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Computation of flows around a Karman-Trefftz profile*)
by

W.J.A. Mol

ABSTRACT

In this report we consider the stationary Navier-Stokes equations in
w — ¢y formulation. The equations are discretized with Il'in's method and
Newton-linearized. Each linear system is solved by the multigrid method.

I1'in's method induces artificial viscosity, especially in regions with
lafge 2nd derivatives of the vorticity (e.g. in boundary layers). To reduce
this artificial viscosity mesh refinement is applied in those regions.

The flows in a square cavity and around a cylinder are computed. These
are test problems for a more practical problem: the flow around a Karman-—

Trefftz profile, which is also computed.

KEY WORDS & PHRASES: Il'in's method, Newton linearization, multigrid method,

mesh refinement

*) This report will be submitted for publication elsewhere. '
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1. INTRODUCTION

In MOL [5] a multigrid method is proposed which is efficient and robust
i.e. the method is not only fast for the Poisson equation but also for the
anisotropic diffusion and convection diffusion equations for small values of
the perturbation parameter.

' This multigrid method, from now on called MULGRI uses 7-point ILU de-
composition as smoothing operator, Galerkin approximation as coarse grid
operator, 7-point prolongation and restriction, 1 coarse grid correction,
no smoothing before and 1 smoothing step after correction. More theoretical
arguments for the choice of these parameters and operators can be found in
MOL [6].

MULGRI is also efficient for problems with variable coefficients and
non-linear problems (see MOL [4]). In all these cases the number of opera-
tions is O(N), with N the number of grid points. The number of operations
for 0.1 reduction of the residual is 19N for the Poisson equation. This
number is even smaller, when we exploit the fact that the coefficients in
the Poisson case are constant.

Two flow problems are solved by MULGRI in MOL [7]: the stationary
Navier-Stokes equations in a square cavity and around a cylinder. MULGRI is
also efficient and robust for these problems.

In this report we go into the problem of solving the stationary Navier-
Stokes equations more extensively. We also look at flows around a slender
body with mesh refinement.

In chapter 2 the stationary Navier-Stokes equations are considered in
w = P formulation. The equations are discretized with I1'in's method and the
discretized system is Newton linearized. The stream function and vorticity
equations are solved simultaneously after application of conform mapping and
mesh refinement.

In chapter 3 MULGRI is adapted to the 2 variables case.

In chapter 4 and 5 the flows in a square cavity and around a cylinder
are computed respectively.

In chapter 6 and 7 we compute the flow around a Karman-Trefftz profile
with mesh refinement in boundary layer and wake. By choosing a suitable mesh

refinement the artificial viscosities are reduced for large Reynolds numbers.



2. THE NAVIER-STOKES EQUATIONS

2.1. Coordinate transformations

Consider the Navier-Stokes (NS) equations in w - ¢ formulation:

A Y= w
}(y *
(2.1.1) (x,5) € @
3(P,w) _ 1 o
3(y,x) Re "xy
2 2
with A, = 3——-+ - and d(b,0) _ By duw _ 29-293 Re is
Xy aX2 Byz 3(y,x) dy 9x  9x 9y

the Reynolds number of the problem.
2 coordinate transformations are applied: a conformal transformation
g' = £'(x,y) and n' = n'(x,y) and a coordinate stretching £ = £(&') and

n = n(n'). The NS-equations after these transformations are:

o & —99 + B o (B alp) = My
(2.1.2) (E,n) € Q

9W,w) _ 1 ow. 9 (pldw
AB 3(m,8) - re (45t g (hgg * B (B £}

with

(2.1.3)

A=—"2 5 B=—+.

These equations represent the most general form of the NS-equations in this

report. Q will be the square Q@ = (0,H) x (0,H), H ¢ R.

2.2, Discretization

. . .o L .
System (2.1.2) is discretized on a rectangular grid Q@ , which has

uniform mesh size in both directions:



= 1) |g; = Db, ng = Db, 1= 02t
i =omzh
(2.2.1) <
= H/(ZK + 2)
(0,8) | (3, 5)

(0,0) (H,0)

Figure 2.2.1 Grid 93 (the dots) and the boundary points
3
R

(the crosses)

Note that QK lies a distance h within the boundary 3Q of Q. This is because
the boundary conditions of the NS—equations are substituted in the difference

scheme. The boundary conditions are discretized in the grid points:

gy = {@,n) s = G+Dh, 5 = 01125
005 = {(g; H)la = (+Dn, i =0(12%
2.2.2)  {ody = {©n)In; = G+Dh,  § = 0112
f {(g; O)Ig = @+Dh, 1i=o0n2H
aszﬂ = asz!' u SQI' u BQZ u BQ'K

- 1 2 3 4

The 2nd derivative of ¢ in &-direction is discretized by central

‘differences:



9 (a9
(2.2.3) Agp A ag)I

with

(2.2.4)  h,_ =

The 2nd derivative of § in n-direction is approximated by:

: 9 (p 9V
(2.2.5) B N (B an)|i
with

_h
(2.2.6) hj—l = 3. o
J™2

g > El—i{ i;l’J (b—l; + E—l-:l)q,i’j + %l} ,
h, = K?:% , b, = %? )

5T s
h, = —B—?_J,% , Ty = ;_j :

The 2nd derivatives of w are discretized in the same way. The first deriva-

tives of ¢ are approximated by:

A-gi =
SREN
(2.2.7)
B gi- =
UE

The first derivatives of

[31):

, oW ~
A — =
P .
2 1,]
(2.2.8)
B%% =
i,]

G AR

Vit1,i " Yi-1,j def _ .
ZE isJ
i
Yi,5+¢1 7 Yi,3-1 def ..
25 isJ

w are discretized with Il'in's method (see Il'in

(1+a. .)(

1,7 wi+]aj_w

) + (l-ai Dlw. .~w )

i,j] s ] i,j i-1,j

2h,
i

L) o+ (1—8i D(w. .~w )

P =W. . o
37 1,3+ i, j’ 1,3 1,31

— ?

