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Multiple grid method for the calculation of potential flow around 3-D

*)

bodies
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ABSTRACT

In this report we apply a multiple grid method to the calculation of
potential flow around a 3-D body. We use the classical approach of repre-
sentation of the solution by means of a doublet distribution on the boundary
of the domain. From the boundary condition one obtains a Fredholm integral
‘equation for the doublet distribution u. We approximate p by a piecewise
constant function. This numerical method results in a non-sparse system,
that is solved by a multiple grid iterative process. We discuss the con-
vergence rate of this process and compare its performance with the Jacobi
iterative process. For flow around an ellipsoid the multiple grid process

turns out to be much more efficient than the Jacobi iterative process.

KEY WORDS & PHRASES: Potential flow, Fredholm Integral Equations of the
second kind, Multiple Grid Methods

*) This report will be submitted for publication elsewhere.






1. INTRODUCTION

In a recent paper, HEMKER & SCHIPPERS [3], have shown that multiple
grid methods can be used advantageously for solving non-sparse linear systems
that occur in numerical methods for Fredholm integral equations of the
second kind. In the present paper we use a multiple grid method for the cal-
culation of the potential flow around 3-D bodies. This method can be very
useful on applications in aerodynamics. The undisturbed flow at infinity is
assumed to be uniform. For a basic work on potentail theory, see KELLOGG [4].
We consider the case ot incompressible, irrotational flow. For this

type of flow there exists a velocity potential satisfying Laplace's equation.
(1.1) A% = 0.

The velocity potential & can be obtained as the superposition of the poten-
tial ¢ due to the uniform onset flow ﬁ and a perturbation potential ¢ due
to the presence of the body: ¢ = ¢_ + ¢. Since our problem is linear, the
perturbation potential also satisfies (1.1). The perturbation potential may
be represented by the potential due to a doublet distribution along the
boundary S of the body,

(1.2) 6(8) = - 7= ” W(Q) s (—)do, A ¢ s.
s Q@ ryl
Here B/BnQ denotes the derivative in the direction of the outward normal
;Q to S, at Q € S; ?AQ is the vector from A to the integration point Q.
At the surface the velocity potential must satisfy the boundary con-
dition
(1.3) 21 =0,

where e denotes the exterior side of S.
If the doublet strength p in (1.2) and the surface S, are sufficiently

1
smooth (i.e. S € Ll’a and u € Hl’a

(S); see section 2), then the deriva-
tives ot the potential ¢ due to the doublet distribution, in the direction

of the outward normal to S, have equal inner and outer limits (GUNTER



[2,}).73]),
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(1.4) 5+ e on

b
on

i

where the subscript i denotes the inner side of S. As a consequence

90

= 9% _
(1.5) dnle on 0.

i

From Green's theorem (KELLOGG [4,p.21217)

(1.6) [[[ vAu dw = [J v %% do - JJJ grad u. grad v dw,

D oD D
applied with u = v = ® and 3D = S, follows that ¢i = constant. We take

@i = 0, which yields the boundary condition
(1.7) ¢i(P) =-¢_(P), P esS.

Under more general conditions than for (1.4) it is shown (GUNTER [2,p.49])
that for P € S:

(1.82) ¢ _(®)= —hu(®) - - H M5 (—=— )do,
s o lrpl
- ey - L J B L

(1.8b)  6.(®) = fu(P) sz " g (l?PQI)dG'

The interior Dirichlet problem given by (1.1) and (1.7), leads with (1.2)
and (1.8b) to a Fredholm integral equation of the second kind for the

doublet distribution u:
(1.9) (I-K)u = g on S,

where the operator K is given by

cos(; ,; )
(1.10) K@) = - 5- ” Q) ——5 % do
S ITpq

since



8,1, _ _ cos(n,r)
S S St

Since ¢_(P) = ﬁ.;f, the righthandside g is given by

(1.12) g(P) = —zﬁ.’r‘P,

-

where U the uniform onset flow and rp the vector from the origin to the
point P = (xP,yP,zP) on S.

