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An accurate method without directional bias for the numerical solution of a 

2-D elliptic singular perturbation problem*) 

by 

P.W. Hemker 

ABSTRACT 

We describe a numerical method for the solution of a 2-D elliptic 

singular perturbation problem. The method makes use of the Defect Correction 

Principle. One defect correction step uses both an accurate instable and an 

inaccurate stable discretization of the continuous problem (FEM-discretiza­

tion and artificial diffusion). A second defect correction step is a relaxa­

tion or smoothing step. In the combined process both steps iteratively alter­

nate. 

The iteration can easily be incorporated in an iterative algorithm for 

the solution of the discretized system (e.g. a multiple grid method). 

Without a directional bias in the discretizations and without particu­

lar mesh refinements, the resulting method is aaymptotiaally stable. It is 

O(h2) accurate for smooth components in the solution and the numerical bound­

ary layer thickness is O(h). Therefore, the method is suited for locating 

the boundary layer and for subsequent application of adaptive mesh-refine­

ments. 

KEY WORDS & PHRASES: Stiff PDE, defect aorreation 

*) This report will be submitted for publication elsewhere. 



I • INTRODUCTION 

We study problems related with the numerical solution of the singular perturba­

tion equation 

➔ 

LEU= -E tu+ a.9u = f, ( I . I ) 

in a two-dimensional region n. This equation can be considered as a model equation 

for more complex real-live problems such as flows described by the Navier-Stokes 

equation. We refer to equation (I. I) • ➔ • 
as the convection-diffusion equation; a is the 

convection vector and E > 0 is the diffusion parameter, which may be small compared 

t:o !"!!. 
Allthough we study equation (I. I) with constant coefficients, we want to find 
. 1 h . .... . .... .... ( .... .... numer1ca methods tat are appl1cable for variable a; 1.e. a= a x,y) or a= a(x,y,u). 

In particular, we are interested in methods that are independent of the direction of 
➔ 

a and independent of whether the grid is properly refined in possible boundary layers, 

when Eis small. Therefore, we study methods that do not make use of a-priori know­

ledge about the solution, the convection direction or proper mesh refinements. 

As a simplification of the 2-D equation we also study the 1-D case. 

For this 1-D problem, 

(I. 2) Lu= +Eu + 2ux = f, 
E XX 

many numerical methods have already been investigated (see e.g. contributions in 

Hemker-Miller [1979] or Axelsson-Frank-VanDerSluis [1981]). However, almost none of 

these methods are suitable for generalization in more dimensions. 

An essential difficulty in the numerical solution of (I.I) with O < E < h, h the 

mesh-width, is the different type of approximation that is required in the smooth 

part of the solution and in the boundary or interior layers. In the smooth part an 

accurate approximation possibly of high order - is desirable, whereas for the 

boundary layer the proper location is of prime importance, with the additional re­

quirement that the effect of the (almost) discontinuity does not disturb the solution 

in the smooth parts, Large derivatives of the solution inside the layers make that 

in these layers high order approximation is of no use. Therefo~e, we are interested 

in methods that are of low order for unsmooth and of higher order for smooth compo­

nents in the solution. When these methods are applied, local error estimates may be 

used for generating adaptive mesh-refinements afterwards. 
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The problems induced by the small parameter 

For large values of Ethe numerical solution of (I. l) gives no particular prob­

lems. Discretizations 

(I. 3) L u = fh h,E h,E 

are known for which Huh - u II= 0(h2) as h+ 0, e.g. the usual central difference or 
,E E 

finite element discretizations. The errorbound remains valid for small values of E: 

llu -ull:<;Ch2 
h,E E E 

but C + 00 and h + 0 as E + O. This means that the error estimate is of no use if we 
E E 

apply these discretizations with finite hand E + O. In fact, for small E, the usual 

discretizations may yield quite useless approximations. 

EXAMPLE 

Discretizing the 1-D model problem 

( l. 4) EUXX + 2ux = o, 
u(O) l , u(oo) 

by central differencing: 

( 1.5) 

we find 

X E [0, 00 ), 

0, 

o, 

This is a second order approximation indeed: 

for jh fixed and (~) + 0 

luh (jh) - u (jh) I 
,E E 

C independent of j, hand E. 

