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Volterra-type integral equations of the second kind with non-smooth 

solutions: high-order methods based on collocation techniques*) 
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ABSTRACT 

Methods with arbitrary order of convergence are derived for the 

approximate solution of second kind Volterra integral equations with weakly 

singular kernels where exact solutions have unbounded derivatives at the 

left endpoint of the interval of integration. These methods are based on 

collocation techniques in certain non-smooth piecewise function spaces 

whose elements reflect the singular behaviour of the given equation. 
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l • INTRODUCTION 

Many modelling problems in mathematical physics (compare, for example, 

[9]) lead to integral equations of the second kind with weakly singular 

kernels, i.e. 

( I. 1) y(t) = g(t) + 

t I G(t,s) y(s,y(s))ds, 
0 (t-s)a 

t E I:=[0,T], 0 <a< 1, 

where, usually, a=½. Here, GE C(S) (with S := {(t,s): O ~ s ~ t ~ T}), 

y is continuous with respect to sand (uniformly) Lipschitz continuous with 

respect toy (we note that y is often given by y(s,y) = const.yr, r EN), 

and g is assumed to have the form 

( 1. 2) g(t) 

· with g1,g2 smooth on I. 

It has been shown ([8,4,7]) that the (unique) solution y of (1.1) is 

continuous on I but has unbounded derivatives at t = 0 (i.e. y'(t) = 
= O(ta-l) fort+ O+); for additional details see also Section 2 of this 

paper. The fact that the kernel function K(t,s,y(s)) := G(t,s)y(s,y(s)) is 

not smooth near t = 0 will have an influence on the accuracy of a numerical 

method near the beginning of the interval of integration; this problem 

has been studied in [6] and in [5] (see also [7]). While those methods 

are based on piecewise polynomial interpolation and on appropriate product 

integration techniques, TE RIELE [9] uses non-polynomial collocation tech

niques (together with suitable weighted quadrature f~rmulas for the dis

cretization of the resulting moment integrals) to simulate the behaviour 

of the exact solution near the origin. However, the obtained rate of con

vergence was unsatisfactory (Theorem 3.1 of [9]). 

The present paper may be regarded as a sequel to [91: here, we inves

tigate projection methods with respect to non-smooth approximation spaces 

which differ somewhat from the spaces used in [9]; this choice allows for 

the construction of collocation methods of arbitrary order. For general 

equations of the form (I.I) (i.e. aG/at t O) these methods will usually 

only be applied to generate a certain number of sufficiently accurate 
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starting values to be used later in a more efficient (finite-difference) 

method (note that, if aG/at t 0, then a change of t in (1. 1) will necessi

tate a new evaluation of the entire integral term). However, most physical 

applications lead to equations where G(t,s) =canst.for (t,s) € S 

(compare the extensive list of examples in [9]); hence, for these special 

integral equations the collocation methods described in the following sec

tions become much more competitive if used on the entire interval I. 

The outline of the paper is as follows: in Section 2 we describe the 

smoothness properties of the exact solution y of (I.I) and introduce the 

approximation spaces in which this solution will be approximated by colloca

tion. Sections 3 and 4 deal with the convergence analysis of the method, 

with a number of special cases, and with suggestions for possible implemen

tations of the method. In Section 5 we touch briefly upon the connection of 

these methods with certain Runge-Kutta-type methods for (1.1) and some 

related open problems. Finally, a number of numerical illustrations are 

presented in Section 6. 

2. PRELIMINARIES 

In this section we assume that 

the forcing function gin (I.I) has 

(i = 1,2) for some m € lN u {O}. As 

0 <a~½- Suppose in addition that 

the form (1.2), with g. € cm+ 1 (I) 
1 

in [4] and [SJ we associate with (I.I) 

the system of integral equations given by 

t 

(2.la) 

(2. lb) 

v(t) = g1 (t) + I sa a G(t,s)y 1 (s,v(s),w(s))ds, 
0 (t-s) 

G(t,s)y2 (s,v(s),w(s))ds, 

where the kernel functions y. are defined by 
1 

(2.2a) I a a 
YI (s,v,w) := ~y(s,v+s w) -y(s,v-s w)J, 

2sa 

(2.2b) 



Observe that if y(s,y) = y (linear integral equation), then y 1 and y2 are 

independent of v and w, respectively, and the corresponding system (2.1) 

reduces to 

(2.3a) 

(2.3b) 

v(t) = g 1(t) + 

t 

J saG(t,s) 
---'----'- w(s)ds, 

(t-s)a. 
0 

t 
-a I G(t s) w(t) = g2(t) + t 'a v(s)ds. 