In section 2 we collect some properties of the operator K and discuss
the solvability of (1.9).

In section 3 we describe the discretization method to compute an
approximate solution My of (1.9). We use a collocation method applied to
the space of piecewise constant functions, on a partition of the surface
S. In this case Kuy can be easily approximated and amounts to the calcula-
tion of solid angles. We analyse the discretization error.

In section 4 we describe a multiple grid method and with the aid of
the paper by HEMKER & SCHIPPERS [3], we discuss the rate of convergence.
In section 5 we apply the multiple grid method described in the previous
sections. We give numerical examples related to the potential flow around

a sphere and an ellipsoid.
§2. PROPERTIES OF THE INTEGRAL OPERATOR

In this section we summarize some properties of the integral operator,
that lead to the unique solvability of (1.9). We begin by defining some
function spaces. Let D be an open connected set in the 3-dimensional

Euclidian space, with boundary 3D and closure D. (See Giinter [2, section IJ).

DEFINITION 2.1. Ck(D) will denote the space of functions which are k-times

continuously differentiable in D.

DEFINITION 2.2. By Ck’a(D) we denote the subclass in Ck(D) of functions u,

whose derivatives of order k satisfy a uniform Holder condition with

exponent a, 0 < a < 1. This means for u(P) = u(x,y,2):



aXk 1

3ku Bku o
(2.1) @) - =—@)| < Blp,-R, [, VP ,P, € D
9x ,
and the same bound is to hold for 8ku/ayk and Bku/sz. B is called the

Holder constant, o the Holder exponent.

DEFINITION 2.3. The surface S is a Lyapunov surface of order k, k =2 1, §

belongs to Lk’a, if:

1°. At each Q € S, there exists a tangent plane to S. We introduce a local
rectangular coordinate system, where this tangent plane is the &n-plane,

Q is the origin, and the g—axis the normal to S in Q.

2°. There exists some small number e > 0, such that the intersection of S
with the spherical neighbourhood Be of Q of radius e(fig. 1), can be re-

presented by a function

(2.2) z =F(&,n), (E,n) € D_>

where F € Ck’a
30

€ are independent of the choice of the point Q ¢ S.

(De)’ De the portion of the tangent plane within Be'

. The final condition is, that the numbers B (Holder constant), o and

Fig. 1.
DEFINITION 2.4. The function f belongs to the space Hk’u(S), if the func-

tion f, defined on each region D of (2.2) by

£(g,n) = £(E,n,F(E,1)),

belongs to the Holder space Ck’a(DE).



Following Sloan [6, p.22], we define

DEFINITION 2.5. Z(S) denotes the complete closure (in the supremum norm

I+l) of the space of piecewise continuous functions f on S, which satisfy

for P € S

k

f(p) = %- 2 lim f(Pi)’ P e % Z(l)
i=1 |p.,-P| > 0 i=1
W)
P.eA
1

(1)

the closure of the open surface element A .

7 (1)
Some important results from GUNTER [2, p.106], are the following lemmas:

LEMMA 2.1. Assume S ¢ Ll’a. If u is bounded and integrable on S, then Ku Zs

0,a’

a Hblder—continuous function on S, i.e. Ku € H (S), where a' = o Zf

a<1l,and 0 < a' < 1 arbitrary if a = 1.

k+2,0

\ |
LEMMA 2.2. S € K k+l,a

and u e H%(S), 0<a<1, k20, imply KueH (s),

for an arbitrary 0 < a' < a.
These lemmas imply

LEMMA 2.3. Let the righthandside of (1.9), g € Hk’a(s) and the surface
1
S € Lk+l’a, 0 <ac<1l, k20, then the solution of (1.9), u € Hk’a (s),

for an arbitrary 0 < o' < a.

1
REMARK. In section 1 we have shown that u € Hl’a (S) is a necessary condi-

tion for the reformulation of the problem of potential flow around a 3-D
body into a Fredholm equation of the second kind. By lemma 2.3 this condi-

tion is satisfied if we assume S ¢ L2,u and g ¢ Hl’a(S).