2h.
J

with o. . and B. . the Il'in coefficients:
1,] 1,]

E 3



) 1 Re max(hi_l,hi),
a s = - coth(yi a2 L) o+ 5 3 Yy s = 5
j 373 vy sy i,j
(2.2.9) 1
1 Re max(h._l,h.)
B, : = = coth(8; .b, .) * g3 8 . = > = J .
5] ‘ 5] 1,] 1,3°4,] 5]

Because of this discretization artificial viscosity terms

o. .a. .h. 2 B. .b. .h.
(2.2.10) - —2d 1,31 (422 9) ana - 2 L3 J (82 8__31)
2 0g 2 an

are added in the right hand side of the vorticity equation of (2.1.2). The

reason why I1'in discretization has been applied is as follows. Our multi-

grid method does not work if the matrix is not almost weakly diagonal domi-
nant. This means that for Re >> 1 some form of artificial viscosity must be
applied. In order to secure the existence of a Frechet derivative*) of the
nonlinear system of discretized equations the artificial viscosity must be
a smooth function of the coefficients. Il'in discretization serves this

purpose; classical upwind differencing would not do.

The discretized NS-equations (2.1.2) are:

r....+....+....+....+
Pl,le,J P1+1stl+1,J pl'lale‘l,J p1,3+1 1,3+1

2.2.11 y + P, . V. .  *q. .0, .=
( ) 1,J—1w19J_1 qlsJ 1,]

. L. .+t T, LW .t r, L. .+t r, . . .
-rlyleﬁJ r1+laJw1+]’J rl—lstl_]sJ rl’J+1w1’J+1

+ =0

Fi, 510,51

with

*)

For the Newton process, see section 2.3.



Fp- . = ::1'—'(-'1— + —l—) +i-(-..1—- + _L)
1,] h. h h. h. h. h.
i 1i-1 i j 3-1 j
_ 1 . _ -l
i-1,ij  h.h, i+1,j  §
11i-1 11
p, ., ==~ ; p, ., ==
i,3-1  1.n, i,j*+1  p.n
131 13
. = M
qlﬁJ 133
P: - O. .a. . B. .b. .
(2.2.12) dr. . = 1,3 _ 1_’_3 1,J _ 132 1,]
1,] Re h. h.
1 J
P. ] (1-a. .)a. .
r. , = i-1,3 _ 1_3_3 1,]
1-1,3 Re 2h.
i
. . 1+a, .)a. .
r = 1+1’J + ( 1’3) l’J
i+, Re 2h,
i
P. . 1-8. .)b. .
r = 1,31 _ ¢ BlsJ‘) 1,]
1,31 Re 2h,
J
P. . 1+8. .)b. .
r.o. o= _1,3*1 ( Bl,J) 1,]
Fi,41 T TRe 7h,
J

2.3. Linearization and simultaneous solution

The vorticity equation in (2.2.11) is non-linear. Methods to solve the
non-linear NS equations can be classified in 3 groups:

1. Time-dependent methods. A time derivative is added and the problem is
treated as an initial-value problem. As time becomes large, the desired
state is approached (see ROACHE [8]).

2. Picard-iteration. These are methods generating a sequence of linear
equations with constant coefficients. Each system of equations can be
solved by a Fast Poisson Solver (see ROACHE [9] and [10]).

3. Newton-iteration. At each Newton step a linear system with variable
coefficients has to be solved. Suitable iterative methods to solve such
systems are the multigrid methods.

The last method offers good prospects. v. ASSELT [1] compares efficien-
_cies of method 1 with those of method 3 applied to a Burgers-like equation

with a small perturbation parameter. Method 3 appears to be most efficient



for this problem

Method 3 is also more efficient than method 2 when they are applied
to the NS-equations with large Reynolds numbers (see WESSELING [13]).

Another property of (2.2.11) is that we have 2 equations with 2 un-
knowns (stream function and vorticity) in each point of the grid. In the
methods 1 and 2 these equations are solved sequentially. When the problem
has a no-slip boundary condition the time and Picard processes are very slow.
Usually a relaxation parameter is added in the no-slip boundary condition,
but it is difficult to get the optimal value of this parameter. Therefore,
method 3 is applied with simultaneous solution of the streamfunction and
vorticity equationms.

Newton linearization of (2.2.11) gives:

u+l u+l ut+l
. .. .+ P, ., . +P., . Y. . . +P. . V., .
p19J¢1:J i+1,]71i+1,3 1_19Jw1—1s3 19J+1w133+1
ut+l u+l
+P. . . . + q. .w. . =
Pi,i-1%1,3-1 1,1 1,]
.3. It Hr] T T T
(2.3 1) rl’le,J ¥ 1+]’le+l’J rl—lstl_lsJ * 1,J+]w1sJ+1
T Y P
T i,J-171,3-1 1,1 1,] i+1,] 1+1,] i-1,3 i-1,]
u ptl ptl _ L u
L MRS EACH MRS WS AW K B I
with
(1 u U cliJl i u u 'd‘; i
s. . = 0; s, . = =8, . = - = -5, . = =2
1,] ? 1+13J l_lsJ 2}—1. > 1’J+1 15.]—1 Zhj
1
T o VL SRR L o N (7} Lo
Cl.l L= - ( BlsJ 1,] 1,7 13.])( i,3+1 1’3) _
1,] 2h.
J
H 1M H H U
1-8% . = B!".S8. .b. D(w: . - w, .
_ ( B1,J 1,7 1,3 1,] ( i,] i,j-1
2h.
(2.3.2) Jl J



] 1+t .+ oM, ah - .
Q¢ . = (Ireis * %4,5%,5 1,3)( i+1,i 5,5 +
>3 2h,
u ul u i
u '
-0 . — o. - W. .
+ ( 1,] sJYl’J 1’.])( 3.] 1_133)
2h.
i
TP L. L N L S
| 1,] 1,] 1] 1,1 1,]
a¥ . and b" . are the velocities, a¥ . and gY . the I1'in coefficients,

1,] 1,] 1,] 1,]
aiuj and Bi“j the derivatives of the Il'in coefficients in the uth Newton
9 b
step. For the derivation of (2.3.1) and (2.3.2) see appendix A.

