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Collocation methods for weakly singular second kind Volterra integral equa-

)

. . . *
tions with non-smooth solution
by

Herman J.J. te Riele

ABSTRACT

Collocation type methods are studied for the numerical solution of the

weakly singular Volterra integral equation of the second kind:

t
(1) £(t) = g(v) + J K(s,f(s))(t—s)—%ds, t € [0,T],

0
where the solution f(t) is assumed to have the form f(t) = x(t) + t%w(t),
x and ¢ being sufficiently smooth. The solution is approximated near zero by
a linear combination of powers of t%, and away from zero by the usual poly-
nomial representation. Convergence is proved and many numerical experiments
are carried out with examples from the literature. A comparison is made with
a method of Brunner et al., originally developed for (1) with a smooth solu-
tion. Special attention is paid to the numerical approximation of the so-

called moment integrals which emerge in the collocation scheme.

KEY WORDS & PHRASES: weakly singular Volterra integral equation of the

second kind, collocation method

*x) This report will be submitted for publication elsewhere.



1. INTRODUCTION

In this paper we consider the weakly singular Volterra integral equa-

tion of the second kind

t
(1.1) £(t) = g(t) + J K(s,£(s)) (t=8) 2ds, t e [0,T] =: I.

0
Throughout, we assume the given functions g and K to be sufficiently smooth,
in order to guarantee the existence and unicity of a solution f e C(I) (see,
for example, YOSIDA [19] and MILLER and FELDSTEIN [13]). Equations of the type
(1.1) arise in the study of various problems in physics and chemistry, like
heat conduction, superfluidity, electrochemistry and crystal growth (cf.
CHAMBRE [4], KELLER and OLMSTEAD [8], LEVINSON [9], GHEZ and LEW [5], MANN
and WOLF [127], NICHOLSON [14] and PADMAVALLY [18]1). It should be remarked
that usually the more general equation

t
(1.1 f(t) = g(t) + J K(t,s,f(s))(t—s)_ads, 0 <ac<l,

0
is the starting point in numerical papers on weakly singular second kind
Volterra integral equations. However, in all practical problems we have seen,
K only depends on s and £, or even on f alone, and o = %a This motivated our
choice (1.1). Moreover, the extension of the present work to (1.1") is
straightforward and does not present any fundamental difficulty.

The concept of product integration, developed by YOUNG [20,21], is of-

ten used in the numerical solution of (1.1): the function K(s,f(s)) is ap~

proximated by a linear combination of "

simple" basis functions ai(s), say,
with the property that the resulting so-called moment integrals

fg ai(s)(t—s)_%ds can be evaluated analytically for any t € I. Another way

of product integration is to approximate the solution £, instead of K(s,f(s)),
by a linear combination of basis functions. This also yields moment inte-
grals which, in general, cannot be evaluated analytically, and have to be
approximated by some numerical quadrature formula. After this approximation
of K resp. f, substitution of some discrete set of t-values tes i = 1(1)N,

gives a triangular system of equations in LS PP (where £, denotes a

numerical approximation of f(ti)), resp. in the coefficients of the linear



combination by which £(t) was approximated. See NOBLE [15], LINZ [10], DE HOOG
and WEISS [7] and LOGAN [111]. '

BRUNNER and EVANS [2] and BRUNNER and N@RSETT [3] have studied so-called
collocation methods for (1.1), which are related to, and, in certain cases,
reduce to product integration methods. In these collocation methods the ex-
act solution of (1.1) is projected into the space of piecewise polynomials
of degree m > 1 with prescribed knots. Here, it is assumed that the solution
of (1.1) is sufficiently smooth on I. However, according to an extensive
study by MILLER and FELDSTEIN [13] of the smoothness of solutions of (1.1),
f(t) is, in general, not smooth in the neighbourhood of t = 0. In particular,
one usually has f'(t) = O(t—%), as t - 0. This may be illustrated by the ty-
pical example:

t
(1.2) £(t) =1 - J (t-s) £ (s) ds,
0
with solution f(t) = exp(ﬁt)erfc(ﬂ%t%) =1 - Zt% + 0(t), as t >~ 0, where
erfc(t) = 1 - erf(t), erf being the error function ([1, p.2971).
In this paper we shall study certain collocation methods for solving

