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ABSTRACT

Direct quadrature methods and classical and modified Runge-Kutta
methods yield structured systems of equations when applied to a class of
test equations with polynomial convolution kernels. Exploiting the struc-
ture of the results obtained in the stability analysis for a basic test
equation, we derive finite recurrence relations which enable us to relate
the stability properties of the numerical methods to the location of the

zeros of appropriate stability polynomials.
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1. INTRODUCTION

1.1 Background and outline of the paper

We shall discuss the stability of a general class of methods, and

certain modified forms, for the numerical solution of the Volterra integral

equation
X

(1.1) f(x) - f H(x,y)E(y)dy = g(x) (x 2 0),
0

where H(x,y) and g(x) are given and continuous. Convergence of the numerical
methods has been discussed in the literature and will not be considered
here. The literature also contains a number of contributions to stability
theory, which vary in the class of methods considered and the special case
of (1.1) adopted as a test equation.

A test equation which has received particular emphasis is the basic

equation
X

(1.2) f£(x) - A J £(y)dy = g(x).
0

Results for this equation can be deduced from those for the equation

%z g

(1.3) f(x) - J ) As(x-y)sf(y)dy = g(x)
0 s=0

which we study here. We denote by K(x-y) the polynomial convolution kernel

S
(1.4) - RKGxy) = ] A x9)°
s=0
occurring in (1.3).

Stability of quadrature methods and classical Runge-Kutta methods applied
to (1.2) has been discussed in [6], and [2,6] respectively. The stability of
quadrature methods with a finite repetition factor (see [4]) was discussed
in [14], in the context of (1.3). The case S = 1 in (1.3) was investigated
for a special class of quadrature methods in [17] and for a large class of

Runge-Kutta methods in [13] (including Beltyukov methods and the modified



Runge-Kutta methods introduced in [10,111]).

The institute report [3] was devoted to a study of stability of a
rather wide class of quadrature and classical Runge-Kutta methods, applied to
to (1.3) with arbitrary S. Our aim in the present work is to convey the
structure of certain results in [3] and their extension to the modified

Runge-Kutta methods. Our study thus covers a wide range of numerical methods.

REMARK. The authors of [3] and [12] emphasize that the behaviour of the
kernel which they rely on, in their studies, is the polynomial dependence on
x of H(x,y). Although the convolution property yields simplification and

structure, their techniques yield results for kernels such as

(1.5) HGo,y) = Ag + )\?x + )\:y

investigated in [1,10]. (Both (1.5) and (l1.4) are particular cases of kernels

of the form

S
(1.6) H(x,y) = ) X (Y ()
s=0

studied in [5,12] by less direct means.) g

1.2 Preliminaries

The general form of the equations obtained by applying the quadrature
methods and the classical Runge-Kutta methods (of the type considered by

POUZET [9]) is given by f0 = g(Oj and

(1.7) ' fj - h z ijH(Tj,Tk)fk = g(Tj), ] 1,2,000

k>0

where {Tj} are grid-points to be specified below.

The quadrature methods are defined by a family of quadrature rules

nh
(1.8) f ¢(y)dy = h’ z w kd’(kh)s n=1,2,3,...,
0 k>0 ©

with



(1.9) © g = 0 for k > n.

We then take an = W T kh in (1.7).

Our Runge-Kutta methods are defined by a tableau

A o °
% | 200 01 Aop
° 1 %10 1o Ip
(1.10) 8lA = . . . ce e
eP-l p-1,0 Ap-l,l ) p-1,p
— -——4r— ———————————————
6 A- A. ® L ] [ ] A
p | "p0 pl PP

where ep = 1., (Such arrays with Arp =0 for r = 0,1,...,p, occur in Runge-
Kutta methods for differential equations.)

The extended Runge-Kutta methods depend upon (1.10) whilst the mixed
quadrature-Runge-Kutta methods involve also the rules (1.8). In each we

take T = 0 and

(1.11) rj = ih + erh, j = i(p+1)+r+l.
Thus
(1.12) i=03G-1D)/(p+1)], r = (j-Dmod(p+1).

