is true by hypothesis. In particular, in order to eliminate a(S-l) 
n 

we have to apply {p0(E)}8 to both sides of (A.3). (Note that by definition 
m-mo 

p0(E) E = p(E).). This yields 

or 

Hence, the result is true for S. 0 

PROOF OF LEMMA 2.4. Using (A.I) it is easily verified that 

(A.4) 

Using this relation we derive 

Using the diagonal-block-reducibility (2.17) and the property that in 

(2.18) the matrices ~l are diagonal yields 
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equivalently, using the notation (2.27) to (2.29) 

m-m 
{P (E)} E O a (S) = hS+l E (E) 1u 

~O ~n ~S ~ 

The results (2.30) and (2.31) are now obtained by induction (compare the 

proof of Lennna 2.1). D 
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