(1.1), where the solution is assumed to be of the form
1
(1.3) £(t) = x(£) + t7y(t),

¥ and ¢y being sufficiently smooth functions on I. In order to deal with this
behaviour of f, it is approximated near zero not by polynomials, but by
powers of t%. This gives a considerable increase of accuracy compared with
polynomial collocation methods for (1.1) with solution of the form (1.3).

We shall also pay special attention to the numerical evaluation of the mom-
ent integrals which arise in these methods, for the case one does not want

to, or cannot evaluate them analytically.

2. COLLOCATION METHODS FOR SOLVING (1.1)

For a given N ¢ W let h := T/N, t; := ih (1 =0(1)N) and o, := (tj,t;,1].
The unique solution f(t) of (1.1) will be approximated by an element u e S,

where m ¢ IN is given and




m
2.1 Sm := {u(t), ulteo =: uk(t) = z aki¢ki(t)’ k =0(1)N-1}.
k i=0

It turns out that the basis functions ¢ki play a crucial role. Their choice
should be such that f£(t) can be approximated properly by an element of Sm’

in particular for t near zero. We consider two choices denoted by A and B:

o= _ i/2
A 91 (B) 3= [(t to)/h]{ - oty
(2.2) B : ¢0i(t) = [(t—to)/h]
Ag&B: (bki(t) = [(t—tk)/h]i , i=0(m, k= I1(1)N=-1.

For these choices the space Sm consists of piecewise continuous functions
with, at most, N-1 finite discontinuities in tistoseresty - We define a
collocation set X by

N-1
2.3 X := U s her ={t=¢t . =1t +n.h, j =0(1)m},
(2.3) v X where X nshs 3 (Dm

k=0 kj k
i . < = 1. i .
with 0 < e < n < < N n, 1. The fixed numbers nJ are called the
collocation parameters. Now an approximation u € Sm of the exact solution

f(t) of (1.1) 1is sought by projecting f into the space Sm’ i.e., by requir-

ing that
t
_1
(2.4) u(t) = g(t) + [ K(s,u(s)) (t-s) *ds, for t € X.
0

The existence of a unique solution of (2.4) for all sufficiently small h > 0O
can be proved with a contraction mapping argument, under sufficient smooth-
ness of K and g (cf. BRUNNER and EVANS [2]). For simplicity of presentation
we now proceed with the assumption that K is linear in £, i.e., K(s,f) =
K(s)f. The function u € Sm will be computed in a recursive way: assuming
the pieces uO(t)"”’uk-l(t) of u(t) to be known, the next piece uk(t) is
computed from the equation
t
t k
-1 -1

(2.4") y, () - J K(s) (t-s) 2uk(S)ds = g(t) + J K(s) (t-s) *u(s)ds,

"k fo

te Xk; k= 0(1)N-1,



With the representation of u in (2.1) and the definition of Xk in (2.3) this

vields the linear system of equations in At

m
(2.5) izo akit¢ki(tkj)~—MkijJ = g(tkj)~+Nkj, j =0(M)m; k = 0(1)N-1,
where Mkij and Nkj are the so-called moment integrals, defined by
tkj
-1
o= — 2
(2.6) Mkij : f K(s)d)ki(s)(tkj s) “ds,
%
and
k
~1
2.7) Nkj 1= J K(s)(tkj— s) 2u(s)ds.
o
Since

%/2 for choice A, k = 0 (see (2.2)),

n
bs (Tyes) = {

n otherwise,

Cde e L

and since Mkij can be made arbitrarily small for sufficiently small h > O,
the matrix of coefficients of the linear system (2.5) is a "perturbed"
Vandermonde matrix. Consequently, (2.5) has a unique solution for any suffi-
ciently small h > O (cf. ORTEGA [16, p.32]).