We shall reserve the integers i,j,r for use according to (1.12) henceforth,

in this paper. The extended Runge-Kutta method results from the choice

Apt’ O<k<i(p+1)
(1.13a) R i(p+1)<ks<(i+1) (p+1)
0 otherwise;

the mixed quadrature-Runge-Kutta method from the choice



( W. o k=m(p+1), m<i
(1.13b) ij = 4 A i(p+1)<ks<(i+1) (p+1)
L

0 otherwise;

with t = (k-1)mod(p+1) in (1.13a,b).

Observe that for both cases

(1.14) Q.. = for k < i(p+1);

ik T Ti(pr1)+1,k

(1.15)

o)
]

ik 0 for k > (i+1)(p+1);

these we assume in what follows.
The methods given above are classical. The modified methods [11] depend

upon a choice of yre[O,lj, r=0,1,...,p, defining

T
(1.16) Y = [YO,YI,...,YPJ .

Here, the equations defining the values

(1.17) f., j = 1i(p+1)+r+l (r

5 0,1,00.,p3 1 =0,1,2,...)

in terms of fo = g(0) and the values fl’ f2""’ fi(p+]) previously comput-

ed by the modified method involve the '"lag term", or "history term",
i(p+1)
(1.18) n;(x) = glx) +h kZO 2 pr1y+1, kB T Fes

With our convention i = [(j=1)/(p+1)], r = (j—1)mod(p+1), we define

(1.19) nj = ni(Tj)’ n]-_ = ni(lh)-
(Observe that if 60 = 0 then ng = ni(p+1)+l') Then we set
1.20 £. =n. + y_{f. -n. }+h Q. H(t.,t,)f .

The last term in (1.20) is the "Runge-Kutta part"



P
h tZO ArtH(1h+erh,1h+eth)fi(p+l)+t+1.

When ij are determined by (1.13b) we have

i
(1.21) ni(x) = g(x) +h z w., H(x,kh)f

k=0 ik k(p*1)

REMARK. The modified methods collapse to the classical methods if y = 0,
if p = 0, or if ij are defined by (1.13a). Following [10,11,13] we regard

*

ny = + Yr{fi(p+1) - ni} as a revised lag term determined by (1.16) and

by the residual

. i(§+1)
fi(p+1)_”i = fi(p+l) - g(ih) - Lo Qi(p+1)+l,kH(1h’Tk)fk' O
In both classical and modified Runge-Kutta methods the values

fj’ j = i(p+1)+r+l, are associated in blocks defining

) T
(1.22) fie1 T [fi(p+1)+1’fi(p+1)+2’""Qi+1)(p+1)] ’

It is convenient to write also

(1.23) Di""l = [ni(p+1)+1’ ni(P+l)+2,..., n(i+])(P+])]

and to denote by

(1.24) €. 5 € 5.005€

0’ ~1’ ’E

P
the successive columns of the identity matrix of order (p+1) and their sum.
The principal purpose of the Runge-Kutta methods may be considered to be

Tf. approximating

. " - " =
the generation of the "full-step" values fi(p+1) ol A ]

f(ih) (1 = 1,2,3,...).
1.3. Stability

Stability properties, both of the integral equation (1.3) and the

numerical methods discussed here, can be related to the location of zeros



of appropriate polynomials.

For the integral equation, we may obtain the root conditions by reduc-

ing (1.3) to a system of differential equations. Thus (1.3) is, for ) EIRS+1,
asymptotically stable if and only if Es(u): = us+l - Z:=Okss!us_s has its

zeros in €_:= {ue€|Re(u)<0} and stable if and only if its zeros lie in the
closure of C_, G_:={ueC[Re(u)SO} the zeros having Re(u)=0 béing required to
be simple. The requirements can be expressed in terms of conditions [1,2]
on AO,XI,...,AS using the Routh-Hurwitz criteria.