0 (t-s) 

It follows that, under the hypotheses mentioned and with 
2m+2 

3 

+l am+l 
(i) Ge: Cm (S), (ii) m+l y(s,y) e: C(IxR'), (iii) a e: c (Ix R') 

ay2m+2 as 
(where R' := {z: jy(t)-zj < p, t e: I}), the exact solution y of (I. 1) may 

be expressed as 

. (2.4) y(t) = v(t) + ta w(t), t e: I, 

where v,w e: Cm+l(I). (However, it has already been observed in [5] that 

boundedness of the solution y of (1.1) does, in general, not imply bounded

ness of v and win (2.1). Hence, a stable equation (1.1) may give rise to 

an unstable system (2.1): a simple example is given by a=½, g 1 (t) = I, 

g2(t) = 0, G(t,s) = -1, y(s,y) = y; here y(t) + O, t + 00 , while v(t) = 

= exp('TTt), lw(t)I = O(exp('TTt)/-v't), t + 00 .) Note, furthermore, that the 
-a. presence of the factor t in (2.lb) (or in (2.3b)) implies that v and w 

satisfy the above smoothness result only if Os ex s ½; if a e: (½,l) then 

integrals of the form, e.g., 

t 

t-a f (t-s)-a ds = tl-Za/(1-a.) 

0 

do no longer remain bounded on [0,T] (T > O). 

If (2.4) holds then, forte: on (where o0 := [O,t 1J, on:= (tn,tn+l], 

tn := nh, with tN = T) we write y as 

ml m2 
L v . .-j + ha.(n+.-)a l w • .-j + R1 (-r) + ha(n+.-)aRII(.-), 

n J • n,J n n j=O ' J=O 
(2.5) y(t) = 
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with 

and 

(2.6) 

V • 
n,J 

t-t 
n 

T = --h-, 

mtl m1+I (mtl) 
:= h T v (~n)/(m1+I)! (t < ~ < t +Th), 

n n n 

(t < n < t +Th). 
n n n 

Here, m1 and m2 are suitable non-negative integers satisfying m1 ~ m, 

m2 ~ m; their choice will be made more precise below. Note that, for a= 0 

and m1 = m2 = m, (2.5) reduces to the classical Taylor formula representa

tion for yon o. 
n 

The above representation (2.5) for the exact solution y of (1.1) 

(subject to (2.4)) yields the motivation for the choice of the projecting 

space in which an approximate solution u will be sought: if y is such that 

v and win (2.4) satisfy v E Ilm, w E rrm2 (i.e. R1 (T) = O, R11 (T) = 0 for 
l n n 

all n = O(l)N-1) then y will be required to be an element (namely u) of 

this space. Hence,wedefine,settingZN := {t =nh: n=O(I)N (t =T>O)}, n N 

(2. 7) V(-l)(Z) {u: ul = u (t) 
a a := := pn(T)+h (n+T) 4ti(T), m n o n 

n n = O(l)N-1} 

with ml m2 
p (-r) := I J qn(T) := I 8 ,Tj (T = (t-t )/h). a , T , n 

j=O n,J j=O n,J n 

If a= 0 and m1 = m2 = m, then V~-l)(ZN) coincides with S~-I)(ZN)' the 

space of piecewise polynomials of degree m which possess (finite) dis

continuities at their knots ZN (compare also [3]). We have 

(2.8) 

and 

(2. 9) dim s(-l)(Z) = N(m+l) 
m N 

(O <a< I), 



3. COLLOCATION IN V(-l)(Z) 
m N 

For the subsequent analysis we defineµ := m1+m2+1 (if O <a< 1; 

for a= 0 and m1 = m2 = m we setµ= m), and we introduce the sets 
N-1 

X(N) := n~O Xn' where 

(3. 1) X : = { t +c . h: 0 s; c0 < • • • < cµ = I} • n n 1 

Consider now (I.I) fort E cr : we have 
n 

(3.2) y(t) 

where 

t 

I -a = (t-s) G(t,s)y(s,y(s))ds 

t 
n t 

n 

+ F (t), 
n 

(3. 3) F (t) := n g(t) + I -a (t-s) G(t,s)y(s,y(s))ds 

to 
(n = O(l)N-1). 