In thg sequel we shall denote the scheme (2.5) with the basis-~functions
[(t—to)/h]1/2 on (0,h] by scheme A and the other scheme by scheme B. Scheme
B corresponds to a scheme described by BRUNNER and N@RSETT [3] in terms of
(generalized) Radau abscissas. They also describe another scheme based on
(generalized) Lobatto abscissas. The experiment which BRUNNER and N@PRSETT
show in [3], and some other experiments which we have carried out, reveal
that their first scheme usually gives more accurate results than the second.
Therefore, we decided to compare our scheme only with their first scheme
(which we named scheme B).

The examples of (1.1) treated numerically in the literature are often
constructed in such a way that the moment integrals in (2.5) can be evaluat-
ed analytically. In practical cases, however, this may not be possible, and

therefore we shall compute them numerically. This will be described for Mkij



and Nkj separately, in the next two subsections.

2.1. Numerical computation of Mkij

Substitution of (2.2) into (2.6) yields with the transformation t =
(S—tk)/(njh)

nJgi+1>/2 1 /2
1 -1
. .. = h? ; - )
(2.8) Mk1J ie1) /2 [ K(tk+nJhT) . (1-1) *d=,
Lnj 0 T

for the choice A, k = O resp. otherwise. The (weakly singular) integral will
be approximated by using weighted interpolatory quadrature with abscissas

-1
NgsNyseeesny and weights WosWyse e sW and with weight function (l-1) 2. We
notice that the quadrature abscissas are chosen such that they coincide with
the collocation parameters in (2.3). Thus, the nﬂ and WZ are defined by

1

-1 m
J v(t)(l-1) 2%dt = z w,v(n,) +E,
gm0 £ %

0
where E = 0 when v(t) = 11/2 resp. Ti for 1 = 0(1)2m. Since n, = 1 is pre-—
scribed, we have 2m+ 1 equations in the unknowns NgsNpsesesNy 1o WosWiseoo
oW In Table 2.1 we present the solutions for m = 1,2,3, for the two

cases considered.

2.2. Numerical computation of N

kj

Substitution of (2.2) into (2.7) yields with (2.1) and the transforma-
tion T = (s—tk)/h

1 Ti/z
by -}
Nkj = h ‘Z ag; J K(t0+h1) ‘ (k+nj—r) dt +
i=0 i
0 T
(2,9)
1 k_l m 1 i 1
+h% ) ) a,. J K(t,+ht) 1 (k-L+n.-t) *dT.
L. 21 L 3
£=1 i=0



TABLE 2.1.

Abscissas np and weights wy of weighted interpolatory quadrature
1
-1 o
I v(t) (1-1) ?*dT = z WKV(HK):
0 £=0

with n, = 1 (prescribed).

Quadrature exact for v(1) = T

m= 1

0.306101188813
.960754876530

.000000000000
. 039245123470

i/2

m= 2

0.089361483186
0.282943402907

0.595690441907
1.011619680159

1.000000000000
0.705436916870

, i =0(1)2m

m=3

0.033732053372
0.108505616907

0.282593677396
0.469519838477

0.746460414456
0.887374907658

1.000000000000
0.534599636959

i .
Quadrature exact for v(t) = 1, i

m= 1

.400000000000
LITITITI11111

.000000000000
.888888888889

0.178838086815
0.473853770112

0.710050802074
0.957257340999

1.000000000000
0.568888888889

= 0(1)2m

m= 3

0.099194170728
0.258969932338

0.450131500784
0.559410782978

0.835289713103
0.763660101011

1.000000000000
0.417959183673




Here, the integrand shows a weak singularity off the integration interval,
which, however, is very near to it in the case £ = k-1. As is well-known,
this will affect the accuracy of a standard quadrature formula adversely.