2.4. The no-slip boundary condition

In many flow problems we encounter a no-slip boundary condition defined

. n
by: A
v=0 7
A——> &
(2.4.1) (€,n) € 239 ;
3y _ 2 . .
o0& 0 f(i-],j) (l:J)
/
EIY)

Figure 2.4.1.

Taylor expansion of ¢ in point (i,j) gives:

2 h3 83

9 4
(2.4.2) V. .=y, , . +h = + o +0(h™).
i,] i-1,] dE i-1,3 2 ag2 i-1,3 3: ag3 i-1,]
2 M
V. . = eI’} . . = 0 according to (2.4.1), while 5y . .= (=)
1-1,]3 9E [|1-1,] 852 i-1,3 A2 i-1,;

according to the stream function equation in (2.1.2). The 3rd derivative of

VY 1s equal to:

3 2
2.4.3) 2% 3 &P = 3 &P
90& i-1,j 9 i-1,3 A i-1,]
& -
- A i,] A i-1,] + 0(h) .

h



Therefore, (2.4.2) becomes:

2 2
e L@y - rsoeh -
1s] AT i-1,j A i,i AT i-1,j

(2.4.4) -9 -9
hi-g by 4

<
|

The vorticity in a point at the wall is approximated by:

_o
. 1 3 by
Q.45 wpg s F L SNy, T e M5t
i-1,] hi—] 2h;_,

Substituting this boundary condition in the equations (2.3.1) gives:

a2y,
u

(¢t = B, - L 1,J B
i-1,]

'.l‘.'i . o _2
3 23 o M, . .
i-17i-1,3
(2.4.6) 3
u e 3 u
S. . ¢ P E— 1"1_1’j .

T 1,]
L

2.5. Scaling of the equations

Equations (2.3.1) can be written in the following form:

(2.5.1) Au = £,

with -
lAn Al

A= | ""'Pi,j-l"""pi—l,j Pi,j Pi+1,j""'Pi,j+1'“

oooolonocunno-ccaaoonoli

‘ .QQ'..Ol'....'."....l‘l.lqc
1,]

(2.5.2)
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1 A, e85 §-1ttttt8 o] Si,j si+l,j°""‘Si,j+1"""l
A22 !"'ri,j—l' "'ri—l,j ri,j ri+1,j"""ri,j+l"""
U = lwi’jl s £, = o]

L u, = lwi,jl H 9 = Iti,jl

The equations are scaled as follows. The rows of A21 and A22 are multi-

plicated with Re. The columns of A12 and A22 are multiplicated with a scal-
ing factor S Finally, all rows are multiplicated with a factor such that
we have 4 in the maindiagonal of A.

The factor So is chosen as follows:

_ .2
(2.5.3) o = hO’

where h, is the smallest mesh size on the no-slip wall(s) in normal direc-

0
tion.
All coefficients of A are 0(1) except
hiMi i hJ?Mi ;
— 3 b]

0 0

and s; ; in the no-slip boundary points:
2

U T %
(2.5.5) si,j = O(M. ~ s LM .’ D ) .
1,] 11,] hiMi,j
Special cases are:
a) Mi,j > oo, qi,j + « (e.g. large distances from a profile)
b) Mi,j + 0, si,j + o (e.g. in the neighbourhood of a sharp trailing
edge of a profile)
c) h0 + 0, ‘qi,j > o (strong stretching of qoordinates at the no-slip

boundary).

The submatrices A,, and A22 are diagonal dominant because of the Il'in

11
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discretization (2.-2.8)._A2

which the system may be unstable. In chapter 6 and 7 we shall see that we

1 and A22 may contain large coefficients, by
can cope with this problem by cutting off the coefficients qa; F and s. ..
s ’

3. THE MULTIGRID METHOD FOR 2 VARIABLES

3.1. Multigrid operators

Let a set of grid functions Uz cofresponding to the grid Qﬂ (2.2.1)
be defined by:

(3.1.1) UK = {uzz{l(l)Z} X QK-+IR}-

System (2.5.1) is denoted now by:

G3.1.2) bt =

with AL:UE > UZ. The multigrid method uses a hierarchy of computational
grids Qk, k = £-1(-1)1:
£

—k+1)h,

k - .
@13 2= e ley = @20, = G2

i =02k, j=o01)25

(h is the mesh size of the finest grid Qﬂ), and corresponding sets of grid
functions Uk, k = £-1(-1)1, defined by (3.1.1) with £ replaced by k. The
mesh sizes of Qk are 2£-kh, hence the grids Qk are coarser as k gets smaller,

Let us be given

restriction operators: R.k:Uk > k-1
. k- .
prolongation operators: Pk:U ! > Uk
k-1 k-1 k-1 [ K= 2(DL
coarse grid operators: A :U > U

approximate inverses: Bk:Uk > Uk

The multigrid program MULGRI can be described in quasi-Algol as follows:
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1 r£ := f£ - Azdz;
(2) for k := £(-1)2 do Ark—] := erk;
' el:= (Al)_]rl;
for k := 2(1)£ do
(3) begin e i= PN
(&) ek := (Ik—BkAk)ek + Bkrk;

end

£

(5) u == ut + eﬂ;