An element u E V~-l)(~) approximating the exact solution y of (1.1) on I 

is then determined from the recursion 

(3. 4) 

with 

(3. 5) 

c. 
1 

u (t +c.h) 
n n 1 

= hl-a J 

-F (t) := 
n 

0 

-+ F (t +c.h) 
n n 1 

n-1 1 

g(t) + h l I 
k=O O 

0 (1 )N-1), 

approximating the "history (or: lag) term" (3.3). Note that, for c0 > O, 

the integrands in (3.5) are no longer singular; also, (3.4) does of course 

not require knowledge of any starting values. 

By using the standard contraction mapping arguments, together with 

the hypotheses governing the existence of a unique solution for (1.1) on I, 

one can show that (3.4) has a unique solution u E V~-l)(ZN) whenever h > 0 

is sufficiently small. (For remarks on the numerical evaluation of the 

integrals in (3.4) and (3.5) compare [9].) 

5 
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Let now e(t) := y(t)-u(t), with el 0 := e (t). It follows from (3.2) . n n 
and (3.4) and from the hypotheses for y(s,y) that e(t) satisfies 

(3.6) 

here, 

(3. 7) 

c. 
1 

1-a e (t +c.h) = h 
n n 1 f (c.-T)-aG(t +c.h,t +Th)~Y(t +.h,•)e (t +Th)dT + 

1 n 1 n oy n n n 
0 

+ ~ (t +c.h) n n i 
(i = 0(1)µ; n = O(l)N-1); 

~ (t +c.h) = F (t +c.h) - F (t +c.h) = n n 1 n n l. n n l. 

1 
n-1 I = bl-a l 
k=O 

0 

-a ay (n+c.-k-.) G(t +c.h,tk+Th),_;-(tk+Th,•) • 
1 n l. oy 

• ek(tk+Th)dT. 

Recall now the definition of Vm(-l)(ZN): if we define the numbers {o .} and 
n,J 

{e .} by (see (2.5)) 
n,J 

(3.8a) 
ml+l 

(j O(l)m1), h o := V .-a n,j = 
n,J n,J 

(3.8b) 
m2+1 

(j O(l)m2), h € ·= w - s = n,J · n,j n,j 

then we may write 

(3.9) 

Observe that, for all n = O(l)N-1 (N ~ 1), we have h0 (n+T)a s [h(n+l)]a s 
~ (Nh)a = (T-t0)0 < 00 • Substitution of (3.9) in (3.6) and (3.7) yields a 

(linear) system(inJRµ+I) for the vectors {(o 0 , ••• ,on m ;e 0 , ••• ,en m2)}, n, , 1 n, , 
and the techniques of [2,3,9] can then be used to derive the following result. 



THEOREM I. Let O <a< I, and suppose tha.t g1, g2, G, and yin (I.I) and 

(1.2) satisfy the hypotheses stated foZLowing (2.3). If u E v!-l)(ZN) is 

detemrined from (3.4) then, for h ➔ O+, Nh = T-t0 , 

(3. l 0) t E l. 

(= O(hq+l), q := min(m ,m2).) 
l 
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We list a number of speciaZ cases illustrating various possible choices 

for m1 and m2• 

(a) m1 = m, m2 = 0 (q = min(m1,m2 ) = 0): 

the space v!-l)(ZN) is generated by the (m+2) functions {1,T, •.• ,Tm; 
a (-1) (n+T) }; we have dim Vm (ZN)= N(m+2) andµ= m+l. Thus Theorem 1 

yields 

!e(t)I = O(h) 

here, V~-l)(ZN) is generated by the (m+2) functions {I;(n+T)a,(n+T)aT, 
am . (-1) ... ,(n+T) T }; we have dim Vm (ZN)= N(m+2), andµ= m+l. Theorem 1 

yields 

!e(t)I = O(h) 

m-1 m-1 (c) Let m be odd; m1 = m2 = - 2- (q = - 2- µ = m): 

(-1) . (m-1) / 2 
Vm (ZN) is generated by the (m+l) functions {l,T, ••• ,T ; 

a a a (m-1)/2 (-1) (n+,) ,(n+,) T, ..• ,(n+T), }; we have dim Vm (ZN)= N(m+l), and 

le(t) I= O(h(m+l)/ 2). 

