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Multiple grid method for the calculation of potential flow around 3-D 
. *) 

bodies 

by 

H. Wolff 

ABSTRACT 

In this report we apply a multiple grid method to the calculation of 

potential flo'w around a 3-D body. We use the classical approach of repre­

sentation of the solution by means of a doublet distribution on the boundary 

of the domain. From the boundary condition one obtains a Fredholm integral 

equation for the doublet distributionµ. We approximateµ by a piecewise 

constant function. This numerical method results in a non-sparse system, 

that is solved by a multiple grid iterative process. We discuss the con­

vergence rate of this process and compare its performance with the Jacobi 

iterative process. For flow around an ellipsoid the multiple grid process 

turns out to be much more efficient than the Jacobi iterative process. 

KEY WORDS & PHRASES: PotentiaZ flow, FredhoZm IntegraZ Equations of the 

second kind, MuZtipZe Grid Methods 

*) This report will be submitted for publication elsewhere. 





I • INTRODUCTION 

In a recemt paper, HEMKER & SCHIPPERS [3], have shown that multiple 

grid methods can be used advantageously for solving non-sparse linear systems 

that occur in numerical methods for Fredholm integral equations of the 

second kind. In the present paper we use a multiple grid method for the cal­

culation of the potential flow around 3-D bodies. This method can be very 

useful on applications 1.n aerodynamics. The undisturbed flow at infinity is 

assumed to be uniform. For a basic work on potentail theory, see KELLOGG [4]. 

We consider the case ot incompressible, irrotational flow. For this 

type of flow there exists a velocity potential satisfying Laplace's equation. 

( I . I ) M = 0. 

The velocity potential ~ can be obtained as the superposition of the poten­
➔ 

tial cp due to the uniform onset flow U and a perturbation potential cp due 
00 

to the presence of the body: ~ = cp + cp. Since our problem 1.s linear, the 
00 

perturbation potential also satisfies (1. I). The perturbation potential may 

be represented by the potential due to a doublet distribution along the 

boundary S of the body, 

( I • 2) cp (A) = - 41TT ff 
s 

Ai S. 

Here a/anQ denotes the derivative in the direction of the outward normal 
➔ ➔ 
nQ to S, at Q ES; rAQ is the vector from A to the integration point Q. 

At the surface the velocity potential must satisfy the boundary con­

dition 

(I • 3) ~ 1 = 0 an e , 

where e denotes the exterior side of S. 

If the doublet strength µ in (1.2) and the surface S, are sufficiently 
I a la' 

smooth (i.e. S E L ' and µ € H ' (S); see section 2), then the deriva-

tives ot the potential cp due to the doublet distribution, in the direction 

of the outward normal to S, have equal inner and outer limits (GUNTER 
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[2,p.73]), 

( I .4) 

where the subscript i denotes the inner side of S. As a consequence 

( 1 . 5) ~1 = 2-!I = 0 an e an i · 

From Green's theorem (KELLOGG [4,p.212]) 

(1. 6) ff f v~u dw =ff v :~ dcr - Hf grad u. grad v dw, 

D an D 

applied with u = v =~and an= S, follows that~- =constant.We take 
1. 

~- = O, which yields the boundary condition 
1. 

·( I • 7) cp _ (P) = -cp (P), 
1. co 

p ES. 

Under more general conditions than for (I .4) it is shown (GUNTER [2,p.49]) 

that for PE S: 

<. 1 • Ba) cp (P)= -½µ(P) - 4JTT ff a l µ 
anQ 

(~ )dcr, e 
lrPQI s 

( I • 8b) cp • (P) ½µ(P) ff a 1 
= - 4TT µ (---:..- I ) dcr. 

1. anQ lrPQ 

The interior Dirichlet problem given by (1.1) and (1.7), leads with (1.2) 

and (1.8b) to a Fredholm integral equation of the second kind for the 

doublet distributionµ: 

(1. 9) (I-K)µ = g on S, 

where the operator K is given by 

(1. 10) 

since 

Kµ(P) = - iTT ff µ(Q) 

s 



(1.11) 

~~ 

Since ~~(P) = U.rp, the righthandside g is given by 

(1.12) 

+ ~ 

where Uthe uniform onset flow and rp the vector from the origin to the 

point P = (~,Yp,zp) on S. 

In section 2 we collect some properties of the operator Kand discuss 

the solvability of (1.9). 

In section 3 we describe the discretization method to compute an 

approximate solution µN of (1.9). We use a collocation method applied to 

the space of piecewise constant functions, on a partition of the surface 

S. In this case K~ can be easily approximated and amounts to the calcula­

tion of solid angles. We analyse the discretization error. 

In section 4 we describe a multiple grid method and with the aid of 

the paper by HEMKER & SCHIPPERS [3], we discuss the rate of convergence. 

In section 5 we apply the multiple grid method described in the previous 

sections. We give numerical examples related to the potential flow around 

a sphere and an ellipsoid. 