We can reduce (1.3) to a system of differential equations. Likewise,
our analysis relies on the reduction of the corresponding '"summation"
equations (1.7) to a finite term recurrence, of the form 22=0 Kz gn—ﬂ = én’
where §£ = K(h;lo,ll,...,ks) and the components of in—ﬂ are values fj'

Such a recurrence is "strictly stable" if and only if the zeros of the
stability polynomial det [Z?=O §£um_£] satisfy |u|<1 and stable ifvand only
if they satisfy |u|<l, those with |u|=1 being semi-simple.

The relationship between the conditions on (1.4) and the conditions
on the numerical methods is of practical interest but is not pursued here.
Our aim is to show how finite term recurrence relations can be obtained, and
to derive the appropriate stability polynomials for the methods applied to
(1.3).

In what follows the advancement operator is denoted by E:

Efdv)n B gn+1

. . m _ .
for vectors [ and scalars alike. Relations E£=O§£ $o-p = S thus give

m Cm—L _
{2£=0 5{ E }¢ -

$
An-m  ~n
2. QUADRATURE METHODS

The classical quadrature method defined by (1.8) yields £, = g(0) and,

0
when applied to (1.1),

(2.1) £ - h kZO w  H(uh,kh) £ = g(nh) (@=1,2,...)



wherein fk = f(kh) and

2.1. Reducible quadrature methods

First we consider the case where parameters {GK’BK}?QO exist such that

(81

m
(2.3) 210 % Op.5 = Baos (G =0,1,...,n)

with the convention that g, = 0 if L ¢ {0,1,....,m}, oy + 0.
In this case the quadrature rules (1.8) are called {p,o}-reducible
where

2 m—-£

m
(2.4) p(w) = ] oy Ut Lo = 7 Bol
£=0 £=0

and the quadrature method (2.1) will be called a reducible quadrature method.

REMARK. The polynomials p(u),o(u) are the first and second characteristic
polynomials of an associated linear multistep method [7] for which the
usual conditions are p(1) = 0, p'(1) = o(1). We assume that p(u), o(u)
have no common factors. It can happen that p(p) has a root p = 0 of multi-
plicity v in which case ap = 0 for £ = mym~1,...,m,+1 where m, = m-v and

0 0
(2.3) reduces to its minimal form

o)

2.5 o) W . = ‘e

(2.5) EZO L "n-L,j Bn—J

The assumption of reducibility (varied later) imposes a structure on
the quadrature method which we may exploit, to obtain from (2.1) a finite-
term recurrence between successive values fn. The main tool is the repeated
formation of linear combinations of (2.1) with varying n and corresponding

weighting factors Cpe O

In our present analysis we employ, in addition to (2.4), the poly-



nomials
m
t -
(2.6a) o (W) = 12 £ Bp u £ t=0,1,2,...3
=0
) ‘ mofﬂ
(2.6b) p (W) = zz £" apu t=0,1,2,...3
=0
t
(r)pt—r(U) t =20,1,2, s r=0,1,...t;
(2.6¢) ptr(u) =
0 otherwise

Here ptt(p) = po(u) and m, = max {£|a£ + 0, 0 < £ < m}. Thus,
'm—mo
p(u) = u po(W)s o5() = o(w).

2.2. A stability polynomial for reducible quadrature methods

Theorems 2.1 and 2.2 below state the required results for {p,o}-reduc-
ible quadrature rules applied to (1.3) and will be obtained as a consequence
of a sequence of lemmata which are useful later.

When H(x,y) is replaced in (2.1) by K(x-y) = XS

s .
<=0 Xs(x y)~, equation
(2.1) yields

3 (s)
2.7) fn = g(nh) + SZO Asan
where
2.8) 2’ =n J u_ (ah-kh)®E, .
n k50 nk k

LEMMA 2.1. Let the quadrature rules (1.8) be {p,oc}l-reducible. Then
{a§5)}n>0 satisfies a recurrence relation with constant coefficients of
the form

(2.9) {0 (E) 1% (B) aﬁs) =5 N @) £

s+1

where the polynomial Ns+1(u) is defined recursively by



s-1

N, () = {po(u)} o (u) - tZO P (W ipgG)}

s—1 t
t+]

(W
with Nl(u) = oo(u).
PROOF. The proof is by induction on s; details are given in the appendix. [J

A useful adjunct to Lemma 2.1 is the following result.