( ) m m m 
d Let m be even; m 1 = 2 , m2 = 2 - l ( q = 2 - I ; µ = m) : 

V~-l)(ZN) is generated by (m+l) functions {l,T, ••• ,,m/2 ;(n+T)a, ••• , 

(n+,)aT(m/ 2)-l}, we have dim V(-l)(Z) = N(m+l). From Theorem 1, 
' m N 
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We have already briefly mentioned the case where a= 0 (i.e. (I.I) 

with regular kernel and smooth solution y € cm+ 1(I)): if we select 

m = m2 =min (2.7) (a= 0), then v!-l)(ZN) degenerates to s!-l)(ZN)' with 
1 (-I) 

dim S (ZN)= N(m+l), and thus (3.10) reduces to the well-known conver-
m m+l 

gence result ie(t)I s Ch , t € I (compare [3]). More generally, the 

"balanced" choice m1 = m2 yields, for O < a < 1, le(t) I s Chmi+I, t € I. 

Furthermore, if we are given the constraint m1+m2 = m-1 (m ~ 1) (i.e. if 

v!-l)(ZN) is to be generated by precisely (m+l) functions) then (3.10) 

leads to the optimal order of convergence if m1 and m2 are chosen as in 

(c) and (d), respectively. 

In [9] a somewhat different strategy was used for choosing the approxi

mating space: instead of V(-I)(Z) the author considered (for the case 
m N 

a= D, 

(3. I 1) 

--r uloo = uo(t) = lj=O 
j/2 ,: = (t-t0) /h, ao .,: , 

W(-I) (Z ) 
,J 

.-m N j u: ulon = u <t) = l~ o a . ,: ' ,: = (t-t ) /h, 0 < n s N-1, n J= n,J n 

i.e. on subintervals other than the initial interval cr0 piecewise polynomials 

of degree m are used, while on o0 its7lf the choice of the basis functions 

reflects the singular behaviour of y(J)(t0) (j > 0) (recall (2.4)). However, 

as is indicated by Theorem 3.1 of [9], there seems to be a marked drop in 

the resulting order of convergence (but compare the remark made at the end 

of this section). 

It is clear that, ideally, one would like to attain the same order of 

convergence (i.e. p = m+l) independent of whether a= 0 or O <a< I (recall 

that this is possible for the projecting space s!-l)(ZN) provided the solu

tion y of (I.I) satisfies y € cm+ 1(I); [2,3]), without a significant in

crease of the computational effort; a glimpse at (3.4), (3.5) reveals that 
A 

it is the evaluation of the "history term" (or "lag term") F (t) at 
n 

t = t +c.h (i = 0(1)µ) which, as n becomes large, makes up the overwhelming n 1 

part of the computational cost. Therefore, by (3.10), (3.4) and the fact 

that Jy(j)(t )Is M < ~, j = O(I)m+l, if t € [c,T], c > 0, the following n n 
modification of the collocation scheme analyzed above seems suggestive 

(see also Section 4): 
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(i) On a (O ~ n ~ r-1, where the choice of r;::: 1 will depend on the given 
n 

stepsize h), let Xn := {tn+cih: 0 ~ c0 < ••• < cµ 0 = l} with µ0 := 2m+l 

(m;::: O), and set 

(3.12a) 
m 

u Ct) := I 
n . 0 J= 

m 

I 
j=O 

(ii) If n ~ r (n ~ N-1), then let Xn := {tn+;ih: 0 ~ c 0 < ••• < ~µ 1 = I}, 

where now µ 1 := m; the corresponding approximating functions will have 

the form 

(3. 12b) u (t) := 
n 

m 

I 
j=O 

(t = (t-t )/h). n 

Hence, on 0 0 , ... ,crr-l (tr;::: E > 0 for a given e), and crr••··,oN-l the 

approximations (3.12a) and (3.12b) will be determined, respectively, by 

(3.4) (n = O, .•. ,r-1; µ replaced by µ0) and by (3.4) (n = r(I)N-1; µ replac

ed by µ 1). 