However, the solution of the reduced difference equation is 

( l. 6) 

The influence of the boundary condition at x = 0 is significant over the whole domain 

of definition, whereas for the reduced differential equation the influence of this 

boundary condition vanishes in the interior of the domain. 

A well-known cure against this spurious influence of the boundary condition is 

"upwinding" or "artificial diffusion" • In upwinding one-sided differences are used 

for the discretization of the first order term. In artificial diffusion, the diffu­

sion constant Eis replaced by a larger value a= E + O(h). In both cases the spurious 

influence disappears at the expense of the fact that these discretizations are only 

accurate of order O(h). In the 1-D case "upwinding" is equivalent with "artificial 

diffusion" with a= E + hlal/2. 



EXAMPLE 

The solution of the upwind discretization of (1.4) 

( I. 7) 

is 

In contrast with the central difference solution, we see that here the influence of 

the boundary condition vanishes in the interior of the domain as E ➔ O; but this dis­

cretization is only first order: 

for jh fixed and (Q) ➔ 0 we find 
E 

I uh ( j h) - u ( j h) I s C ( b) . 
, E E E 

2. LOCAL MODE ANALYSIS 

We want to analyze separately the behaviour of the discretizations (i) in the 

smooth parts of the solution, and (ii) in the boundary layers. For this we use the 

local mode analysis (LMA), cf. Brandt [1980] and Brandt and Dinar [1979].We consider 

equation (I. I) in two particular model problems: 

(i) the inhomogeneous problem 

(2.1) Lh,E uh = fh 

3 

on a regular rectangular discretization of IR2 uh and fh are bounded at infinity, and 

(ii) the homogeneous problem 

(2.2) Lh,Euh=O 

in a discretization of the half-space, of which the boundary is a grid-line; boundary 

conditions are given on this grid-line and uh is bounded at infinity. 

In both cases we consider the discretization of the constant coefficient oroblem 

on a regular rectangular grid and we decompose the solution in its Fourier modes (see 

e.g. Hemker [1980]) 

(2. 3) ( I ) 2 I -( ) + iwhj d -- uh w e w, 
& 

2 
j E 7l ' 

where 

with 

u ~ ;;. · (w) eiwhj is the mode of frequency w in uh; the amplitude of this mode 
h,w n 

W E { w I w E c2 ' Re wk E [ -11 /h, 1T /h) ' k I, 2} 

is given by 

(2.4) -iwhj (. h) 
e uh J • 

j 

2 
If we consider the problem (2.1), the boundary condition imposes w E IR ; for (2.2) 

with n being the right half-space, with boundary conditions at x 0, we have 
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Ia w1 > 0, Im w2 • 0. In this paper we restrict the analysis to the model problem 

(2. I). 

The modes being the eigenfunction of the discrete operator Lh, we can define the 

aharaateP·istic• fo-rm ~ (w) corresponding with the discrete operator Lh, by 
/'--.... ,,,...._ 

(2.5) Lh ~.w • Lh(w) uh,w' 
,,,...._ 

This characteristic form Lh(w) is the analogue of the characteristic polynomial or the -symbol L(w) of the continuous operators L. 

We now define consistency and stability of the operator Lh for each mode w separately. 

DEFINITION. The operator Lh is consistent with L of order p for mode w £ T~ if 

------ -(2.6) !Lh(w) - L(w)\ ~ C hp for h ~ 0. 

DEFINITION. The stabiUty of Lh for mode w E T~ is the quantity \Lh(w) \. 

DEFINITION. The numen'.aal (interior) stability of Lh, a discretization of L, for 

w c T~ fl :R2 is 

(2.7) lLh(w)I/ IL(w)I. 

DEFINITION. The operator Lh is numerir!al (interior) stable if 

(2.8) 

where n = n(P) is independent of h. 

DEFINITION. The operator Lh,r' a discretization of LE is asymptotically stable if 

~ ') 

Vp > 0 3n > 0 Vw ET~ n JR~ 

DEFINITION. The operator L is E-unifc•i>mly stable if (2.8) holds with n n(p) h,E 
independent of hand£. 