LEMMA 2.2. For s = 0,1,2,...,

- ]
oy (1) ; po ()
1
(2.10) NS+1(U) - (1) det o](u) : ol’o(u) oo(u)
E E po(u)
1
CS(U) 1 p (U),--- S g— 1( )
PROOF. Expand the determinant by the last row. g

LEMMA 2.3. Let the quadrature rules (1.8) be {p,ol-reducible and let

n S
(2.11) 4 = h Z wnk{szo A, (h) (nh=kh) °}£,

for arbztrary functions {A (h)} defining a vector A(h) = [Ao(h),A](h),
S A (h)] Then {¢n}n>0 satzsfies the recurrence relation

(2.12)  {o®} o(®) ¢_ = (A()ENE_

S+1

where R (A(h),u) 18 a polynomial in p given by

s s
Ry W5 = L A (%o ()} 0N

().

s+1

PROOF. Write ¢_ = S (h)a( s) and apply {p,(E)} p(E) to both sides.
—_— n s= 0 s 0

Application of Lemma 2.1 yields the result. []

REMARK. R, (A(h),u) depends linearly upon A(h). O
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S .
THEOREM 2.1. Let H(x,y) = zs=oks(x—y)s, Ag 10, and let {f_} o satisfy
(2.1). If the rules (1.8) are {p,o}-reducible then

S | = .
(2.13) {og(B)} o (B) (£ - g(nh)) = h R, (AE)E
T
where A = [Ao,ll,...,ks] .
PROOF. Apply Lemma 2.3 with ¢n = fn - g(nh) and A(h) = A. O

The following result is now an immediate corollary of the previous
theorem. Since our emphasis is on stability polynomials we state it as a

theorem.

THEOREM 2.2. Under the assumptions of Theorem 2.1 a stability polynomial for

the sequence {fn}nZ s

0 Z
(2.14) Qg s = Lg% ) = h Ry, Q3w

2.3, Diagonally-block-reducible quadrature methods

The assumption that the rules (1.8) are {p,o}-reducible is somewhat
restrictive. However, it is commonplace [6] to find that the array of

weights w in (1.8) can be written in the form

K
: R P ,
N Y 1N 1 1% PR A l
2.15) o = Byl - - - (Bl lH e - o [
LR “|%o|¥o (%ol - - |Hpm2 | W1 | Xy

where W, EO""’HP are square matrices of order q, say, and we set

HP+k =0 (k>0). Thus, defining the square matrices an with elements

(2.16) ETV (0,8=0,1,...,9-1).

o ~nk %8 ~ “ngq+o,kq+B

and H—k = EO for k = 1,2,..., we can describe (2.15) by the relation
znk = HP—n+k (k=1,2,...,n) and znO = W.
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REMARK. Inconsequential changes in the above relations should be made when
W is rectangular rather than square and the pattern in (2.15) holds only
for n = n # 0. Observe that (2.15) implies that the rules have a finite

"repetition factor" [3]1. [

We may relate the rules with the above structure to a géneralization
of the {p,c}-reducible rules. Quadrature rules are said to be block-
reducible when the matrices URE satisfy, for fixed matrices {A ,§1}2=0 s
with 2?=0 Ap & =Qand By =0 if £ ¢ {0,1,...,m} the relations

m

(2.17) KE AV o = By (k = 0,1,...,n).
=0 ?

The stability polynomial for block-reducible methods applied to (1.2)
can be shown to be det [ZZ {éﬂ - thz}um_ﬂj. In order to achieve a simple
generalization for (1.3) further assumptions will be made.