In order to describe the operators we use the same data structure as

in MOL [5]. A set of ordered pairs i = (il,iz) is defined:
k . .. . k
(3.1.4) N ={i=(i,i,) € Z|1i = 0(1)27}, Z =17 x 7Z.
) 1,2
Furthermore, we define the set J:

(3.1.5) T =A{j = (i) ¢ Z|j1,2 =0, + 1},

For uk € Uk the value of the oth unknown in point i will be denoted by

k
u . ®
al
The matrix-vector multiplication is defined by:
k k % k k k
(3.1.6) (A™u™) . = z A" .. u ... ieN, a=1,2,
al 8=1 jéJ aBi] B,1+]
The prolongation Pk and the restriction Rk are defined as follows:
e L= T e L WS, e w12,
ol . 1-2] o]
jezZ
(3.1.7) l
k k ~ k-1 S
(R™u )ai = jgz tj ua,21+j s 1eN , o= 1,2,

tj is a 9-point weighting operator:
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(% i = (0,0

'é' j = (1,0, (0,1), (-1,0), (0,-1)
(3.1.8) tj =

= = (1,1, (1,1, (-1,-1), (1,-1)

o i d3.

The coarse grid operator Ak—1 is the Galerkin approximation

Ak-l = RkAkPk and is computed as follows:
k-1 _ k . k-1 .
(3.1.9) AaBij =4 ) 3 £, Aa6’21+u,v+2j_utv , 1eN ', jed,
u v
a,B = 1,2,
u,velZ
)

9p—-APINV and 9p-ILU are used as smoothing operators* . The approximate

inverse Bk of the APINV-process is computed as follows:

2
( k k ~ Kk ) i
BZI sz BaBij AB,Y,i+j,s—j B 6ayos » LeN, s eJ, a,y=1,2.

(3.1.10) 1

k . k

L BaBij =0 , 1eN, 3jé¢J, a,8=1,2.
§ is the Kronecker delta. The Lk and Uk for the ILU-process satisfy the
relation: ‘
k k _ Ak . k _
(3.1.11) g } LaBij UBy,i+j,S-j = Auyis ,1e N, seJ, a,y=1,2,

The range of the indices j, B and s—j at a given combination a,y is defined

in the following table.

* At the 2-variable problems, which are considered in this report, MULGRT
with 9-point multigrid operators appear to be more efficient than MULGRT
with 7-point multigrid operators. In MOL [5] it is shown that in several 1
.variable cases the opposite is true.
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a | Y B ] s—]
1] 1 1 J *
1|2 1 J

211 | 1 J gt
2 | 21,2 |3, |3,5°

Table 3.1.1 Ranges of B, j, s—j at a given a,y
35 = {(0,0),(1,0),(-1,1),(0,1),(1,1)}
{(0’0)’(—1’0)’(19—])’(0,_])’(_]’_1)}

J

Lk and Uk are constructed by a standard LU-decomposition algorithm writing

zero outside a prescribed non—-zero pattern. The rows of Ak, which correspond
with points of the grid Qk, are arranged in the order (0,0),(1,0),(2,0),...
0 (25,0),00,1),(0,1),2,1) e vvnn, 25,10, 0...00,25), (1,25, ... (25,25). The
construction of the 9p-ILU d-composition is illustrated in figure 3.1.1. The
dots denote the places where ILU-corrections take place, the stars the places

where the rest matrix Rk = LkUk - Ak has elements # 0.

3.2. Computational complexity of one multigrid iteration -

Consider the quasi-Algol program of MULGRI described in section 3.1.
In step (1) we have to compute the residual on the finest grid. In MOL [5]
is described how this can be done very efficiently by using the rest matrix.
In examples with only 1 variable the rest matrix contains 2 diagonals for a
5-point Ak and a 7p-ILU. In this 2 variables case the rest matrix contains
many diagonals. It appears more efficient to compute fK - A.‘eu£ directly.

In table 3.2.1 the numberé of operations per point on a grid Qk for
the different parts of program MULGRI are given. We assume that the sub-
matrices Ak k and Ak are 5-point matrices and Ak

11° A21 22 12
corresponding to (2.5.2). As smoothing process 9p-ILU is used.

a diagonal matrix

For the computation of the total number of operations on all levels
some work is neglected: savings near the boundaries and the work on the
coarsest grid. The coarse grid matrices A?j’ k = £-1(-1)1 are 9 point

matrices. For convenience, we assume that these coarse grid matrices



x\
NN

7 i

w W%

iy Z W 7 ,
A A,
% 748% \\b\
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part of MULGRI number, of operations
per point
ek:=Pkek—1 4
ek:=(Ik—B A,k)ek+Bkrk 90
rk:=fk—A.kuk
k. _k, k } 34
u i=u +e

Table 3.2.1 Number of operations per point for the
different parts of MULGRI

have the same point structure as the submatrices Af. on the finest grid.
Suppose the number of points on the finest grid is N(=0(4£)). For £
large the total work W of one iteration with MULGRI 1is

step (1) + step (5) : 34 N operations
step (2) : 7%' "
step (3) : 5% "
step (4) : 120N "

1 iteration step : W= 166%-N "
The preliminary work before the multigrid process is:

computation Lk,Uk, k = £(-1)2 : 252 N operations.

computation RkAkPk, k = £(-1)2 : 328 N "

The total preliminary work is about 3.5 W.
4, THE SQUARE CAVITY FLOW
Consider the NS-equations (2.1.2) with:

(4.1) A=B=M=1,
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valid in the unit square with sizes H = 1.

o829 ‘_4

Py
2 ~
” C n
] >
“ ”
“ ”
50, A Q Foa
3 ; 1
Pe
1 L
“ L
. L
7 r
IPP7 777777 F77A
9
2

Figure 4.1. Square cavity
The boundary conditions are

9
4.2) ¥ =0, k=g,

with g = 0 on 891, 893, 394 and g = 1 on 9Qy.