EXAMPLE 

To study the local behaviour of the discretization (1.5) of our 1-D model problem 

we find its characteristic form 

(2.9) L (w) = sin(wh/]l (-E sin(wh/2) + 2i cos(wh/2)). 
n,E h/2 h/2 

Comparing this with the syrnbol L (w) = -Ew2 + 2iw of L we find 
E 

(I) the discretization (1.5) is consistent of order 2: 

- - 2 4 3 3 I Lh (w) - L (w) I ~ C h I e:w + iw I + 0 (h ) ; 
,E E 

(2) the discretization (1.5) is asymptotically unstable: 

lim L_ (n/h) = O, whereas 
e:-+0 n,E 
lim L (Tl /h) = 2ni/h. 
e:-+0 E 
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We find that uh,n/h is an unstable mode. This mode corresponds to 

uh(jh) 

cf. eq. (l.6). 

If we consider the discretization with artificial diffusion a, we find its char­

acteristic form (2.9) with£ replaced by a> 0. This discretization is 

(I) consistent of order 1 if la - £ I s c1 h; viz. 

(2.10) [Lh,a(w) - T.£(w)l s c1[a-£[ lwi 2 + [Lh,£(w) - L£(w)l 

(2) numerical (interior) stable, uniform in£:, if la-£:[~ c2h; viz. 

I L~,a (w) I = I sin(wh/2) I I~ sin(wh/2) - 2i. cos (wh/2) I 
L (w) wh/2 E:W - 21 

( 

2 
~ 

TT 

4 
~2 

TT 12 

sin(wh/2) - i cos(wh/2)1 

~ sin(u.ih/2) - i 

. ( I ) 212 . ( ) min a h, i 2'. - 2- min c2, I • 
TT 

There are no spurious unstable modes. 

3. THE DEFECT CORRECTION PRINCIPLE 

For the solution of linear problems, the defect correction principle is a general 

technique to approximately solve a problem 

( 3. I) Lu= f 

by means of an iteration process 

(3.2) i = 1,2, .•.• 

The operator L, an approximation to L, is selected such that problems 

~ (i+l) ~ 
L u = f, 

with f 1n a neighbourhood off, are easy to solve. If Lis injective and the itera­

tion process (3.2) converges to a fixed point u, then u is clearly a solution of 

(3.1). The convergence of the iterands to the solution of (3.1) is described by the 

error amplification operator 

~-] 
I - L L; 

(i) the reduction of the residual r 

residual amplification operator 

(i) f - Lu in each step is described by the 
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If two equations Lh uh= fh and Lh uh= fh are both discretizations of a problem 

Lu= f (respectively consistent of order p and q, p :S q) and if Lh satisfies 

bility condition 

(3. 3) uniform in h, 

then it ic well known (cf. e.g. Hackbusch [1979], Hemker [1981a]) that in the 

ite~ative process 

(3.4.a) 

(3.4.b) 

(i) 
uh satisfies 

L (i) + f 
huh h' 

II u~i) - ull = O(hmin(q, ip)). 

the sta-

This error bound holds without a stability condition (3.3) for the accurate operator 

Direct application of the defect correction principle to the solution of our 

singular perturbation problem suggest the application of (3.4) with Lh = L with h.E 
the 2nd order central difference (or FEM) discretization and with Lh = Lh,a' the arti-

ficial diffusion discretization. Then, the correction equation (3.4.b) has the sin~le 

form 

(3.5) 

Since L is stable and consistent of order I and L is consistent of order 2, h,a h,E 
we obtain 

(3.6) 11~ 1) - ull 

llu(i) 
h 

ull 

Where i\ (i) is a good uh 

O(h) and 

O(h2) for i > l. 

approximation to 6u, (i.e. outside (i+I) the boundary layer) uh 

is a better approximation to 
( I ) 

u than uh • The error bounds (3.6), however, hold in the 
. h 1 . (i) . classical sense: for fixed£ and h ➔ 0. For a general i > I, t e so ution uh is not 

better than the central difference approximation, but in the first few iterands the 

instability of L has only a limited influence. h,£ 

EXAMPLE 

For (1.4) we can compute the solutions in the defect correction process explicit­

ly. Application of (3.4) with the operators Lh and Lh as given in (3.5) yields the 

solutions 

uh(l)(J'h) = ( E )j 
E+2h ' 

(2) ( .h) uh ,J 
2h 

(£+2h) J' 



~m+l) (jh) 

where Pm(j ,h/c) is an m-th degree polynomial in j depending on the parameter h/E. 