The rules in (2.15) are observed to be block-reducible on taking m = P,
éO =1, él = ~I and éﬂ =0, £ # 0,1, EK = EP-Z—HP-£+1' Thus, they have the
special feature that the corresponding matrices éﬂ are diagonal; this proves
a useful assumption when considering (1.3). When each matrix éﬂ is diagonal

we shall call the block-reducible rule diagonally-block-reducible; to

emphasize we then write
(2.18) éﬂ = Aﬁ @ =0,1,...,m),

éﬂ being diagonal.

2.4. A stability polynomial for diagonally-block-reducible methods

To exploit (2.17), (2.18), we wish to write the equations (2.1) with

H(x,y) = K(x~y) in vector form involving the matrices zn . We define

k -
(2.19) b =[f ,f - e
: <n nq’ ng+1’ > (n+1)q-1
and the matrices K . with entries
~nk @
T
(2.20) e, Kk & = K((ng+o)h~-(kq+B)h) (0,8 = 0,15...59-1).
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We also write
(2.21) g = [g(agh), g((agtDh),...,g((ar1)qh-h) T .

. S
Since K(x-y) = Zs=0 KS(X‘Y)S,

2 (s)
@.22)  Kye= Lo Mk
s=0
where elements of M(S) are
~n-k
(2.23) eT M(S) e, = {(n-k)qh + (a—B)h}s
) ~o, ~n~k ~B

Now let G, H be two matrices of the same size with elements GaB’ Has

respectively. Then the pointwise (or Schur) product denoted G * H is the
matrix with elements GaBHaB' With this notation,

n
(2.24) v, =g, +th kZO Ve * Ko e

Employing (2.22),

(2.25) =g + § A 2l
‘ En - &n =0 S 2,
where
(2.26) a(s) = h E V. % M(S)
: ~n k=0 ~nk ~n-k mk'

To proceed, we introduce

T m—L
(2.27) P(W) = ] 4,

) ¢ mo—ﬂ
(2.28) B(w) = § ()" ppu

where m denotes the largest integer such that ém # 0, and
0
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~

m - —
(2.29) 3 () = zzo h t(gz*gét))um t

LEMMA 2.4. Let the rules (1.8) be diagonally-block—reducible. Then
{gﬁs)}n>0 satisfies a recurrence relation with constant coefficients of
the form

(2.30)  {gy®1° @ = N, ® g,

~ ~Ss

where §s+l(E) 18 defined recursively by

s=1 1
CEDIE SHORS AO R AR R SHOE O N, 0
with Ny () = Z,(0).
PROOF. See Appendix. 0

LEMMA 2.5. Let the rules (1.8) be diagonally-block-reducible and let
n S (s)
(2.32) ¢, =h kZO V> {SZO Ay ()M 7 DY, -

Then {¢n}n>0 satisfies the recurrence

S - °
(2.33)  {By(®)}° B(E) ¢ = h Re, (A(h);E)Y,
where
2 s S-s
(2.38)  Rgy (A = 1 ARG N, G

s=0
PROOF. Apply Lemma 2.4. [J

Our principal results for this section now follow.

S
THEOREM 2.3. Let H(x,y) = ) xs(x—y)s. If the vectors (2.19) satisfy (2.24)

and the quadrature rules aﬁzodiagonalZy—bZock—reducine, then

(2.35)  {2,(®}° E®){y - g} = h R, By
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PROOF. Use Lemma 2.5 (compare with the proof of Theorem 2.1). 0
As a corollary we find

THEOREM 2.4. Under the assumptions of Theorem 2.3, a stability polynomial

T .
for the sequence {y, = [f o £ L ioeeesf i 1yao1d Tnso 28

(2.36) det[{go(u)}%g(u) - h R, . (w1

S+1

3. MIXED QUADRATURE-RUNGE-KUITA METHODS

We now consider the classical and modified mixed methods defined by
(1.7), (1.13b) and (1.19), (1.20), (1.21) respectively. The analysis
presented for the quadrature methods can be adapted to treat these methods
applied to (1.3). We rely in particular on Lemma 2.3 and Lemma 2.5. Thus,
for the classical mixed method employing {p,c}-reducible rules, we can find