Once this condition is satisfied, we prove the unique solvability

of (1.9), when p and g are in Z(S). We need the following lemma.
LEMMA 2.4. K 28 a compact operator on Z(S).

PROOF. A bounded element of Z(S) is integrable on S. So, by lemma 2.1, K
FRUUY \ _
is an operator from Z(S) into Z(S), since HO,a (S) ¢ Z(S). The image of the



unit ball in Z(S),
(2.3) K(B) = {KE|Ifl <1, £ e 2(9)},

1
is uniformly bounded on S, since K is a bounded operator. K(B) c HO,a (s,

so for f € B arbitrary:
1
(2.4) [kE(R) - RE@] < B[P-Q|* , P,Qe s,

B the Holder constant. It follows that K(B) is an equicontinuous set. The
Arzela—Ascoli theorem (see KELLOGG [4, p.265]) implies that K is a compact
operator on Z(S). M

LEMMA 2.5. (Fredholm alternative theorem, see ATKINSON [1, p.26]).
Let X be a Banach space, let K be a compact operator on X into X. Then the
‘equation (I-K)x = y has a solution for each y e€ X, if and only if the homo-

geneous equation (I-K)x = 0 has only the trivial solution.

THEOREM 2.6. Let S be a Lyapunov surface and let g e Z(S). Then (1.9) has

a unique solution u € Z(S).

PROOF. It is well-known that 1 is not an eigenvalue of K. The proof follows
directly from lemmas 2.4 and 2.5. X

§3. NUMERICAL APPROACH

The numerical method to find an approximate solution of (1.9) is con-
nected with the shape of the kernel function, as defined by the operator K
(1.10). Application of the collocation method in the space of piecewise
constant functions leads to moment-integrals, which are obtained by comput-
ing solid angles.

Let XN denote the space of piecewise constant functions on a partition
AN of S. We define the restriction operator T, by piecewise czgitant

, the i-th

interpolation at the collocation points {Qi}i=l' Let Q,Q; € Ay

element of the partition of S.



T. :Z(S) ~
(3.1) N ¥
TNf(Q) = f(Q )9 i=1,2, eosN
For KTN we get:
N cos(n )
(3.2) KT £(P) = - EL' T O£(Q.) ff Q| PQ do
i=1 .
(1) PQ
AN
Now
cos(nQ,rPQ) i
BNk
PQ

is just the solid angle subtended at P by do. And so

JJ COS(nQ’:PQ) i,

M@ r PQl
is the solid angle subtended at P by AN
We define h_ = max (suplx-y[, X,y € A( )) and denote by [l
N ye1,2,...,N k,o

the usual Holder norm for the space H » & (s).

LEMMA 3.1. Let S e L°, and £ e HS*®(S). Then

I (I-T) £l < c.h¥lEl.  for b » O,
N hN k,o hN

L=1, for k

v

1

L=a for k = 0, and C is a constant.

PROOF. For k = O the lemma follows directly from the definition of Holder-
continuity. For k = 1 the proof follows with the Taylor-expansion of f. K

We have seen that KTNf can be easily obtained by computing solid angles.
In general, these solid angles cannot be evaluated directly, but must be
approximated in a numerical way. We approximate each element of AN by one
or more flat planes. The solid angles subtended by such planes can be eval-

uated directly.



For hN sufficiently small, that is for N sufficiently large, (I—TNk)_l

exists and is bounded on Z(S) (PRENTER [5]). Hence an approximate solution
of (1.9) follows from

(3.3) (I-T\RK)uy = Ty Hy € Xy

In the following theorem we give an error-bound for Hu—uN".

THEOREM 3.2, Let S e L °%. Then
7
- < ¢c.n*
Iy wl <c¢ hN "uﬂo,a' for hN + 0,

where o' = a ¢f a <1, and 0 < o' < 1 avrbitrary if a = 1.