It is easily verified that, for£ fixed and h ➔ 0, the solutions are 2nd order accu­

rate for m = 1,2, .•.• For small values of c/h, P (j ,h/E) changes sign m times for 
m 
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j = 0,1,2, .•• , m+I; i.e. in each iteration step of (3.4) one more oscillation appears 

in the numerical solution. The influence of the boundary condition at x = 0 vanishes 

in the interior after the first m+l nodal points. By each step of (3.4) the effect of 

the instability of Lh creeps over one meshpoint further into the numerical solution. 
, E 

Similar effects are found for the process in two dimensions 

Figure I 

The numerical solutions 

u~i) of equation (1.4) 

for small values of E/h 

4. A MIXED DEFECT CORRECTION PROCESS 

u(x) 

In this section we develop an iterative method of which the stationary solution 

is asymptotically stable and 2nd order accurate in the smooth parts of the solution. 

We consider the "mixed defect correction process" (MDCP): 

(4.1.a) 
~I (i+D ~] (i) L 1 (i) + fh, 

f Lh uh Lh uh huh 

(4.1.b) 
1 ~2 (i+ I) ~2 (i+D L2 (i+½) + fh. Lh uh Lh uh - huh 

For this process the following theorem holds. 

THEOREM. Let both L~ and L~ satisfy the stability 

and L~ uh= fh be discretizations of order pk and 

If for (4. I) a stationary solution 

A (i) 
uh lim uh 

i-+00 
exists, then 

(4. 2) 

PROOF. See Hemker [1981b] p. 79-81. 

k 
condition (3.3) and let Lh uh= fh 

qk ;; pk respectively, k = 1,2. 
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For the singular perturbation problem (I.I) we take 

(4. 3) 

a) 

b) 

c) 

the central difference (or FEM) discrete operator, 

Lh the an:ificial diffusion discrete operator, and 
'a. 

2. diag(Lh ) . ,a 

Thus, a pair of iteration steps consists of 

l) a defect correction step as in section 3, and 

2) a damped Jacobi relaxation step for the solution of the stable discretized system. 

If the iteration (4. I) converges, it has not a single fixed point, but it has two 
. 1 . A · (i) d B 1· (i+!) F h . f t stationary so utions uh= lim uh an uh= _im uh • or our c oice o opera ors, 

i-1<0 l-t<» 
the above theorem yields, for a fixed e:, the error bounds 

Du A 
D $ C h and - u 

(4.4) e: h, e: e: 

Nu B I $ C h2 
e: - ~.e: e: 

where u is the exact solution. The defect correction step (4.1.a) generates a 2nd 
e: 

order accurate solution and may introduce high-frequency unstable components. The 

damped Jacobi relaxation step (4.1.bJ is able to reduce the high-frequency errors. 

Hence we expect that the combined process is not only accurate but also stable. First 

we demonstrate this for our 1-D problem. In the next section we give the analysis for 

the 2-D problem. 

The stationary solutions { and u~ in (4.1) - (4.3) can be characterized as solu­

tions of linear systems 

(4. 5) 

and 

For a brief notation we denote eq. (4.5) as 

A 
~,e: ~ = fh. 

Local mode analysis of the MDCP applied to the 1-D model problem 

The characteristic forms of the different discretizations of the J-D model 

problem 

(4. 7) 
II 1 

Lu= e:u + 2u = f e: 

are, for central differencing (Lh ), upwinding (Lh with a. 
, e: , a. 

discretization ?l espectively 
-h, e: 

(4,8) + 4i SC 
h ' 

e: + h) and the MDCP 



(4.9) Lh (w) = - ,!£ s2[ I+~] 4i 
, Cl h2 e: + h SC, 

(4. 10) ~ (w) = , e: 
- 4e: S2[ I+ !:! 

h2 e: 
S2] + 4i SC 

h [ I + e:~h S2j, 

who:re S sin(wh/2) and C cos(wh/2). 