Therefore, the integral in (2.9) will be approximated, like the integral in

(2.8), using weighted interpolatory quadrature, with weight function (k-£+

Bl

nj~r)— . At first sight, this appears to cause a considerable amount of work,

since the weight function depends on k, £ and j so that many weights and

abscissas are required. However, three arguments make this work acceptable:

(i) as will be clarified in Section 3, only 1- and 2-point weighted quadra-
ture will be needed for Nkj; .

(ii) thanks to the convolution form of the factor (t-s) 2 in (1.1) (which
is reflected in the term k—{ in the weight function in (2.9)), our
numerical scheme only requires the abscissas and weights of quadrature
formulas with weight function (y*T)_% for y = n-i-nj for j = 0(1)m and
n = 1(1)N-1. Hence, before starting the numerical scheme, the Nkj re-
quire the computation and storage of (mt+1) (N-1) sets of weights and
abscissas;

(iii) several numerical experiments with other quadrature formulas for (2.9)
indicate that the weighted quadrature proposed here gives good results

with respect to accuracy and computational effort.

For r-point weighted quadrature (r = 1,2) and for a given value of
y > 1 the corresponding weights and abscissas wi(y) and ni(y) (1i=1(Dr)
are defined by the equations
1
(2.10) f v(T)(Y—T)—%dT =
0 i

o~

1 w. (y)vin, (v)) +E,

where E=0 when V(T)=’Ti/2 resp. Ti for 1=0(1)2r-1. We notice that here none
of the abscissas is prescribed a priori, as contrasted with the computation
9f Mkij in subsection 2.1. Since only r = 1 or r = 2, explicit formulas can
be derived for the computation of wi(y) and ?-(y) fro? (2.10) (cf. [6, p.
4227). Values of the functions Ji(y) 1= fé <t 2(y—‘r)-zd'r are needed, for
i=0,1,2,3,4 and 6. Explicit forms are given in Table 2.2 below.



TABLE 2.2
i Ji(y) = Ié Ti/z(y-T)—%dT
L 1
0 20y? - (y-D?*]
_1 1
1 y arcsin(y é) - (y-1°?
1
2 e A S DR IR IO
3.2 N 2
3 7 ¥ aresin(y °) - zQy+2) (y-1)
1
4 %%_[y5/2 - (y—l)s/zl - %—(y—1)3/2 - 2(y-D*
1
; %%‘[y7/2 _ (y_1)7/2] _ %? (y_1)5/2 _ 4(}7_1)3/2 - 2(y-1)?

3. CONVERGENCE

We shall present here a convergence theorem for the schemes A and B

where f£(t) is of the form (1.3). The error is denoted by
(3.1 e(t) := £(t) - u(v), t eI,

where u(t) is the approximation of £, found by either scheme A or scheme B.
By subtraction of (2.4) from (1.1) it follows that e(t) satisfies

t
(3.2) e(t) = f K(s) (t-s) le(s)ds, t e X.

0
THEOREM 3.1. If f(t) satisfies (1.3) then for both scheme A and scheme B we
have e(t) = O(h%), as h» 0,, ¥ =T, for all t € I, provided that the mom—

ent integrals (2.6) and (2.7) are evaluated with sufficient accuracy.

REMARK. The numerical experiments reported in Section 4 indicate that the
. 1 .

actual order of the error may be higher than 5 It is an open problem to

determine the precise order of the error for both schemes. For smooth f we

have the following

THEOREM 3.2. If £(t) 7s sufficiently smooth on 1 then we have for scheme A
that e(t) = O(h(m*])/z) and for B that e(t) = 0(hm+l), as h > 0,, Nh = T,
for all t e I, provided that the moment integrals are evaluated with suffi-

cient accuracy.



This theorem was proved by BRUNNER and N@RSETT [3] for the scheme B.

Their proof can be adapted easily for the scheme A.