(see [3]) a relation of the form of (2.11), namely

n S
— — S ~
(3.1) f(n+l)(p+1) = h kZO wnk{sZO A (h) (nh-kh) }fk(P+]) + g(nh).
Thus, see (2.12), {pO(E)}Sp(E)f(n+1)(P+1) - h RS+I(A(h);E)fn(p+l) = Gn (for

some term Sn depending on g(x)) and obtaining a stability polynomial is
immediate when the values of As(h) are determined from {AS}.
Here, we shall treat the classical and modified mixed methods assuming
either {p,o}-reducibility or diagonal-block-reducibility of the rules (1.8).
When H(x,y) 1s replaced in (1.21) by K(x-y) we obtain

. 1
(3.2) n;(x) = g(x) +h kZO Wi REKR) £ ey

Th iting g;, = [g( )58 ( 1" and
us, writing g:,1 = L8 (pr1)+17 28 T (pr1)+2) 7 28T (1) (p+1) an

employing the notation (1.23) we find from (3.2)

*

i
(3.3) Divp = Bieg * B kZO “ix Fipr1) Kik

where
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(3.4) £ = [R(E-OR+oh), K((i—k)h+61h),...,K((i—k)h+6ph)]T :

Further, (1.20) then yields for

=1 T

Eie1 = Uiipeny+rr Siqprnye2r o 2B (i) (pe1)

the relation

- *
(3.5 £ie1 = Ryey T R@ Ky £y
where 50 = EO(&;h) has elements
(3.6) e Kl e =K((6, - 6)h) (r,t = 0,1,...,p),
and
* _ _ Ay
(3.7) Rier = Dier * Eypeny ~ 150X

and ﬁi is defined in (1.19). In consequence

= - -1 4
(3.8) £ T Z-h 5*50) Qivre

. T _
Since £ Lin1 = Fien) (1)’

Lemma 3.1 requires no assumptions on the quadrature rules (1.8). Setting

(3.8) permits us to derive the following Lemma.

Yy = 0 gives a result for the classical mixed method.

~

LEMMA 3.1. Suppose {fj}j>o to be defined by the modified mixed method
applied to (1.3). Let

# T(

R RCERTS SR

and denote by ¢: the expression

#

(3.9) %1 = Faen ey Y Figprn) Bisr?
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~ . T _ _l* _ # .
where Bivl = EP(I hA*KO) 8341 Y*g(ih). Then
i -~
(3.10) ¢; =h Z w;, K(ih-kh) fk(P+1),
k=0

where
(3.11) R(ih-kh) = e (I - hA*R) ! «. . —y"K(ih—kh)

~p o~ ~ ~0 ~i-k :

. T

PROOF. Appl to (3.8 d usi . . i . =
: pplying gp oA( #) anT using (3 721and*(3 3) gives f(1+1)(p+1)
& L1017 Eipery Y * e, - ARy gl

- - _1 . ~ — - .
+hzk20 sy fk(p+1) sp(} hAxK,) k., and setting n; = n;(ih) in (1.21)
yields the result. 0

3.1. Mixed methods with {p,o}-reducible rules

We now consider the case where the rules (1.8) are {p,o}-reducible. To

proceed we require a convenient expression for K(ih-kh).

LEMMA 3.2. Let Hg = s§(£~hé*go)_lgs where gs = [98,65,...,6:]T. Then
(3.12) K(ih - kh) = ) R, (h) (ih-kh)~,
s=0

where
(3.13) Ay(h) = A_(h) =y A,
with

E t t-s
(3.14) A (h) = Z A, () hT T

PROOF. Expand K(ih-kh) in powers of ih - kh. [

THEOREM 3.1. If the quadrature rules in the mixed methods defined by Y in
(1.16) are {p,ol-reducible then the "full-step" values {f

the constant term recurrence

n(p+1>}n20 satisfy
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~

S #
(3.15) {po(E)} p(E)(Efn(p+1)—y fn(p+l)—gn+1

) = hRg,  (ARSEIE ).