§2. PROPERTIES OF THE INTEGRAL OPERATOR 
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In this section we summarize some properties of the integral operator, 

that lead to the unique solvability of (1.9). We begin by defining some 

function spaces. Let D be an open connected set in the 3-dimensional 

Euclidian space, with boundary an and closure D. (See Gunter [2, section I]). 

DEFINITION 2.1. Ck(D) will denote the space of functions which are k-times 

continuously differentiable in D. 

DEFINITION 2.2. By Ck,a(D) we denote the subclass in Ck(D) of functions u, 

whose derivatives of order k satisfy a uniform Holder condition with 

exponent a, 0 <a$ 1. This means for u(P) = u(x,y,z): 



4 

k k 
l·a ~(PI) - a ~(P2)I:,; BIP1-P2lc\ 
ax ax 

(2. I) 

and the same bound is to hold for aku;ayk and 3ku/azk. Bis called the 

Holder constant, a the Holder exponent. 

DEFINITION 2.3. The surface Sis a Lyapunov surface of order k, k ~ I, S 

b 1 k,a "f e ongs to L , i : 

1°. At each Q ES, there exists a tangent plane to S. We introduce a local 

rectangular coordinate system, where this tangent plane is the sn-plane, 

Q is the origin, and the s-axis the normal to Sin Q. 

2°. There exists some small number E > 0, such that the intersection of S 

with the spherical neighbourhood B of Q of radius E(fig. I), can be re-
E 

presented by a function 

(2.2) 

where FE Ck,a(DE), DE the portion of the tangent plane within BE. 

3°. The final condition is, that the numbers B (Holder constant), a and 

E are independent of the choice of the point Q ES. 

s 

Fig. 1. 

DEFINITION 2.4. The function f belongs to the space Hk,a(S), if the func­

tion f, defined on each region D of (2.2) by 
E 

~ 

f(i;,n) = f(s,n,F(i;,n)), 

belongs to the Holder space Ck,a(D ). 
E 



Following Sloan [6, p.22], we define 

DEFINITION 2.5. Z(S) denotes the complete closure (in the supremum norm 

D•D) of the space of piecewise continuous functions f on S, which satisfy 

for Pe: S 

k 
f(P) = .!_ l 

k . 1 1.= 

lim 
jP.-Pj-+ 0 
p \d (i) 

l. 

f (P.), 
l. 

p € 

~(i) the closure of the open surface element d(i) • 

.. 

k 
n 

i=l 

-(i) 
d 
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Some important results from GUNTER [2, p.106], are the following lemmas: 

LEMMA 2.1. Asswne S 

a H8Zder-continuous 

a< 1, and O < a' < 

e: Ll,a. Ifµ is bounded and integrable on S, then Kµ is 
0 a' function on S, i.e. Kµ e: H' (S), ~here a'= a if 

1 arbitra!'1J if a = 1. 

2 2 Kk+2,a d k,a() O . ~ k+l,a'() LEMMA •• S E an µ E H S , <a< 1, k;?: O, 1.,mp1,,y Kil EH S , 

for an arbitra!'1J O <a'< a. 

These lemmas imply 

LEMMA 2.3. Let the righthandside of (1.9), g e: Hk,a(S) and the surface 
k+l a . k a' Se: L ' , 0 <a~ 1, k;?: O, then the s0Zut1.-on of (1.9), µ e: H' (S), 

for an arbitra!'1J O <a'< a. 

REMARK. In section we have shown thatµ e: Hl,a' (S) is a necessary condi­

tion for the reformulation of the problem of potential flow around a 3-D 

body into a Fredholm equation of the second kind. By lemma 2.3 this condi-
2 a 1 a tion is satisfied if we assume SE L' and g EH' (S). 

Once this condition is satisfied, we prove the unique solvability 

of (1.9), whenµ and g are in Z(S). We need the following lemma. 

LEMMA 2.4. K is a compact operator on Z(S). 

PROOF. A bounded element of Z(S) is integrable on S. So, by lemma 2.1, K 
0 a' is an operator from Z(S) into Z(S), since H ' (S) c Z(S). ·The image of the 
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unit ball in Z(S), 

(2.3) K(f3) = {KflUfll ::;; 1, f E Z(S)}, 

0 a' is uniformly bounded on S, since K is a bounded operator. K(f3) c H' (S), 

so for f E f3 arbitrary: 

(2.4) ' IKf(P) - Kf(Q)I < BIP-Qla, P,Q ES, 

B the Holder constant. It follows that K(f3) is an equicontinuous set. The 

Arzela-Ascoli theorem (see KELLOGG [4, p.265]) implies that K is a compact 

operator on Z(S). ~ 

LEMMA 2.5. (Fredholm alternative theorem, see ATKINSON [1, p.26]). 

Let X be a Banach space, let K be a compact operator on X into X. Then the 

·equation (I-K)x = y has a solution for each y EX, if and only if the homo­

geneous equation (I-K)x = 0 has only the trivial solution. 