The multigrid iterations are terminated when the maximum of the diff-

erence between two iterands is smaller than 10_6

6

ut (1) _ (uz)(v)] <10 .

(4.3) | (0™

Furthermore, the average reduction factor is defined:
(vy+1) (vy) /v
L 0 L 0 0
(b.t) r = (L2 il C 40 N PO
wh P - hH O

0?0

with Vo the smallest integer such that (4.3) holds. The Newton iterations

are terminated if
(4.5) |y D L (W e,

Experiments have been made for Reynolds numbers Re = 10,50,150. At
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Re = 10 we start with the zero solution, at the other Reynolds numbers with
the solution of the preceding lower Reynolds numbers. Table 4.1 gives the
results for MULGRI with APINV and table 4.2 for MULGRI with ILU as smoothing

operator.

Re h vél) véz) véB) r:;) réi) réj)
10 1/6 7 4 0.14]0.15
1/10 12 5 0.32;0.27
1/18 13 5 0.35/0.26
1/34 13 5 0.36{0.25
50 1/6 9 72 10.19(0.20{0.18
1/10 14 | 10 | 3 10.35;0.32(0.23
1/18 16 11 3 10.39|0.36|0.30
1/34 16 11 3 10.39(0.34(0.20
150 | 1/6 11 9 ! 4 10.28|0.23|0.22
1/10 15 12 | 6 (0.37{0.38(0.36
1/18 15 13 5 10.37{0.40|0.30
1/34 16 | 13 | 4 (0.38|0.39|0.26

Table 4.1. Results MULGRT (with APINV) applied to the square cavity

flow

véU): number of multigrid iterations in uth Newton step

I'U):
v

A average reduction factor in uth Newton step
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R R RO R e KORROR RS
10 [1/6 | 4 | 2 0.027[0.026
1/10] 5 | 2 0.0590.033
1/18] 5 | 2 0.056|0.034
1/34] 5 | 2 0.056{0.034
50 |1/6 | 5 | 4 | 2 |0.031/0.042|0.049
1/10 5 | 4 |1 l0.052]0.061]0.056
1/18] 6 |4 | 2 [0.082{0.056|0.051
1/36) 6 | 4 | 2 l0.083]0.062|0.052
150{1/6 | 7 | 6 | 3 [0.099]0.092|0.079
17100 6 | 5 | 3 lo.083}0.084[0.078
/181 6 |'s | 3 |0.080[0.083]0.064
1/36 6 |5 | 2 lo.081]0.082]0.063

Table 4.2. Results MULGRI (with ILU) applied to the square

cavity flow. For legenda see table 4.1,

Note that MULGRI with ILU is about 2 times faster than MULGRI with
APINV. Because the computational complexity of 1 APINV step is larger than
the complexity of 1 ILU step, MULGRI with ILU is more efficient. From now
on, we apply only the last method.

We remark that the number of multigrid iterations does not increase as
h + 0 and is insensitive to changes induced by Newton iteration.

Furthermore, the number of multigrid iterations is comparible with
that of the Poisson equation (4 iterations at mesh size h = 1/18 and the
same termination criterium).

At large Reynolds numbers the multigrid process diverges. The reason
is that as Re » « the discretization at the walls becomes so skew that the
boundary conditions do not have influence. Therefore, mesh refinement is
necessary in the boundary layers. This is not applied here because the
square cavity problem is only a test problem and does not have physical

importance.
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5. THE FLOW AROUND A CYLINDER

We consider the steady 2D flow of an incompressible viscous flow about

a circular cylinder. The origin is at the centre of the circular cross—

section of the cylinder with positive x-axis in the direction of the inci-

dent uniform flow at infinity. The radius R of the cylinder and the speed V

of the free stream flow are used as the units of length and speed respect-

ively, to introduce dimensionless variables. The non-dimensional situation

is given in figure 5.1, where the flow field is bounded by a large circle

with radius e" = 23.14.

af

Y
oy

A7 AN
39,
™
=
eTT Q* 393 Q
1
““““““ > X 3%,

Figure 5.1. Flow region cylinder mapped on a square.

This flow field is mapped by the inverse transformation of

g 3

(5.1) X = e’coS n, y = e’sin n,

on a square Q with size H = 7w in the (&,n)-plane. The transformed NS-equa-

tions are (2.1.2) with

(5.2) A=B=1, M=e ",

The Reynolds number is defined by

(5.3) Re = —,
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where v 1s the coefficient of kinematic viscosity of the fluid.

The grid Qﬂ (2.2.1) in the (&,n)-plane has uniform mesh size. The
corresponding grid in the (x,y)-plane has uniform mesh size in angular
direction and in radial direction a mesh size which is small in the neigh-
bourhood of the cylinder and is growing larger away from the cylinder.

The boundary conditions are:

= —8J)—= |
5E 0 (g,n) € 00,
(5-4) =y =0 (E,n) € 392, 894
w=20, ¢ = e5sin n (E,m) € 39 »

1

The same termination criteria are used as in the square cavity case. The

results with MULGRI (with ILU) are presented in table 5.1.

o T [
10 |n/6 | 7 5 1 |0.140{0.110{0.034
n/10] 7 5 1 ]0.139{0.120{0.053
/18| 7 5 1 10.141{0.119!0.064
/34| 8 5 1 ]0.170|/0.100/0.029
50 |{w/6 | 8 | 5 1 ]0.178{0.106/0.042
n/10| 8 6 2 ]0.180{0.150{0.063
m/18| 8 6 3 |0.175{0.153!0.068
/34| 8 6 3 |0.185|0.154{0.092
150 |n/6 | 8 7 4 10.180{0.201!0.105
m/10| 8 6 4 ]0.185|0.160{0.105
/18| 8 7 4 10.186{0.200!0.108
/34| 8 7 4 [0.187]0.195{0.110

Table 5.1. Results MULGRI applied to the flow around a cylinder.