PROOF. Employ (3.9), (3.10) and (3.13) in Lemma 2.3; note that Efn(p+1) =
Far eyt B

A consequence of Theorem 3.1 is the following result.

THEOREM 3.2. Under the assumptions of Theorem 3.1 a stability polynomial

for the sequence {fn(p+1)}n20 18

#
(3.16)  {ulog( ¥ - hRg, (A ;1)) = ¥ Qg ; (h3w)

using the notation (2.14).

~ B # #
the result follows from Theorem 3.1. The term in QS+1(A;U) drops out for

the classical methods (y = 0). [

3.2. Mixed methods with diagonally block-reducible rules

The relations (3.9), (3.10) continue to be applicable when the quad-
rature rules of the mixed methods satisfy the assumptions (2.17) and (2.18)

of section 2.3.

If we write

= ‘ T
(3-17) Qn - [¢nq9 ¢nq+1""’¢(n+l)q-l]
then (3;10) may be re—expressed as
(3.18) ¢ = h 1';0' (V. * Kk) g
where gz Ekgs = ﬁ((kq+a—8)h) and
3.19 = [, £ £ 1*
G19) e = Magpeny Faar) 1) T lkara-) 1) 7

On the other hand, (3.9) may be re—expressed as
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- # -~
(3200 =k Y b
where
~ 9T
G20 T Mg or1)” Faeqr) ety Seqra) ooty T -

It follows from Lemma 2.5 that
: S o H oty TR -
(3.22) {EO(E)} R(E){En Y En gn} = h gs+1(g(h),E)gn.

We wish to express either wn or in in terms of the other and introducing

the matrices

0 ] B 01]
1 0 . 00
1
# - L]

(3.23) J = 0 , 3 =

0 0 1 0| 0. .. 00|
we write
(3.24) o =373 +3%

< An ~A<An  ~ &n-1°

We may then deduce the following result.

THEOREM 3.2. Assume that the quadrature rules are diagonally-block-reducible,

and let By(w), B(W) and Rg,
Then the sequence {ﬁn}n>0 satisfies a recurrence relation whose stability

polynomial is

(A(h) 31) (uI+3")

(3.25)  detl{R (2 (T - v*D) - v*1*1 - n g,

wherein

(A(h) ;u) be the matrix polynomials of Lemma 2.5.
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#

L(h) = A() - v*p.

4. EXTENDED RUNGE-KUTITA METHODS

The analysis of extended Runge-Kutta methods defined by (1.13a) may
be deduced from the analysis of section 2.4 by means of a systematic adap-
tation of our earlier technique.

For the extended methods discussed here modified methods reduce to the
classical methods so we may assume Yy = Q.

With (1.4) in place of H(x,y) in (1.7) and the choice (1.13a) the
vectors (1.22) satisfy

n-1
+ * *
= *

(4.1) fne1 T B * R kZO B * Kok Sk 2K £y
wherein
(4.2) AT = e el A

~p ~~p
(4.3) el K* = R((m=k)h + (6 —6_)h)

* ~a ~nk EB n o B

and g; is defined as in (3.3).
Equation (4.1) is of the form of (2.24) under the replacement of wn by

* * + ~
£n+l’ gn by Bo+1? Ehk by Enk and, further, znn by A and Enk by Ap

(k = 0,1,...,n~1), Evidently, (2.17) is then satisfied withm =1,
t .

éo = 'él - L ‘B‘O = A, and .1\3,1 = ép_é' Since ,éo’ 'él

to deduce from (2.36) a stability polynomial for the extended Runge-Kutta

are diagonal it is possible

method.