We observe that "Method A" of [9] is related to the scheme outlined 

above: it selects r = I (independent of the stepsize h) and, on cr 0 , 

replaces the approximation given in (3.12a) by 

[m/2] 
[m-1] 

~ j 
2 ~ j+a 

~o<t) := I a.Q .T + ha I s0 . T (with a = ½). 
j=O ,J j=O ,J 

This choice corresponds to m1 = [~], m2 = [m;l] (with m1+m2 = m-1 (m;::: I)) 

1.n examples (c) and (d) following Theorem l. 

In order to analyze the resulting order of convergence (h + O+, 

Nh = T-t0 fixed) we first note that the representation (3.9) (which 

involves the hypotheses v € Cm+l(I), w € Cm+l(I)) now becomes, respectively, 

J. m+l (m+l) 
8 .T +-r v Cs )/(m+I)! + 
n,J n 

(3. 13a) j m+ I (m+ I ) )} 
E • T + T w ( n ) / (m+ I ) ! 
n,J n 
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and 

(3.13b) 

In (3. 13a) r is such that, for a given€> O, t ~ e; in (3.13b) we have set r 
m.+l~ • (") 

h 5 . := hly J (t )/j! - a. . (j = O(l)m; n ~ r). This suggests that 
n,J n,J n 

the following result will hold. 

THEOREM 2. Suppose t'hat the assumptions of Theorem I hold, and let€> 0 be 

given. If the projection u of y has the form (3.12) and satisfies (1.1) on 

the sets of collocation points indicated in (3.12), then the resulting 

erroza function e := y-u satisfies, for t E: I, 

. (3.14) le(t)I S: Chm+! 

Since the proof of the above result proceeds essentially along the 

lines of the one for Theorem 1 (compare also [3]) we omit most of the 

details. However, in order to exhibit the necessary modifications we shall 

discuss the structure of the error equation. First, the collocation equa

tion corresponding to (3.12a) and (3.12b) may be written as (n ~ r) 
c. 

l. 

u (t +c.h) =hl-a. f (c.-,)-a.G(t +c.h,t +,h)y(t +,h,u (t +,h))d, + nni J. ni n n nn 

(3.15) 

with 

(3. 16) 

0 

n-1 1 
+hi-a. I f (n+ci-k-,)-aG(tn+cih,tk+,h)y(tk+-rh,~(tk+-rh))d-r+ 

k=r O 

... 
+ '¥ (t +c.h) r n 1 

... 
'¥r(t) := 

r-1 I 

g(t) + h l f ct-tk--rh)-aG(t 'tk+-rh)y (tk +-rh,~ (tk +-rh)) d-r 
k=O O 



(observe the analogy with (3.5)), discretizing the given equation (I.I), 

written as (t ~ tn, n ~ r) 

t 

y(t) = I -a. 
+ '¥ (t), (3. 1 7) (t-s) G(t,s)y(s,y(s))ds r 

t r 
where t r 

(3.18) '¥ ( t) := g(t) + I (t-s)-0 G(t,s)y(s,y(s))ds. r 
to 

(Note that, fort~ t (~ e: > O), the exact solution of (3.17) satisfies r 
y E Cm+l(I).) Accordingly, the error function satisfies the recursion 

ay 
(letting K .(t) := G(t +c.h,t)~(t,•)) n,1 n 1 oy 

I-a. 
e (t +c .h) = h n n 1 

(3. 19) 

c. 
1 

J (c.-.)-°K .(t +Th)e (t +Th)dT + 
1 n,1 n n n 

0 

+{'¥ (t +c.h) - i (t +c.h)} r n 1 r n 1 

I I 

On the (fixed) subinterval I := 
e: 

[t0 ,t0+e:J (recall that, for a given e: > 0, 

r is such that tr~ e: for h > O, and hence for h + O+) we may invoke 

Theorem I: (3. IO) yields, with m1 = m2 = m, and with q = m, le(t)I ~ 

~ C'hm+I, t EI. Consider then (3.19): for each n ~ r, e (t +Th) is given 
e: ( I) n n 

by the representation (3.13b) (where ly m+ (z)I ~ M <~for z € I\I ). 
e: 

Furthermore, by observing that (3.19) may now be viewed as a perturbation 

of (3.6) with known perturbation term{'!:' (t +c.h)-i (t +c.h)} and by then r n 1 r n 1 

applying the arguments mentioned before, we are led to the result of 

Theorem 2. 