REMARK. The error in the numerical computation of the moment integrals de-
scribed in Subsections 2.1 and 2.2 is 0(h2m+1) for M, .. and O(th) for N, .,
as h + 0. Following BRUNNER and N@RSETT [3] we find tﬂat the condition ’
r 2 (m+1)/2 gives sufficient accuracy of the moment integrals in Theorem
3.2, for the scheme B. Since the order m+l is the highest obtainable we

shall choose r in all our experiments such that this condition is satisfied.

PROOF OF THEOREM 3.1. Consider first the scheme A, t € (0,h]l. We expand ¥

and ¥ in (1.3) into a Taylor series near the origin to give

m
(3.3) E(t) = ] byidg; () + Ry(E),
i=0

where

b0 (0 = /M2 i = 0,

b o, = v 0ye
0,22 I £ = 0.1
_ L e+s () ' et

P, 201 = BTV T(O/L
and
(3.4) Ro(t) = O(h(m+])/2), as h » O+.
On gy we have u(t) = uO(t) = Z?=O a0i¢0i(t), so that the error can be writ-
ten as
(3.5) (©) 1= e (t) = n@®D/2 T (t) + R (D)
(3. e = eO t) = Lo COi¢Ui t 0 s t e 00,

where we have set h(m+1)/2c . :==b..-a.., 1 = 0(1)m. By substituting (3.5)
(03% 01 01 (m+1) /2

into (3.2) (for t = njh, j = 0(1)m), dividing by h and using the

transformation s = ht in the integrals, we obtain the system
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n
c .(n%/2 - h% J) K(hr)(n.-r)_%Ti/ZdT)
. 0i ] J
1=0 0
(3.6) n.

_ h—(m+1)/2

W o~1d

(-Ro(njh) + h% f K(hr)(nj-T)“%RO(hT)dr), j = 0()m.
0

Similarly as in Sectiomn 2, equation (2.5), this system has a unique solution

for all sufficiently small h > 0. By using (3.4) one easily shows that the

right hand side of (3.6) is bounded as h + 0_, so that also the c,. are

0i
bounded, uniformly in i. From (3.5) and, again, (3.4) it follows that

(m+1) /2

(3.7) eo(t) = 0(h ) ash-~>0,

on 0,, for the scheme A. For the scheme B, which uses on ¢, the basis func-—

0’ . . 0
tions (t/h)l instead of (t/h)l/z, we can only prove (when f(t) is of the

1
form (1.3)) in an analogous way (with the difference that Ro(t) = 0(h?) as

h - 0+) that

1
(3.8) eo(t) = 0(h?), ash ~» O+,
on 0.
Next, we consider both schemes A and B, on Ops k =2 1. Expanding f into
a Taylor series near te = kh yields
m
(3.9) EE) = T Byd (0 + R (D),
1=0
where
bq (8) = [(e-t )/nd
i (1) . } i=0(1)m,
bki = h™f (tk)/l.
and
L1 = m+ | (m+1) ]
(3.10) R (t) = h ¢k’m+1(t)f (ty +6, (D))/ (m+1)!
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for some ek(t) with tk < ek(t) < t. On o, we have u(t) = uk(t) =

m .
= Zi=0 aki¢ki(t), so that for the error we can write

; m
o= = 2
(3.11) e(t) : ek(t) h iZO cki¢ki(t) + Rk(t), te o,
1
where we have set hzcki := bki-aki’ i = 0(1)m. Now for j = 0(1)m we set
t = tkj = (k+nj)h in (3.2) and subtract from the resulting equation the one
which we obtain by setting t := Y l.m (=tk) in (3.2). This gives
b
tkj
1
- _e) "2
ek(tkj) = ek—l(tk—l,m) + J K(s)(tkj s) ‘e(s)ds
0
'k

-1
- —e) 2 .
J K(S)(tk—l,m s) ‘e(s)ds, j 0(1)m.
0
By splitting the integrals into pieces and using (3.11), we obtain for the

scheme B in terms of the c . £ =0k, i = 0(1)m:

Nl—
N

n
v i { -3 i
.X Cki{nj -h J K(tk+hT)(nj—T) tdt}
1=0
0
1

m .
= 1 oyl +hi JK(tk_l+hT)Tl{(1+nj-T)_%- (1-0*}ar] +

1=0 0
1 k"2 m . ___]_ ....l
(3.12) + h? 2 z Cps J K(t£+hT)Tl{(k+n.‘£“T) 2~ (k-£-1) ?%}dT +
£=0 i=0 5 J
n.
- [ -
+ h [—Rk(tkj)d-Rk_l(tk) + h .[ K(tk+hT)(nj-T) Rk(tk+hr)dr +
0
p k=l 1 _1 _1
+ h? ) f K(§£+hT)R£(t£+hT){(k+nj<£—T) ? - (k-£-1) *}dt],
£=0
0

j =0(Dm, k = 1(1)N-1.
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For the scheme A one obtains a slightly more complicated system of lin-
ear equations in i because one has to distinguish between T and Oy for

k 2 1. We finish the proof now for B. The final part of the proof for A goes

along the same lines.

. T m+ 1 . .
Setting ¢ = (ckO’ckl""’ckm) e R (3.12) may be written in

matrix-vector form as

k=2
v - A1 3
G121 g = A Oy Gy R zzo Dig S * W

where A;I exists for all sufficiently small B > O. The matrices Dkﬂ’ £ =
0(1)k-1 are defined in an obvious way; the vector w contains the terms of
(3.12) which depend on R,, £ = 0(1)k. In order to derive bounds on the norms
of Ak’ Dkﬁ and u, we use the following easily provable facts:
(i)  the mean value theorem for integrals: if y(x) is a continuous, one-
signed function on [a,b] then f: y(x)z(x)dx = z(g)fz y(x)dx for some
g ¢ [a,b]l;
o] -1 -4 -3/2
(ii) fO {(x-t) -(x+nj—t) }dt < 2x for x = 1;
(iii) if £ satisfies (1.3) then 1£ ™V (t)] < ct™

D)=

for any sufficiently
small t > 0, hence from (3.10) it follows that

IR, ((€+8)0)[ < ™ e ™D (pieyn) <« cFnie TR

for any sufficiently small h > 0, 0 <6 <1, £ = 0(1)k;

- -1 -1 -
() T AT D T < o

The constants involved do not depend on h.

Using (i) - (iv) it is not difficult to bound the norms of the matrices
and vectors involved in (3.12'). Proceeding in the same way as BRUNNER and
N@RSETT [3, p.355] it follows that the vectors e remain uniformly b?unded
as h >0, Nh = T. This implies by (3.11) and (3.10) that e(t) = 0(h?), as
h> 0, Nh=T, 0

4. NUMERICAL EXPERIMENTS

We have carried out extensive numerical experiments with the schemes A

and B on various linear and nonlinear examples of (1.1). For the nonlinear
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problems the resulting nonlinear equations were solved with Newton's method.
The experiments were programmed in ALGOL 68 and run on a CDC CYBER 750 com-—
puter system.

Table 4.1 gives a list of examples of (1.1) which we have found in the
literature, supplied with a few simple linear and nonlinear test—problems.
Examples 1, 2, 3a, 3c and 3e have a smooth solution f£(t), the other examples
have a solution with an unbounded first or higher derivative in the origin.

Table 4.2 presents, for a selection of problems from Table 4.1, the
quantity —lologlf(T)-—u(T)!, obtained with the schemes A and B, for three
combinations of mand ri: m=r =1;m=r =2;m=23, r =2; for various
values of h. It should be emphasized that for linear problems the schemes A
and B require exactly the same amount of computational work for fixed values
of m, r and h.