For legenda see table 4.1.

The average reduction factors are greater than in the square cavity

case, but they are still insensitive to h and to changes in the coefficients
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induced by Newton iteration. A reason for the slower convergence of MULGRI

is due to the big coefficients q.’. in the coefficient matrix (1 < Mi ; <

< 536 in the points (Ei’ni) e 9 u agz). In order to test the solutio;s
obtained by MULGRI applied on this cylinder problem, we compute some specific
quantities at some Reynolds numbers and compare these results with those of
other authors. The friction drag coefficient CP and the pressure drag co-

efficient Cf are defined as follows:

T
(c. = 2z J w sin n dn
0

f Re
?
-2 3w
C = —_— Pt 3
1C; = R J ; sin n dg
0

The pressure in the leading edge of the cylinder is:

m .
(5.6) p(m) = - I (-I—{l-g g—:’ - u %‘g—)dg, u= _'% %%
0 e

and in the trailing edge of the cylinder:

m
5.7 p(0) = p(m + j;—eg-gdg
0

For the derivation of these quantities see appendix B. In table 5.2 the
quantities are presented for several Re-numbers and compared with results

of other authors.

6., THE SYMMETRIC FLOW AROUND A KARMAN-TREFFTZ PROFILE

We consider the 2D-flow around a Karman-Trefftz profile with thickness
€, a trailing edge angle (2-k)m, camber y and length 2. The angle of in-
cidence of the free stream flow is zero. The flow field in the upper half
plane and bounded by a contour is mapped on the region around a cylinder,
which we considered in the preceding chapter. The last region is mapped on

~a square with size H = m.



Source of Reynolds number
data 1 5 7 10 20 40 70 100
Friktion drag coefficient Cf
MO 6.382(1.982|1.562|1.208|0.743(0.489|0.335]0.265
DC - 1.917;1.553(1.2460.812,0.524{0.360(0.282
TK - - - - - - - -
TO 6.94112,183|1.757|1.402|0.903]0.580(0.405]0.322
Pressure drag coefficient Cp
MO 6.48212,255|1.861{1.527(1.136{1.028|0.880{0.710
DC - 2.,199;1.868|1.600|1.233;0.998,0.852;0.774
TK - - - - - - - -
TO 7.07212.478(2.092(1.775|1.350|1.095{0.956|0.882
Drag coefficient Cq=Cpt Cp
MO 12.869(4.236(3.423(2.735|1.879(1.517|1.215{0.975
DC - |4.11673.421;2.846(2.045{1.522|1.212;1.056
TK 10.109| - [3.303(2.800|2.013|1.536| - -
IO 14.01314.661}13.849(3.17712.253|1.675]|1.361{1.204
Pressure leading edge p(w)
MO 4.536|1.897|1.667{1.483(1.223|1.107|1.065|1.047
DC - {1.872]1.660{1.489{1.269{1.144{1.085!1.060
TK 3.905( - |1.637|1.474|1.261|1.141| - -
TO 5.501{2.225{1.959|1.744|1.457|1.312]|1.269|1.255
Pressure trailing edge p(0)
MO 3.732{1.111{0.885|0.713|0.570|0.498[0.420{0.390
DC - |1.044(0,870;0.742|0,589;0.509(0.439;0.393
K 2,719 - ]0.783{0,670|0.537{0.512| - -
TO 3.547{1.081(0.906;0.773|{0.614;0.543|0.493|0.453

Table 5.2, Comparison with other authors
MO: results with MULGRI (with h = w/18), DC: DENNIS and CHANG [2]
TK: TAKAMI and KELLER [11], TO: TUANN and OLSON [12].
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Figure 6.1. Flow region Karman-Trefftz profile mapped on a

square.

The (conform) transformations of the regions are as follows. From (g,n) to

the (E,ﬁ) plane:

aeE cos n

|
]

(6.1)

= aeg sin 7

31
1

and from (E,ﬁ)—plane to the (x,y)-plane:

(6.2) z = £(2) z=x+iy, I =E+in

with

k-1
( a = 28 (e + Vl-yz)

| —
~
~
1
Y
=3
[\

£(7) = + L

(T-pra(i—y-e) 1!

T = a(V1-y%-iy) .

- (6.3)

.

Our choice for the parameters of the profile is:
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(6.4) e = 0.05, k=1.99, y=0, £=2,
The transformed NS—-equations are (2.1.2) with
(6.5) A=B=1, M= azlf'(z)lzezg,

The boundary conditions are (5.4). The termination criteria for the Newton

and multigrid processes are the same as in the square cavity case.

LRe h vél) véz) vé3) rii} rii? rii)

10 |w/6 | 6 5 3 10.120|0.096,0.070
m/10| 6 6 3 10.128{0.126{0.092
m/18] 6 5 3 10.130(0.115;0.091

50 |n/6 | 6 5 3 (0.137;0.142]0.126
m/10| 6 4 2 10.176(0.148,0.134
m/18| 6 4 2 10.143;0.138{0.133

Table 6.1. Results MULGRI applied to the
flow around a Karman-Trefftz

profile. For legenda see table 4.1,

For mesh size h = /18 (£ = 3) we have to cut off the coefficients q; in
H
the coefficient matrix AK in the points where we can expect that the

vorticity is zero:

(6.6) qi,j = CO'qi,j i=2 Ajoz2 ,

with ¢y @ coefficient such that the resulting q]._j = 0(10). When this cutt-
ing is omitted, MULGRI diverges, probably because the coefficients qi,. and
si’. are too large with regard to the other coefficients in the matrix A",
(See (2.5.4) and (2.5.5) and the fact that [£'(z)| = O in the trailing edge,
lf'(Z)l = 1 at infinity, a = 1.0568 therefore 0 < Mi,' < 600 in the grid-

points (Ei,mj) € Qﬂ U Bﬂz),

From table 6.1 it can be concluded that the numbers of multigrid itera-
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tions are smaller than in the cylinder case and they are insensitive to h
and changes in the coefficients induced by Newton iteration.