4. STARTING VALUES: AN ALTERNATIVE METHOD 

The methods investigated in the previous section are all based on a 

direct discretization of (I.I); the singular behaviour of the derivatives 
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of the exact solution y at t = 0 was reflected in the particular choice of 

the projecting spaces. Since, as has. already been pointed out in [5] and 

[9], it is the order of the starting errors which will eventually govern 

the accuracy of the numerical approximations on I, the computation of 

approximate values near t = 0 can be based on a suitable discretization of 

the system (2. I) (whose solution z(t) := (v(t),w(t)) T e: JR2 is smooth on 

I) rather than of (1.1). 

Let 

m 
(4. I) := {u: ul = u (t) := I a .Tj, cr n . 0 n,J 

T = (t-t )/h n , 
n J= 

a . e: :B.2 (n = O(l)N-1)} 
n,J 

and set u(t) I II T • 
:= (u (t),u (t)) . If we introduce the set 

X : = { t +c . h : 0 ~ c0 < • • • < c = 1 } n n i m 

(n = O(I)N-1), then the requirement that the element 
N-1 

u € 

satisfies the system (2. l) on X(N) := u0 X leads to 
n= n c. 

]. 

I f (n+-r)a I II u (t +c.h) = h G(t +c.h,t +Th)y 1 (t +-rh,u (t +Th) ,u (t +-rh))dT + 
n l. (c.-T)a. n l. n n n n n n 

0 ]. 
(4. 2a) 

and 

... 
+ F l ( t +c. h) , n, n 1 

c. 
1-2a. i 

uII(t +c.h) = h ,.., f --- G(t +c.h,t +Th) • 
n n i ( )~ (c.-T)a n i n n+ci O i 

(4.2b) 
I II ... 

• y2 (t +-rh,u (t +Th),u (t +Th))d-r + F 2(t +c.h) n n n n n n, n i 

(i = O(l)m; n = O(l)N-1), 

... 
with Fn,t defined in analogy to (3.5). 

Under the hypotheses given in Section 2, (4.2) defines a unique 

element u e: S~-l)(ZN) for all sufficiently small h > O. Furthermore, by 



recalling the condition that a E (O,½J, it can be shown that 

(4. 3) for all t E I; 

hence, 

(4.4) t EI, 

and thus, by (2.4), 

t E I. 

We conclude with some observations. First, if we multiply (4.2b) 

by (t +c.h)a and then add the new equation to (4.2a), we arrive at 
n i 

I a II u (t +c.h) + (t +c.h) u (t +c.h) = nni n1. n ni 

c. 
l. 

= hl-a I -a I (c.-,) G(t +c.h,t +,h)y(t +,h,u (t +,h) + 1. n 1. n n n n 

(4.5) 0 

a II - aA + (t +,h) u (t +-rh))d-r + F I (t +c.h) + (t +c.h) F 2 (t +c.h) n n n n, n 1. n 1. n, n 1. 

(i = 0 (I )m); 

13 

this is, of 

roles of u1 
n 

(2.7)). The 

course, 
II and u 
n 

second 

identical with the collocation equation (3.4) where the 

are being taken by pn and qn' provided m1 = m2 = m (see 

remark relates to a remark made after (2.4): due to 

the possibility of the system (2.1) to be unstable, the procedure (4.2) 

based on this system will only be used during the "transient phase" (non

smoothness) of the exact solution, to furnish starting values of suitable 

accuracy. Note also that both the method suggested in [5] (based on the 

system (1.2) of [5]) and the above method (4.2) (for the system (2.1)) 

cannot be extended to include equations whose weakly singular kernels are 

characterized by½< a< I, due to the presence of the singularity t-a in 
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(2.lb). On the other hand, the direct method (3.4) 1.s not subject to 

this restriction for the values of a. 

5. RUNGE-KUTTA METHODS FOR (1.1) 

We touch briefly upon a particular aspect of the discretization of the 

collocation equation (3.4): if the polynomials {.L ('r): j = O(l)µ-1} (with 
J 

µ = m1+m2+I; see (2.7)) denote the Lagrange fundamental polynomials with 

respect to theµ (distinct) parameters {c.: i=O(l)µ-1}, and if we define 
l. 

c. 
l. 

a .. (a) := f 
l.J 

0 

(i=O(])µ; j = O(l)µ-1), 

then the evaluation of the integrals on the right-hand side of (3.4) by 

(weighted) interpolatory quadrature based on theµ abscissas {c.: 
l. 