Thus, we now set
B(w =B (1) = (u-1)I
but note that (2.28) is now replaced by

B(w=-1 (t = 1,2,...).
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(Replace q by 1 in (2.28)!). Further, we set
_ -t (t) -t t _ ()
Et(U) h = A~x MO u+h (ép A) * Ml
where

t
"t (®) - !120 ) n % (K) e Nét)Ns =h" (s - 0"

() (K)

The expression for gt(u) depends upon A * go and (A - A) * M

£ =0,1,...,t. For an arbitrary matrix G,
(4.4) gltD =h G *M,
can be determined on setting © = diag (60,61,...,6p) from

if £t=0

1{>]

(4.5) GltT =
8, GIt-1T1 t =1,2,...

where [0,GLt-11] is the commutator © G t-11 - GI[t-10 3.

In this notation we have the following result.

THEOREM 4.1. A stability polynomial for the extended Runge-Kutta method
applied to (1.3) is

4.6)  det LD - R, Qsw)]
where
Rg,y (sw) = Z A h° (u-1)%" "Ny W
s=0
N .= -1 5 ( +s§1 S @-nDSTTE N )
Noi w = (u-1) L, u) L G u Ny (u

Sty ot
2, () = AC) + on () 4, - HTT.
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APPENDIX

Although Lemma 2.1 is a consequence of Lemma 2.4 (it is a special case)

we shall indicate the proof of both results for clarity.

PROOF OF LEMMA 2.1. Our proof is by induction on S. Using the reducibility

property (2.3) it is easily verified that the lemma is true for S = 0. As
induction hypothesis, suppose that the result is true for s = 0,1,...,S-1.

In order to establish the result for S we write

aés) = hS+1 Z W, (n—k)

and use the relation

S-1

(A.1) @21°% = @0 - T ) @L-0%57
: s=0
to obtain
m m
(A.2) 20 opa (i)i St 20 o, niz w_p k(n—k)sfk
=0 “ " £=0 “ k=0 "%
m
0 n-{£ S-1
S+1 s S Se
-h 2 o Z w__ 2 ( ) (n—£-k)°2 .
p=0 Lo Bk oo i
Using the reducibility property (2.5) and the definition of aés) for
s=0(1)S-1, relation (A.2) can be written
m m
0 sy _ s F s S s s-s 0 Ss(s)
£=0 "o =0 . s=0 ° 220 & o
Equivalently, using the polynomials (2.6),
(A.3) ®E 08 - x5 o @y - Sil 7% @ Cal®
' o 4n % n L Pss n

m—m

0 (s)

In order to eliminate E a_ in (A.3) for s = 0,1,...,5-1, apply Lemma
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(s-1)

2.1 which is true by hypothesis. In particular, in order to eliminate a_

we havemgg apply {po(E)}S to both sides of (A.3). (Note that by definition

0o E 0= p(E).). This yields
too®1%e®al® = 5o @150 e
- Sfl h°7%5 (B0 (8177 S0 (B) 150 (B) (s)
0 Po Pt 7 PAR)E,
or
o, @%@ 2% = 5o @ o ) -
- Sil B (B) (o (£)}° 175y (B) It
gLo Pss™ o s+ n’
Hence, the result is true for S. g
PROOF OF LEMMA 2.4, Using (A.1) it is easily verified that
S-1
(S) (S) (s)
(a.4) Mot "t LG Sy an®® ue)
Using this relation we derive
-£
.8 _ " ()
g RpBn-p ’hgo% gow—ﬂk N
m
0 n-{
M(S)
=h } 8, 1 (¥ _ M2
£= K k=0 ~ f,,k k’ 4k
O n-£ S-1
S S-s. (s)
Z E Wtk SZO ) an) "5 )y

Using the diagonal-block-reducibility (2.17) and the propérty that in
(2.18) the matrices AK are diagonal yields

m

0 m

(s) _ ()
zZo Rg 2pp = B zZo (Bp * Mg g
- Sil & ?0 qn)57% p, 2¢%)

=0 % 220 4 R Zp-p 3
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equivalently, using the notation (2.27) to (2.29)

m-

2, ()} E "o a (8 =S g (B) i
S‘l _ (S)
s s
i SZO (S)ES-S(E) h SEm_mO B

The results (2.30) and (2.31) are now obtained by induction (compare the

proof of Lemma 2.1). O
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