PROOF. From (1.9) and (3.3) it follows that

(T-TK) (u=my) = n — T Ku = Tyg = u = Tou.

Hence

-1
lpy-p I < I (T- I =T _ul.
Bl (I-TK) u-Tyn
l,a . o 0,a
Because S € L it can be verified that g ¢ H (S). Use lemma 2.1 to

L
obtain u e HO,a (S). The proof follows from lemma 3.1. X
§4, MULTIPLE GRID METHOD
" Equation (1.9) can be written symbolically as

(4.1) Au=g, ge H]’a(S),

with the surface S ¢ L2,a

, 0<0<1and A =1I- K, I the identity operator
and K the linear integral operator given by (1.10). According to

section 2, A has a bounded inverse on Z(S). To obtain a sequence of approx-
imations, converging to the unique solution of (4.1), we use a multiple

grid method. This method uses a sequence of partitions of the surface S,



called "grids'", of increasing refinement. First we give some notations.
Let,{NP} give the numbers of elements of the sequence of partitions of
S. We write ANP = A, Xy = Xp, TNP = TP and th = hp, p=20,1,2,...

P P
We assume

and 1im h_ = 0.

p>® P

Using the above partitions the assumptions A] and A2 of HEMKER &
SCHIPPERS [3, p.2] are satisfied, i.e.:

X0 c X1 c X2 e XP C veeses © Z(S)

and

1lim "f—Tpf" =0, for all £ ¢ Z(S).

p+<>0
The following lemma is trivial (see also SLOAN [6, p.241):

LEMMA 4.1. 1T 1 =1,  p=0,1,2...

In the context of multiple grid iteration, the subscript p is called

"level.

For a fixed p, an approximate solution of (4.1) is obtained from

4,2 A =T
( ) PUP Pg’

where A = I-T K.
P P

From results given by PRENTER [5], for a general compact operator

K, we have

LEMMA 4.2. If X, 18 sufficiently large, then (I—TPK)_] exists on Z(S), for
p 20 and

c. = sup I(I-T K) I < .
1 p
pZO
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For solving equation (4.2) we use a multiple grid technique (see HEMKER &
SCHIPPERS [3]). From that paper we deduce our iterative method; considering
only two levels we obtain the following iteration scheme:

Let gp be the righthandside of (4.2) and let u;O) = 0,

Let 0 < £ < p.

(i+3) _ (i)
(4.3) llp = TPK up + gp

i 141 - spl L |
(4.4) 1‘lp(1+l) = Up(1+2) + (I—TKK) sz(gp_u;1+£) + TPKU;:H-;))

and eventually

(4.5) T R S
P P P
We can show this in a diagram, where d;i) is the defect of u;i),
) _ o _ (D) (1)
(4.6) A7 =g, mw o+ TR
S a0 any | ae, Gen 802 sda)
P p p P P P P P
T, l I Xp © X,
(i) | G+ | p gy~ 1gE+D)
dp vy = (I-TyR) Tt

We determine the amplification-operator M of iteration (4.3)-(4.4).

u;i“) = TpKu;i) g+ (I-T[_K)_]Tz{gp - TpKu;i) -8, * TpK(TpKuI()i) +g )}
T A R RE S S FRSICR S USSR

So up(i+1) - M, s M(up(i)-up), with

(4.7) M = (I-—TI_K)—ITETPK(TPK—I) + T K.

This iteration corresponds in defect-correction formulation (STETTER [71),



11
with

~ oyl
(4.9) B, = T+ (I-T,K) " T,T K

as the approximate inverse of Ap.

When we apply (4.5), we get

1

~ (1+1) (i+1)
- =TK +
Yp T &p

(1)

= T R(u (i+1)_u )

T Hp T St p’"

So 1 G+ _ u_ =T KM(uP

P P p
Before we discuss the convergence of the iteration process, we give

-up)-

the following lemma:

l,a

LEMMA 4.3. Let S € L . Then

1

I(z-T )Xl < c.h® , for h. » 0
( p) p p s

where o' = a 2f a < 1, and 0 < o' < | arbitrary if a = 1.