In figure 6.2 and 6.3 the vorticity (multiplicated with 100) for Re =
50 and h = 7/10 is given around the Karman-Trefftz profile. We distinguish
a boundary layer and a wake. These are the regionf—yhere Imi,jl > 0.5.10_2.
The physical boundary layer has a thickness O(1/VRe) and the physical wake
an angle 0(1/vRe). In point i = 2, j = 4 of the grid QZ the boundary layer
is about 16/VRe and in the point i = 8, j = 1 the wake angle is about
4/YRe. So the physical boundary layer is not well represented.

In the figures 6.4 and 6.5 we look at the order of magnitude of the

following quantities:

0. .a. .nh. . Bzw B. .b. .h. Bzw
1,J 1,] 1 2 — i,71,3 3 g2 —5
2 A 852 - 2 B P 2
(6.7) c, = and ¢ = N .

g

1,,9 ., 90 1 rp 9 g0
ﬁE{AEE(AEEO} §E{B3n(B3n)}'

These quantities are only defined in the boundary layer and the wake. They
represent the ratio of the artificial viscosity terms (2.2.10) induced by

the Il1'in upwind discretization and the viscosity terms in the NS equations
(2.1.2), In the region with vorticity is zero, it doesn't matter how large

the artificial viscosities

o. .a. .h. B. .b. .h.
1, 1,J 1 g Led 1.3 3
2 2
are. From the figures it can be concluded that we have to choose smaller
mesh sizes Ei and ﬁj in the boundary layer and the wake.
In figure 6.6 the vorticity on the profile is given for Re = 50 and

h = n/18.
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Figure 6.3.

Vorticity in the neighbourhood of the KT profile at Re
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Figure 6.4. Order of magnitude of c and c, defined in (6.7) at Re
= entier (log cg) and O(Cn) = entier (log cn).

O(cg) and O(Cn) respectively with O(cg)
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Figure

6.5. O(CE) and O(cn) at Re = 50

For legenda-see figure 6.4.
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7. MESH REFINEMENT

In the preceding section we have seen that mesh refinement is necessary
in the boundary layer and in the wake. The following stretching functions

are chosen:

. ) ' 3g!
Jg = cole' + ¢ tanh())
(7.1) bo
l 1 3n'
n=dy{n’ +d; tanh(z)}
"bo
with constants CO’ dO’ ¢y and dl:
= Y _ et . - ™
ep = V(M T Eye) T B 3 0% e tann L)
(7.2) ™ e
d, =V,(m=n! ) -nl! ; d, = . :
! 2 bo bo 0 m+d, tan h (32- )
1 n
bo

Eéo and néo are bounds of the numerical boundary layer and the numerical

1
boundary layer and V2 the same ratio for the wake.

g
A

™

wake respectively. V. is the ratio of coordinate lines inside/outside the

1
—> &

; ™
0 Ebo
Figure 7.1. Stretching function £ = £(g") with Vl = Eéo = 1.
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The mesh size is equidistant outside the numerical boundary layer. At no-

slip boundaries the coefficients sgj
Ei—l ='K¥—1 is small. Therefore we choose:
- :

(2.4.6) may be large because

(7.3) : hi—l = hi
at the no-slip boundary.

13
N

—

- - ye!
Figure 7.2. Equidistance at a no-slip boundary

The NS equations around the Karman-Trefftz profile after mesh refinement
are (2.1.2) with

_ dn

- 1
(7.4) P B=h, M=al|e @)%t

For a certain Reynolds number Re and a mesh size h the coefficients q; 3
L )

are large in regions VK c Qv BQE (because of large M. . and small s,
h,Re 1,] 3 0 2

see (2.5.4)) and in the neighbourhood of the trailing edge Sh Re © Q" u 39
9

(because of small Mi ., see (2.5.5)). In these regions we have to cut off
9
q; 3 and s; 3 analogous to (6.6), because otherwise MULGRI would diverge.
b 3
This cutting is justifiable because the vorticity is nearly zero in Vﬁ Re
b

and the streamfunction is nearly zero in Sh Re*
9

In table 7.2 the results are presented for the stretching V1 = V2 =1

and &' =1, n! = n/4. In all cases we have to cut off the coefficients
bo bo

q. . and s. ..
ql,J 1,]
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el s LOLOLOLMD [ [,
0|0 0 av av av
10 |n/6 | 7 6 2 10.250]0.241}0.210
w/10| 7 5 3 10.253{0.180|0.233
/18] 7 6 2 10.268|0.219{0.190
50 |n/6 | 7 5 2 10.240{0.205|0.198
w/10]| 7 6 3 ]0.258/0.280(0.240
m/18| 7 5 2 10.249(0.210{0.248

Table 7.1. Results MULGRI applied to the flow around a
Karman Trefftz profile with mesh refinement
= = v = ¥ =
V1 V2 1, gbo 1, Mo m/4. For 1egenda
see table 4.1,

The numbers of iterations in each Newton step are about the same as in
the case of no mesh refinement. They are still insensitive to changes in h
and to changes in the coefficients induced by Newton iteration.