1. = 0(1)µ-1} leads to 

y~n) 
l. 

(5. I a) 

I-a µ-l (n) 
= h I a .. (a)G(t +c.h,t +c.h)y(t +c.h,Y. ) + F (t +c.h) 

j =O l.J n 1. n J n J J n n 1. 

(i = 0(1)µ), 

and 

(5. I b) (n = O(l)N-1); 

here, Y~n) denotes an approximation to u (t +c.h) (and hence to y(t +c.h); 1. nn1. ni 

recall that c = 1), and F (t) is a suitably accurate discretization of 
µ n 

(3.5). Note that (5.la) requires certain values of G(t,s) for s > t which 

have to be defined. 

According to the theory on the attainable degree of precision in 

(weighted) interpolatory quadrature (observe that the number of abscissas, 

µ,satisfiesµ~ min(m1+I,m2+I) = q+l), a glimpse at the appropriately 

modified error equation (3.6) (where the integrals have been replaced by 

the above interpolatory quadrature formulas and the corresponding expres

sion for the quadrature errors) shows that the statement (3.10) of Theorem 

1 remains essentially valid; i.e. we obtain 

(5.2) q+l I y ( t ) -y ) I ~ Ch 
n n (n = 1 (l )N-1) , 



provided, of course, that the quadrature formulas used in F (t +c.h) have 
n n 1. 

a consistent degree of precision. 

The scheme (5.1) represents an implicit Runge-Kutta method of Pouzet 

type for (I.I) whose order is given by p = q+l ~ 1 (O <a.< 1). If (5.1) 

is replaced by 

(5.3a) 

(5.3b) 

µ-1 ( ) 
Y~n) =hi-a. l a .. (a.)G(t +d.h,t +c.h)y(t +c.h,Y.n) +F (t +c.h), 

1. • 0 l.J n J n J n J J n n 1. 

= y(n) 
µ 

J= 

(i = 0(1)µ), 

(n = 0 (1) N-1) , 

then we have an implicit Runge-Kutta method of Bel'tyukov type; the param

eters {d.} are to be chosen such that d. ~ c., j = O(l)µ-1. 
J J J 
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At present, very little is known about the attainable order of (explicit 

or implicit) Runge-Kutta methods for Volterra integral equations with weak

ly singular kernels, especially for methods of Bel'tyukov type. A study of 

these questions is the subject of a thesis [I] which is presently being 

written. 

6. NUMERICAL ILLUSTRATIONS 

Consider the simple test equation (mentioned already in Section 2): 

t 

(6. I) y(t) = 1 - I (t-s)-½ y(s)ds, 

0 

t e: I := [0, 1], 

with solution y(t) = exp(nt)erfc(n½t½) (where erfc(u) 

In the representation (2.4) of y we have 

v(t) = exp(nt) and 

We also have y(t) = 1 - 2t½ + O(t), as t + O+. 

In order to illustrate the theoretical convergence results given in 

Section 3, we have solved (6.1) numerically (i) with the collocation scheme 
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(3.4), and (ii) with the modified collocation scheme based on the represen

tation (3. 12) of the approximate solution u(t). 

(i) We have solved (3.4) forµ= m1+m2+I = 3, with (m1,m2) = (0,2), 

(1, 1) and (2,0), respectively, for h = ½, 1~ and io• and for the following 

three choices (A,B,C) of the collocation points c0 , c 1, c 2 and c 3 : 

CO cl Cz C3 

A 0.033732053372 0.282593677396 0.746460414456 1 

B 0.099194170728 o. 450131500784 0.835289713103 1 

C 0.25 0.5 0.75 l 

In A, the c.'s are the abscissae of weighted interpolatory quadrature with 

weight func~ion (I-.)-½, exact for the integrands Ti/ 2 i = 0(1)6. In B, 
i T , i = 0(1)6 (for the c.'s are the corresponding abscissae for integrands 

1. 

both choices, compare [9, Table 2.1]). The moment integrals in (3.4) and 

(3.5) were evaluated analytically. 

In Table l we give for each of the 27 experiments (i.e. for three 

different (m1,m2), for three different hand for three different sets of 

c.) the number of correct digits in the computed approximate solution at 
1. 

the point t = 1.0, and the minimum number of correct digits on the whole 

integration interval [0,I]. In all cases this minimum was attained in t=h. 