THEOREM. The operotoP M.. defined by the MDCP process (4.1)-(4.3) applied to the -11' e: 
model equation (4.7) is consistent of 2nd o:roder and e:-unifo'l'rrtZy stable. 

PROOF. Comparing & with L (w) we find for all w E T2 n E 2 -n, e: e: h 

IM. tw) - L (w)l s JM_ ,(w) - ih (w)I + Ith (w) - L (uJ)I -11,e: E -11,~ ,e: ,e: f 

for h -+ 0 

i.e. M.. is consistent of the 2nd order. -11, e: 
For the stability we find 

lf\,E (w)' 

£ <w> I 
E 

1 e:w + 2i I 

For O < h s E we find for al 1 w " T~ n JR.2 

IE s + ic I 
IMI > ~. h > ~ I 

- - 2 
ILi 71 le:s~+2il 71 12 

For Os e: sh 

J!!.l >_ 4 1S 3 + iC(I + ~s2) I ~ ---=2== 
r2----- · 

ILi 71 IES~+2il 71 ✓ 71 +4 

Thus we find, uniform in e: and h, 

IL (w)I e: 

12. 
T 
71 

This inequality implies e:-uniform stability. 0 

5. LOCAL MODE ANALYSIS APPLIED TO THE 2-D HODEL PROBLEM 

(5. I) 

An analysis, analogous to the 1-D case, can be made for the 2-D model equation 

-+ 
L u = e: llu + (4+ 2p) a 'ilu = f. 

e: 

The corresponding difference operator is given by 

(5. 2) -4 

With p O it corresponds to the central difference discretization; with p = it 

9 
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describes the FEM discretization on a regular triangulation with piecewise linear 

trial- and test-functions. Also for the 2-D equation we define the MDCP by (4.1) -

(4.3). The 2nd order consistency of the corresponding M_ and its asymptotic sta--n,E 
bility are proved similarly to the 1-D case. 

THEOREM. The op+2ru.tor M.. , defined by the process (4.1)- (4.3), applied to the 
-11,E 

11«:>deZ equation (I.I) with c1entrul differenae or finite element discretization for 

1n,c and with artificial diffusion, a • e: + c1h, is consistent of 2nd orider and 

asymptotically stable. 

PROOF. Similar to the 1-D case we find 

L (w) = - 4c s2 + 4i T and 
71,E h2 h 

M_ (w) = - 4£2 s2[1 + ~ S2) + 4i T [I+~-£ S2] 
-11,E h 2£ h LCl ' 

where 

s • s2 + s2 
♦ e 

Further LE (w) = -~E ($ 2 + e'-) + ~i (2 + p) (a 1 ♦ + a2e). Now it is easy to show that 
h 

l¾,/w)-L/w)I :S l~,E(w) - ~./w)I + ILh/w) - Lt(w)I = ()(h2) 

which proves the consistency. 

To prove the asymptotic stability we find 

lim 
t+O 

lt\,E(w) I 

1£ (w)! 
( 

= Ii~ s4 + [2+ s2JTI 
2:2+p)(a 1 ♦ +a2 e) • 

because of the term i ~ S~ ~ i c 1s4, t110 has no unstable modes. 
, -

We choose a fixed p > 0 and consider ( ♦ ,6) such that IL (w)! ~ r. 
E 

We can write T = T(¢i,6) = (2+p) (a 1$ + a 2e)- R($,6) with 

3 3 IR(qi,8) I :s c2 h lw! , c2 = C(a 1 ,a2,p). 

Now 
icls4 + (2+s2 )T( ♦ ,6) I¾ (w) I 

I I lim ,£ 
= . 

t+O If. (w)I 2T( ♦ ,6) + 2R($,6) e: 

For an arbitrary c3 > 0 we consider subregions of 2 
Th n R2: 

A= { ($,8) T(<!>,B) 3 3 
~ c3 h lwl and la1$ + a2e 1 ~ p}; 

B = { (<!>' e) T(q,,8) :s 3 3 c3 h lw I and la 1cp + a2el ~ p}. 