An inspection of the results shows that for linear problems with solu-
tion of the form (1.3) the scheme A is superior to B, especially for m = 2
and m = 3. This clearly illustrates, in the light of the remarks in Section
3 about the convergence properties of the schemes A and B in the first in-
terval (0O,h], that the accuracy, obtainable in the endpoint T of the inte-
gration interval (0,T], depends heavilyon the accuracy of the computed solu-
tion in the first interval (O,h]. In this respect one could raise the ques-—
tion whether it would be profitable to use the basis functions [(t—to)/’n]i/2
not only on the first interval, but also on the second, third,... interval
(in the form [(t-t,)/h1*/?, [(t-t))/n1*/2

ments with the scheme A, modified in this way, show a loss of accuracy com-

,...). However, numerical experi-

pared with our original scheme A.

For nonlinear problems, the picture is less transparent. For the simple
problems 10a, 10b, 10c the scheme A gives better results than B, whereas,
for problems 12 and 13, B performs slightly better than A.

As to the global convergence order of the error: for problems with solu-
tion of the form (1.3) the order obtained with the scheme A seems to increase
with m, whereas the order obtained with B seems to be fixed on 0(h3/2). This
was confirmed by some additional experiments carried out with very small
values of h.

For problems with a smooth solution the scheme B behaves roughly as one

would expect on the ground of Theorem 3.1; the scheme A behaves in a similar
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way, although with less accuracy. Therefore, the advantage of A for non-

smooth functions seem to be a disadvantage for smooth functions.
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-
TABLE 4.1. Examples of the equation £(t) = g(t) + fg K(s,£(s)) (t-s) *ds, teI.

Linear_problems: K(s,f(s)) = K(s)f(s)

4 £(v) K(s) g(t) I ref.
1
I -1 T+ laresin (G=E
1. (1+t) 3 f(t)4-84-4arc31n(l+t) [0,11 [10]
1
2. exp(-t) -1 gm0 ) 10,31 13
1
3a. 1 -1 1+2¢t2 [0,11 [13]
1 1
3b. t? -1 ime+e? [0,2]
3c. t -1 %—t3/2+t [0,2]
3d. ¢2/? -1 %'nt2+t3/2 [0,2]
3e. t2 -1 i—é t5/2+t2 [0,2]
1 1
4, t* +1 —imt+t? [0,21 [11]
11 **) 1
5. l-exp(mt)erfc(n?t?) -1 2t? (0,21 [11,15]
1
(=2e2+0(t), t>0)
11
6. exp(rt)erfc(mr?t?) -1 1 fo,13 [13]
« - _1 _1 1
7. I, DT 2 p a4y o2 gn 2 [0,21 [17]
1
8. tlexp(-ot) -1 f(t)+intexp(~iat)- [0,31 [11]
. -1 1
8a. a=1 {Iy(~208)+T, (~308)}
8b. a=8 xxk)
2.~1 2 ] -1
9. r(1+r") {exp(r t)erfc(rt?) -rm r(l-exp(-t)) to,11 [2,5]
11
—exp (-t)+2rm?F (t?)}
r=0.1, 1 xakk)
*) M: Kummer's function [1, p.504]

*%)  erfc: complementary error function [1, p.297]
XKk I modified Bessel function [1, p.375]

xx%x) F(t) = exp(—tz) fg eXp(uz)du



- linear problems: (Table 4.1 cont'd)

£(r) K(s,f(s)) g(t) I ref .
- g2 . +f§- /2 ro,23
b, ¢ _¢3 eted e 10,23
10c. t% —f4 t% +%— t5/2 [0,31
. G-otel exp(s(1-s)2=£2)  (3-t)t? [0,47 [117
2. 9 o (f-sin(s)) 0 [0,11 [9,18]
(£(0)=0(t"/?), t0)
3. 2 (g (s))” on et [0,11 [4,7]