PROOF. Let ¥ = {Kf|f € Z(S) and lfl < 1}. From lemma 2.1 it follows that

¥ c HO,a (S). Use lemma 3.1 to obtain

|
I (1-T HRI = I(I-T )zl < c.h® for h_ + O.
( p) 2:3 ( p)z p forh, ]
THEOREM 4.4. For X, sufficitently large (Z.e. hﬂ sufficiently small), the

iteration process (4.3)-(4.4) converges to the unique solution of (4.2).

PROOF. The convergence of the process (4.3)-(4.4) depends on the norm of
the amplification operator M = I - EPAP given by (4.7), as a mapping from

XP to XP. So its convergence rate is given by "MTPH, and we prove “MTPH <1,

if hZ sufficiently small.

-1
MI_ = (I-T,K) T,(I-I+T_)K(T K-I)T_+ T KT
P (I-TpK) 'T,( P) ( . ) p ¥ IKT,

+

-1
(I—TzK) {(I—TKK)TPK - TLK(I—TPK)}TP
1

+

(I—TKK) {TszKTpK - TKKTPK + Tk - TszK}Tp.
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Hence
-1
HMIPH < H(I—TEK) H{HTPH H(I—TK)KH +

+ 0T, 1(z-T )l I 0 Ukl + U, 0 0(T-T H)xI} NT I
£ P P ¢ 10T p’
where “(I—TK)KH < C.hz, “(I—Tp)Kﬂ < ¢.h%, according to lemma 4.3. From lemma
4 we have “Tp" = "Tzﬂ = 1. Boundedness of IKIl follows from the linearity and
the continuity of K as operator on the space Z(S). Because o > 0 we conclude

that "MTp" <1 for h, sufficiently small. [

From the proof of theorem 4.4 it follows that the iteration process
(4.3) - (4.5) has the same order of convergence. In practice it converges
faster than iteration process (4.3)-(4.4).

Now we investigate the convergence of the multiple grid process de-

.fined by (see HEMKER & SCHIPPERS [3]):

) _
[

l Gy (i)
up = (I BpAp)up + Bpgp R

where Bp is recursively defined by

1 -1

By = (I-T(K) T, = Aj'T,
B =1+ T .TK
P Qp-l p-1'p”?
with
Yil m,
Q = (I-B A ) s
P 5 PP P

for some positive integer y.

From now on with gp we denote the operator as defined in (4.9),

with £ = p-1.
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DEFINITION 4.1. M (I-B_A ),
P PP

=]
I

IMmT I
Pp X

X
P PP

M = (I-B A) n o=IMTI
P ( pp’ P PP XP+XP

THEOREM 4.5. n <n +n '.[n + IT HOIRIOT 07,
— P o p-1-p P p

PROOF. We can write Qp = [I—(I-BPAP)Y]A;I, so we have

M T
PP

-1
T —{I+[I-(I-B. ,A )YJA" T .(I-A)IAT =
P ( p-1 p-l) p-1 p-l( p) PP

(I-BA)T + (I-B A )T (B-T)AT =
PP P ( p-1 p-l) p-l( p ) PP

~ 'Y ~
MT + (M .T {(I-A )T -M T }.
PP ( p-l p-l) ( p) P PP

Hence

n <o +n'  (a+lT IIKINT 1), ®
P P p-17p p P

From lemma 4.3, and HEMKER & SCHIPPERS [3, theorem 4.3] follows:

THEOREM 4.6. Let y > 2 and let n  satisfy ﬁp <v dpvo, for some

P

) WA I
0<d<1, then <f A < 53 {/da%+cC Cz}, where C

5 IRl, 2t follows that
P
np < ZVOd .

2

§5. NUMERICAL RESULTS.