Because (2+p)(a1¢+ a 28) = R(cp,e) + T(cp,e), we know for all (¢,8) e: B that hlwl .? Cpl/3 

For (cj),8) e: A we have 

lim 
e:➔O 

and for (cj),8) e: B 

Ii\ e: (w) I 
lim ' 
e:➔O IL (w) I 

e: 

.? __ --'-I ..:..(2_+__:_S2-")-=T...!.( <Pw•~S~) """"I __ _ 

I 2 T ( cp, a) I + I 2 c2 T ( cp, e) / c3 J 

I /3 
Chlwl>Cp. 

Thus, for a given p > 0, and for all w e: T~ n lR.2 such that lim L (w) ;;: p, we have 
e:+O e: 

e:➔O 1£ (w) I e: 

n (p) 

i.e. M. is asymptotically stable. D -n' e: 

REMARK. 

1 1 

The MDCP method as described above can conveniently be imbedded into an iterative 

process for the solution of the discrete system. Only the first step in (4.1) re­

quires the solution of a linear system, the 2nd step is the application of a single 

relaxation sweep. If an iterative method for the solution of (4.1.a) is used, a suf­

ficient number of iteration steps for its solution should be interchanged with a sin­

gle step (4. 1.b). If an efficient iterative method is used, such as a multiple grid 

method, possibly a few iteration steps for (4.1.a) are sufficient to obtain the derived 

effects. It is likely that also only a few iteration steps of the MDCP process are 
A B uh and~ that have essentially the properties sufficient to obtain approximations to 

A B of uh and uh. Here further research is required. 

REMARK. 

The MDCP-method makes use of the fact that the solution of equation Lu f, ex 

with a= e: + O(h), is an approximate solution of the equation Le:u = f. 

The method does not make use of any particular knowledge about the convection direc­

tion or about the location or the shape of boundary or interior layers. 

6. NUMERICAL EXAMPLES 

For a number of problems (I.I) we have computed the numerical solution. In all 

problems we took for Lh the finite element discretization on a-regular triangulation 
'e: 

and for L the -h,a 
artificial diffusion discretization with a= e: + h/2. 

By 3 different methods the solution was computed: 

I) by the method of artificial diffusion (AD), i.e. 

L u (I) = fh. h,a h 

(I) 
~ the solution of 
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2) by a single defect corTection step (DCP), i.e. u~2) in eq. (3.5) 

3) by the iterative process (4.1) - (4.3). The stationary solution after the 2nd 

order correction step (u~) is denoted by (J;DCP) and the solution after Jacobi­
A relaxation (uh) by (DCP;J). 

For four typical problems we compare the results of the computations. The 4 

problems are: 

I. A problem with a smooth solution 

(6. 1) E flu+ u = f(x,y) 
X 

2 
on [0,1] , 

with Dirichlec boundary conditions. The boundary conditions and f(x,y) are chosen 

such that 

(6.2) u(x,y) sin(wx)sin(wy) + cos(wx)cos(3Tiy) 

is the solution. 

2. A problem with an exponential boundary layer 

The same proble~ (6,1), with the Dirichlet boundary conditions and f(x,y) such that 

(6. 3) u(x,y) = sin(wx)sin(wy) + cos(wx)cos(3Tiy) 

+ (exp(-x/E) - exp(-1/£))/(1 - exp(-1/E)) 

is the solution. 

3. A problem with a parabolic boundary layer 

(6. 4) E flu - u = f(x,y) 
X 

2 on [ 0, 1] , 

with Dirichlet boundary conditions and f(x,y) chosen such that 

(6.5) u(x,y) = sin(wx)sin(wy) + cos(wx)cos(3Tiy) + 

6 0 -
x-xo 

-(y-yo)2 

e 4E(x-x0) 

with x0 = -I and y0 = O, is the solution. 

4. A problem with a parabolic interior layer 

The problem (6.4) with the bcundary conditions and f(x,y) chosen such that (6.5) is 

a solution with x0 = -0.1 and y0 = 0.5. 