The figures 7.3, 7.4, 7.5 and 7.6 show the vorticity (multiplicated
with a factor 100) around the Karman Trefftz profile at Re = 50, h = /10

and with the mesh refinement V., = V_, = 1 = /4. We see that

1=V = b gy = g
the boundary layer and the wake nearly coincide with the numerical boundary
layer and numerical wake. In point i = 3, j = 6 the boundary layer is about
9//Re and in point i = 8, j = 4 the wake angle is about 6/vRe.

The figures 7.7, 7.8, 7.9 and 7.10 show the order of magnitude of cE

and cn (6.7) in the different parts around the profile. CE and cn are small
in the neighbourhood of the trailing edge, c is small in the numerical wake
and cg is small in the numerical boundary layer. It can be concluded that

we have to take more mesh points to reduce the remaining c, and c,

g

In the figures 7.11 and 7.12 the vorticity on the profile is given in
the neighbourhood of and far from the trailing edge respectively for Re = 50
and h = 7/18,
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Figure 7.9, O(cg) and O(Cn) inside the numerical boundary layer and numerical
wake of the KT profile at Re = 50.
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8. CONCLUSIONS

The multigrid method MULGRI (with 9p-ILU, 9p prolongation and restric-
tion, Galerkin coarse grid approximation, 1 coarse grid correction, no
smoothing before and 1 smoothing step after correction) is fast and robust
in the sense that is also works for the stationary Navier-Stokes equations
in a cavity, around a cylinder and around a Karman-Trefftz profile, even
with stretched coordinates and relatively large Reynolds numbers. For each
problem the number of multigrid iterations in each Newton step is indepen-
dent of the mesh size h, the changes in the coefficients induced by the
Newton iteration and the Reynolds number.

The combination incomplete LU-decomposition and Galerkin coarse grid
approximation looks very promising. Especially the ILU smoother, which is
based on the simultaneous solving of the w and ¥ equations, works very well.

Some coefficients in the coefficient matrix of the discretized system
of‘equations may be very large, for instance far from the profile in regions
where the vorticity is nearly zero and in the neighbourhood of the trailing
edge of the Karman Trefftz profile (where the stream function is nearly zero).
Here, the coefficients have to be cut off.

We have shown that the artificial viscosities can be reduced by mesh

refinement in boundary layer and wake.
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APPENDIX A

Consider the nonlinear term r.

1,5%,5°
P. . a. . . . B. .b. .

(A.1) r.oLw, . o= (2l - Rad Tl o Dl Ly,
. 1,] 1,3 Re h. h. 1,]

i J
The term ay . 1s linearized as follows:

9J 1’J 193
(A.2) u+lau+lmU+l T H .o+ a!u... .da¥ .)(a? . + da" ).
1, 1,] 1,] 1,] 1,] 1,3 1,] 1,] 1,]

(wu + do¥ L) T ¥ a? Lof Lo+ au at Ldo" .+

i,] i,] i,j71,3 1,3 I S B
+ o Lof Ldab Lo+ aM LWl LatMly, LdaY . =
1,] 1,1 1,] 1,] 1, 1,1 1,] 1,]
= o¥ .a .wy+! + (af .+ a'u Y. al! .)(a, wkl ah .)e
1,] 1,] 1,] 1,] i,3'1,]3 1:J i,] 1,]
p+l u+l
Therefore, the nonlinear term r1 jw. ; becomes:
H 3
+1 utl p. . ol .all ., et ]
(A.3) IS e S 1 5 R P4 55 IO
’J ’J h hj ’J
: \
oo+ aH a” et aP+! - ab .
( ’J ’Jyl’.] 1’.]) ’J( 1’J l’J)
h.
i
u 1M bY )t u+1 u
b. - b. .
— (B ’J B ’J l’J 1’3) ’J( ’J 1’J) . ‘
h.
J
utl u+l .
Analogously, the term rl+1,J i+1,j becomes:
u
P, . (1+o )a .
utl u+l = i+1,] + i,j77i,3 w+l
(A.4) ri+1,jwi+l,j ( Re oF. Ju 1+I,J
i
u ! a¥ )t u+1 u
l+a. . + a. a. . —a. .
+ ( 1,] ’JY19J 193) l+laJ 1,] 133)
2h.
i
pu+l  utl u+1 R ptl  p+l

and r

The terms T le—l,j J+l 1,5+ i,j-lwi,j—l

are approximated in the



same way.

APPENDIX B

Consider the NS-equations in (u,v,p)-formulation:

r du u 9p 1
U+ V— = — — + —
9x oy 9x Re Axy'u
v ov p 1
. iy —+ vo= - —
(B.1) Y 9% * y oy * Re Axy v
y , v _
- ox * dy 0

On a no-slip wall, the equations read :

p _ 1 _1 _ 1
3 Re Axy YT Re 3y (Axyw? Re 9y
(B.2)
2p _ 1 12 _clw
3y  Re Axy V= Re 3x (Axyw) Re 9x

From this it can be derived that on the cylinder:

op _ =1 3w
(8.3) dn  Re 3¢

The total pressure force in x-direction is:

2T m
-1 9 . -2 ) .
(B.4) Cp = J §E’§%'Sln ndn = e f -%-51n n dn.
0 0

The skin friktion in a point on the cylinder is
(B.5) T = =
The total skin friktion in x-direction is

'n. .

' 2 .

(B.6) Cf = J w sin 1 dn.
0
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On the for centre line of the cylinder the NS—equations read:

22_= 1 3w _ du

(®.7) 3x _ Re 3y  ax

with velocity u :%-g%-. The pressure in the leading edge of the cylinder is
e

T
du

1 %w _  9du
0

The NS equations on the cylinder can be written as (B.3). Thus, the pressure

(B.8) p(m)

in the trailing edge of the cylinder is:

3

€

dn.

(o3

m
(8.9)  p(0) = p(m) + fﬁle— :
0