The results confirm the theoretical convergence results of Section 3. 

Moreover, the choice of the collocation points c. appears to be of crucial 
1. 

importance for the accuracy. We conclude that the most accurate scheme is 

the one with m1 = m2 = 1, with choice A for the collocation points c 0 , ••• , c3 • 

The results obtained with this scheme are practically the same as the 

results obtained with "scheme A" in [9] (cf. [9, Table 4. 2, example 6, 

scheme A, m=3, r=2J). 
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TABLE I (Collocation scheme (3.4) applied to (6.1)). 

(ml ,m2) = (0,2) (1, l) (2,0) 

#correct min.# #correct min.# #correct min.# 

c. h- 1=N digits in I. 0 correct digits d. in l. 0 . correct d. d. in l. 0 correct d. 
l 

A 5 5.6 4.5 6.6 5.5 6.3 5.2 

IO 6.3 5.1 7.4 6.2 7. l 5.9 

20 7.0 5.7 8.2 7.0 7.8 6.5 

B 5 5.0 4.2 5.6 4.8 5.4 4.6 

IO 5.6 4.5 6.3 5.3 6.0 5.0 

20 6. 1 4.8 7. 1 5.8 6.8 5.5 

C 5 4.4 3.6 5.0 4.2 4.8 4.0 

10 4.9 3.9 5.7 4.7 5.4 4.4 

20 5.5 4.2 6.5 5.2 6. 1 4.8 

(ii) The modified collocation scheme discussed after (3.12) was solved 

fore= 0.2 resp. e = 0.4, m = 1 (µ 0 = 3, µ 1 = I). Fort~ e the collocation 

points were chosen as above (A, Band C) so that fort~£ this scheme coin

cides with the above one for (m1,m2) = (1,1). For£< t ~ T (= 1.0) the 
~ collocation points A, Band C were replaced by the following points A, B 

and C, respectively: 

~ ~ 
co cl 

~ 
A 0.306101188813 1.0 

~ B 0.4 1. 0 

~ 
C 0.5 1. 0 

As with A and B the c0 and c 1 in A and Bare the abscissae of weighted 

interpolatory quadrature with weight function (I-.)-½, exact for the 

integrands .i/2 resp •• i, i = 0(1)2 (cf. [9, Table 2.1]).The moment inte

grals occurring in the modified collocation scheme were evaluated analytically. 



In Table 2 we present similar results as in Table 1. Moreover, we 

give the number of correct digits in t = £ and in t = £+h, in order to 

illustrate the loss of accuracy caused by the transition from the relativ

ely expensive 4-point collocation scheme (applied fort~£) to the 

relatively cheap 2-point scheme (fort>£). The value oft where the 

minimum number of correct digits is attained, is indicated in parentheses. 

TABLE 2 (Modified collocation scheme applied to (6.1)) 

#correct min.# correct #correct digits 
~ h- 1=N E: ci,ci digits in 1.0 digits (int=) in t=c::, in t=c::+h 

~ 0.2 A,A 5 3.8 3.2 (0.4) 5.5, 3.2 

10 4.5 3.7 (0.3) 6.5, 3.7 

20 5. l 4.4 (0.25) 7.3, 4.4 
~ B,B 5 5.3 3.6 (0.4) 4.8, 3.6 

10 5.0 4.2 (0. 3) 5.5, 4.2 
i 
I 
I 

20 5.4 4.9 (0.25) 6.3, 4.9 

c,c 5 3.8 3.6 (0.6) 4.2, 3.7 

IO 4.3 4.0 (0.4) 4.9, 4. I 

20 4.8 4.4 (0.35) 5.7, 4.7 

~ 0.4 A,A 5 3.9 3.6 (0.6) 6. I , 3.6 

I 10 4.6 4.2 (0.5) 6.9, 4.2 

I 20 5.2 4.9 (0.5) 7.7, 4.9 
I ~ B,B 5 4.6 4.0 (O. 6) 5.1, 4.0 

10 5.9 4.6 (0.5) 5.9, 4.6 

20 5.8 5.4 (0.45) 6.6, 5.4 
~ c,c 5 4.0 4.0 (0. 8) 4.5, 4.2 

10 4.5 4.4 (O. 7) 5.2, 4.6 

20 5.0 4.9 (0.65) 6.0, 5.2 
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