In the tables 6. 1 - 6.4 we show for E = I0-6 the maximal error at the meshpoints 

in the whole unit square and (in italics) on a properly selectPd subregion, away from 

the boundaries, where the solution of the problem is smooth. We give the error on a 

regular square mesh with h = J/8, 1/16, 1/32. Further we give the ratio of the error 

when the mesh-size is halved. 
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h = 1/8 h = 1/16 h = 1/32 
error ratio error ratio error 

AD 0.973 1.52 0.640 1.60 0.399 

0. 790 1.37 0.578 1.50 0.380 

DCP 0.635 1.74 0.365 1.97 0. 185 

0.635 1.76 0.360 2.08 0.173 

(J; DCP) 0.507 2.39 0.212 3.64 0.0583 

0.507 3.40 0.149 4.45 0.0335 

(DCJ?;J) 0.429 3.09 0. 139 3.22 0.0432 

0.429 3. 35 0.128 4.40 0.0291 

TABLE 6. l. Problem I: smooth solution, £ 10-6. 

h = 1/8 h = l / I 6 h = 1/32 
error ratio error ratio error 

AD 0.973 1.52 0.640 1.60 0.399 

0.790 1.37 0.578 1.52 0.380 

DCP 1.08 1.28 0.845 1. 28 0.662 

0.635 1.76 0.360 2.08 0.173 

(J;DCP) I. l l I. l 8 0.944 1. 19 0. 792 

0.608 3.82 0.159 4.75 0.0335 

(DCP;J) 0. 727 I. 21 0.603 1. l 9 0.506 

0.459 3. 48 0.132 4.54 0.0291 

TABLE 6.2. Problem 2: exponential boundary layer, £ I0- 6 

h = I /8 h = I/ I 6 h = 1/32 
error ratio error ratio error 

AD I. 21 1.56 o. 777 J.00 o. 776 

0.799 1.38 0.578 1.52 0.380 

DCP 0.813 I. 19 0.684 0.99 0.694 

0.660 1.61 0.409 2.09 0.196 

(J; DCP) 0.552 1.08 0. 51 l 0.91 0.560 

0.552 3.76 0.147 4.50 0.032? 

(DCP;J) 0.441 0.92 0.478 0.98 0.489 

0.441 3.45 0.128 4.40 0.0291 

TABLE 6.3. Problem 3: parabolic boundary layer, £ 10-6 . 
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h = 1/8 h = 1I16 
error ratio error 

AD I.II l.52 o. 730 

0.573 2.08 0.275 

DCP 0.835 I. 74 0.481 

o. 399 1.86 0.214 

(J;DCP) 0.735 I. 71 0.427 

0.286 1.95 0.147 

(DCP;J) 0.677 2.00 0.339 

0.247 2.01 0.123 

TABLE 6.4. Problem 4: parabolic interior layer, £ 

ratio 

1.61 

1.44 

1. 32 

1.95 

1.43 

5.53 

I. 13 

5.67 

-6 10 .. 

h = 1/32 
error 

0.453 

0.191 

0.364 

o. 110 

0.298 

0.0266 

0.300 

0.0217 

-6 We notice that for£= 10 and for the given mesh-sizes, the (J;DCP) and the (DCP;J) 

solutions show 2nd order convergence in the smooth parts of the solutions. Thus, they 

show the local interior behaviour as it was predicted by the local mode analysis. 

The DCP solution only shows 1st order convergence for these h/£ ratios, whereas the 

AD solutions even show less convergence. 

h = l/8 h = 1/16 h = 1/32 
error ratio error ratio error 

AD 0.630 2.47 0.0255 I. 71 0.0149 

DCP 0.0740 3.65 0.0203 4.02 0.00505 

(J;DCP) 0.0780 3.65 0.0214 4.01 0.00533 

(DCP;J) 0.0693 3.46 0.0201 3.89 0.00516 

TABLE 6.5. Problem 2: i:: 1.0. 

In table 6.5 we show the results of problem 2, now with i:: = 1.0. Here, of course, 

we recognize the classical convergence rates already for h = 1/8, 1/16, 1/32; viz. 

the AD solution shows !st order convergence, the DCP and (J;DCP) solutions are 2nd 

order and (DCP;J) is slightly less than 2nd order accurate. 
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