(£()=0(t?), t0)
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10

TABLE 4.2 - "logl|£(T) —u(T)|
SCHEME A

# | values of h |T m=r =1 m=r =2 m=3, r=2
1. 2 .1 .05 {1{4.70 5.53 6.46|5.89 6.74 7.61| 8.49 8.60 9.33
2. .1 .05 .025{3{6.27 6.17 6.57{7.26 8.18 9.09| 8.80 9.69 10.59
3a. .2 .1 .05 |1 exact %) exact exact
3b. 1 .05 .025{2(5.08 5.37 5.76|6.88 7.49 8.10( 9.39 9.57 9.87
3c. 1 .05 .025(|215.27 5.80 6.37 exact exact
3d. |.1 .05 .025{2!6.89 5.29 5.64{6.59 7.38 8.15(10.13 10.72 11.36
3e. |.1 .05 .025|2|4.57 4.97 5.21{6.52 7.46 8.38) 8.10 9.07 10.01
5. 1 .05 .025(2{4.65 5.05 5.49(6.21 6.85 7.49{( 7.91 8.65 9.30
6. 2001 .05 [1{4.08 4.30 4.67(5.18 5.79 6.43] 6.63 7.46 8.23
7. .1 .05 .01 {2|4.71 5.14 6.18|6.59 7.24 8.69| 8.41 9.01 10.10
8a. 1 .05 .025{3|5.16 5.67 6.14{7.28 8.20 9.81| 8.67 10.41 10.21
8b. 1 .05 .025|3(5.12 5.67 6.11/6.28 7.84 7.87{ 7.39 8.16 9.14
10a.l.1 .05 .025(214.23 4.84 5.46(7.36 7.92 8.57} 7.34 7.99 8.61
10b.{.1 .05 .025(2{4.16 4.75 5.35|7.36 8.77 9.66| 7.76 8.55 9.31
10c.|.1 .05 .025{|2{4.12 4.69 5.27| =x * 9.51 * * *
12. 1 .05 .025{1|4.40 5.44 6.55{6.37 7.41 8.44) 6.42 7.61 8.89
13. 1 .05 .025|1|4.00 4.66 5.31(6.13 6.95 7.82| 6.18 7.00 7.88

S CHEME B

# | values of h (T m=71 =1 m=xr =2 m=3, r=2
1. 2001 .05 |114.65 5.12 5.64|6.62 7.49 8.37| 8.77 9.91 11.07
2. .1 .05 .025(3!5.38 5.79 7.59 8.50 11.01 11.92
3a. .2 .1 .05 |1 exact exact exact
3b. |.1 .05 .025(2|4.33 4.74 5.18|5.18 5.61 6.05| 5.54 6.00 6.43
3c. (.1 .05 .025|2 exact exact exact
3d. |.1 .05 .025{2{5.65 5.27 5.63|7.75 9.13 9.15) 7.78 8.50 9.24
3e. |.1 .05 .025(|2(4.60 4,96 5.21 exact exact
5. .1 .05 .025|2|4.09 4.51 4.9314.88 5.31 5.75| 5.25 5.69 6.13
6. 2001 .05 |113.35 3.71 4.12(4.09 4.50 4.92) 4.42 4,86 5.30
7. .1 .05 .01 {2
8a. |.1 .05 .025|3(4.52 4.99 5.45(5.41 5.85 6.29| 5.78 6.23 6.67
8b. .1 .05 .025{3{4.55 4.99 5.44|5.38 5.83 6.28] 5.76 6.22 6.67
10a.|.1 .05 .025|2|4.30 4.92 5.53|6.63 7.24 7.82| 5.92 6.55 7.16
10b.|.1 .05 .025(2|4.17 4.76 5.36|7.52 8.80 9.06{ 6.76 7.52 8.27
10c.|.1 .05 .025{2|4.13 4.70 5.28{6.93 7.96 9.02{ 7.89 8.82 9.72
12. |.1 .05 .025{1|4.41 5.44 6.54|7.84 7.89 8.72| 7.55 8.96 9.52
13. {.1 .05 .025{1}4.03 4.68 5.32{6.57 7.59 8.55| 6.43 7.36 8.33

*) within 14D machine precision
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