In this section we give some numerical results of the described method,
applied to the calculation of the potential flow around a sphere and an
ellipsoid respectively. We calculate the dipole density and compare the
numerical results with the analytic values. However, we are mainly concerned
in the convergence rate and the amount of computational work of our
multiple grid method. We compare the performances of the multiple grid
method with the Jacobi iterative process.

The discretization is carried out as follows: first dividing the sur-

face of the body into N rings, by planes orthogonal to the z-axis, and then
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. . * . . ) .
each ring into N trapeziform elements. The spherical caps are divided into
x . . . . .
N triangle-form elements. As collocation points are chosen the "midpoints"

of these elements (see fig. 2).

Fig. 2.
The different grid-levels are related by ﬁp = ZEp—l and N; = ZN;—I' The
‘projection operator is defined analogous to definition 2.5:1if Qp-l je A;ii,
b

collocation point on level p-1, and Q_ . € A;l) c A(;)

( y=Llf rq . B
then £ L) == ). £ ).

p-1'%-1,57 T Li=1 5'%,1

c Xp’ interpolation from a coarse to a finer grid is defined

for 1 = 1,2,...,k,

Since X
p-1

by piecewise constant interpolation.
From theorem 4.4 we get Ep = O(hg_]). In case of a sphere and an

ellipsoid we have o = 1. Hence

n <v =Ch ..

The successive mesh sizes are related by hp = h. 2 p’ so we have

01..

a <2Cch, 2P,
P 0

For the application of theorem 4.6,

_ 1 2 2 2, . _
vy = 2Chj < 74 {Vd + c, Cz}, with d = 2,

must be valid. The validity of this condition for a certain h, only depends

0
on the constant C, which depends on the Holder-constant of the Lyapunov
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surface S.
In tables 5.1-5.4, we give the residuals ﬂdpﬂ (4.6) and the observed

rates of convergence of the iteration process:

(i+1) (1) (1) (i-1)
= - I/l - I,
s up up / up up

We also give the mean convergence rates

k 1/k

and the maximum errors between the numerical solutions and the analytic
values.

We express the operation count in work units (WU), i.e. (total number
of multiplications)/(ﬁP * N;)z. We only take into account matrix-vector
multiplications, and the direct solution on the coarsest grid, for which we
count %{ﬁo * N8)3 multiplications.

We mention the results for y = 1, because they hardly differ from those

with y = 2. Furthermore one pre-relaxation (4.3) and one post-relaxation

(4.5) was carried out.
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— * -
= = =] = =
P 2 Np 16, Np 6, NO 4, NO 4
Multiple grid Jacobi-iteration
Iter. residue conv. rate |{Iter. residue conv. rate
1° 9.97 1073 1° 2.26 107!
2° l1.21107% | 1.08 1072 || 2° |4.97 1072 | 2.35 107!
3° 1.5310° [ 1.23107% || 3° li.10 1072 | 2.20 107!
4° 2.03 1078 | 1.30 1072 4° 2.44 1073 | 2.22 107!
5 |s5.41 1074 | 2.21 107!
6° 1.20 1074 | 2.22 107!
10° [2.89 1077 | 2.22 107!
mean conv. rate: 1.20 10_2 mean conv. rate: 2.23 10_1
“up-Tpu" = 8,03 10—3 opera- Hup—TpuH = 8.03 10—3 opera-

tion coeunt = 8.54 WU.

tion count

= 10 WU

Table 5.1. x2 + y2.+ 22 =

IT ul = 7.34 I
P

10 .

>
1, U parallel to the x-axis, vy = 1,




- * - *
p=3 N =32, X -3 Ny=4, N5 =4
Multiple grid Jacobi-iteration
Iter. residue conv. rate| Iter. residue conv. rate
1° 2.69 1073 1° | 2.82 107!
2° 3.97 107> | 3.11 1072 2° | 7.80 1072 | 2.84 107!
° 5.5 107 | 1.65 1072 3° | 2.16 1072 | 2.77 107!
22 | 1.28 107% | 2.77 107!
8° | 3.55 107 | 2.78 107!
11° | 7.62 1077 | 2.78 107!
mean conv, rate: 7.14 10-3 mean conv., rate: 2.78 10_1
“up—Tpu“ = 1.29 1072 operation “up—Tpu" = 1.29 1072 operation

count 6.40.

count: 11

x2 + y2 + 22 = 1

Table 5.2. ,
It ul = 7.46 1077,
p

i parallel to the x-axis, vy = 1,

17



p=2 N =16 N =16 Ny =4, Nj=4
Multiple grid Jacobi-iteration
Iter. residue conv. rate Iter.| residue conv. rate
1° 1.17 107} 1° 11.73
2° 2.04 1073 | 4.13 1072 2° |8.05 107! | 4.51 107!
3° 7.75 107> 1.40 1072 3° (3.82 107! | 4.68 107}
4° 1.89 10°% | 4.63 1072 4° |1.83 107! | 4.75 107!
5° 6.54 10°° 2.36 1072 5° 18.75 1072 | 4.78 107}
6° 14.20 1072 | 4.79 107!
7° |2.01 1072 | 4.80 107!
21° 16.94 1077 | 4.80 107!
mean conv. rate: 2.83 10—2 mean conv. rate: 4.77 10_1
-3 -3
Iy -T ull = 9,48 10 ly =T ull = 9.48 10 ra-
Hppt "o ope
operation count = 10.68 tion count = 21
2
X 2 > .
Table 5.3. 7r-+ y - +z =1, U parallel to the x-axis,

=1, It ul = 2,37,
Y P




p =3 No=32, Ny =32, =4, Nj=4
Multiple grid Jacobi-iteration
Iter residue conv. rate Iter.| residue conv. rate

1° 4.56 1072 1°© | 2.15

2° 4.38 10°% 1.67 1072 2° | 1.20 5.44 107!

30 8.48 107° 6.98 103 3° | 6.72 1071 | 5.57 107}

4° 9.93 1078 2.56 1072 4° | 3.79 107" | 5.62 107!
5© | 2,14 1070 | 5.64 107}
6° | 1.21 1071 | 5.65 107!
7° | 6.85 1072 | 5.65 107!
8° | 3.88 1072 | 5.66 107}
27° | 7.79 1077 | 5.66 107!

mean conv. rate: 1.44 10_2
-2
ly - I = 2.
up Tpu 2.46 10

operation count = 8.53

mean conv. rate: 5.64 10
Iy =T ul = 2.46 1072
P P

operation count = 27

1

2

Table 5.4. >— + yo o+ 22 =

A

It ul = 2.41,
PU

>
1, U parallel to the x-axis, vy = 1,
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REMARK. The maximum errors between the approximate solutions and the analy-

tic values in the collocation points always appeared in the spherical
caps. Here we see that the error increases, as hp decreases. However, in

all of the other rings, the maximum error decreases as hP decreases (see

table 5.5). The explanation of this feature is found in the discretization:

the solid angle of a triangle-form surface element of one of the caps can-

not be approximated securely enough by the solid angle of a flat triangle.
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2
<2 + yo+ 2" =1 X /4 ty +z =1
p=2 p=3 p =2 p=3

max. error 8.03 1073 | 1.29 1072 || 9.48 1073 | 2.46 1072

max. error ex= | o oy 1573 | 41073 |l 7,38 1073 | 2.16 107>

cluding the caps

Table 5.5. Maximum errors between the approximate solution (iterated
up to a residual smaller than 10_6) and the analytic

values in the collocation points.

Finally we remark that applications in aerodynamics will often deal
with bodies which approximately have the shape of a very thin ellipsoid
(for instance a symmetrical wing). We expect that for such surfaces the
multiple grid method with a suitable relaxation scheme will have consider-
able advantage with regard to a common iterative method. Another advantage of
our method is its robustness: it can be applied to a large class of bodies.
Whenever the surface of the body is known, eventually only in a finite

number of points, the method is applicable.
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