THEOREM 2.6. Let S be a Lyapunov surface and let g E Z(S). Then (1.9) has 

a unique solutionµ E Z(S). 

PROOF. It is well-known that 1 is not an eigenvalue of K. The proof follows 

directly from lemmas 2.4 and 2.5. ~ 

§3. NUMERICAL APPROACH 

The numerical method to find an approximate solution of (1.9) is con­

nected with the shape of the kernel function, as defined by the operator K 

(1.10). Application of the collocation method in the space of piecewise 

constant functions leads to moment-integrals, which are obtained by comput­

ing solid angles. 

Let~ denote the space of piecewise constant functions on a partition 

~N of s. We define the restriction operator ~N by piecewise constant 
. 11 . . {Q }N". Lt Q Q LL~i), the i"-th interpolation at the co ocation points i i=t• e , i E ~ 

element of the partition of S. 



(3. 1) 

For KTN we 

(3.2) 

Now 

get: 

= f(Q.), 
l. 

= 
N 

KTNf(P) r 211" . 1 1.= 

+ + 
cos(nQ,rPQ) 

+ 12 dcr 
lrPQ 

i = 1,2~ .•. ,N 

..,_ ..,_ 

ff 
cos(nQ,rPQ) 

f (Q.) 
l. 

1;PQ I 2 
~i) 

is just the solid angle subtended at P by dcr. And so 

ff 
~ 

..,_ 

cos(nQ,rPQ) 
dcr, ..,_ 2 

£1N(i) lrPQI 

is the solid angle subtended at p by ~i). 

We define hN =. max (suplx-yl, x,y E £1~i)) 
1.=1,2, ••• ,N k 

- a the usual Holder norm for the space H' (S). 

LEMMA 3.1. Let SE Lk,a, and f E Hk'a(S). Then 

for~+ O, 

for k ~ 1 
where 

for k = O, and C is a aonstant. 

7 

dcr 

and denote by ll•U 
k,a 

PROOF. Fork= 0 the lenuna follows directly from the definition of Holder­

continuity. Fork= 1 the proof follows with the Taylor-expansion off. ~ 

We have seen that KTNf can be easily obtained by computing solid angles. 

In general, these solid angles cannot be evaluated directly, but must be 

approximated in a numerical way. We approximate each element of~ by one 

or more flat planes. The solid angles subtended by such planes can be eval­

uated directly. 
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For~ sufficiently small, that is for N sufficiently large, (I-TNk)-l 

exists and is bounded on Z(S) (PRENTER [SJ). Hence an approximate solution 

of (1.9) follows from 

(3.3) 

In the following theorem we give an error-bound for II µ-µi. 

THEOREM 3.2. Let SE Ll,a. Then 

IIµ-µ II 
N 

II µII O , 
,a 

where a'= a if a< 1, and O < a' < 1 arbitrary if a= 1. 

PROOF. From (1.9) and (3.3) it follows that 

µ - T Kµ - T g = 
N N 

Hence 

Because SE Ll,a it can be verified that g E HO'a(S). Use lemma 2.1 to 
0 a' 

obtainµ EH' (S). The proof follows from lemma 3.1. ~ 

§4. MULTIPLE GRID METHOD 

Equation (1.9) can be written symbolically as 

( 4. I) 

with the surface SE 1 2 ,a, O <a~ I and A= I - K, I the identity operator 

and K the linear integral operator given by (1.10). According to 

section 2, A has a bounded inverse on Z(S). To obtain a sequence of approx­

imations, converging to the unique solution of (4.1), we use a multiple 

grid method. This method uses a sequence of partitions of the surface S, 
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called "grids''', of increasing refinement. First we give some notations. 

Let {N} give the numbers of elements of the sequence of partitions of 
p 

S. We write ~N - ~, XN - X, TN - T and hN - h, p = 0,1,2, ••• p p p p p p p p 
We assume 

< •••• 

and lim h = o. 
p~ p 

Using the above partitions the assumptions A1 and A2 of HEMKER & 

SCHIPPERS [3, p.2] are satisfied, i.e.: 

and 

x0 c x1 c x2 c •••••• c ~ c •••••• c z(s) 

lim II f-T fll = 0, 
p 

for all f E Z(S). 

The following lennna is trivial (see also SLOAN [6, p.24]): 

LEMMA 4 • 1 • II T . II = 1 , 
p 

p = 0,1,2 .•• 

In the context of multiple grid iteration, the subscript pis called 

"level". 

(4.2) 

For a fixed p, an approximate solution of (4.1) is obtained from 

T g, 
p 

where A = I-T K. 
p p 

From results given by PRENTER [5], for a general compact operator 

K, we have 

LEMMA 4.2. If x0 is sufficiently large, then (I-TPK)-l exists on Z(S), for 

p ~ o and 

cl = sup II (I-T K)- 111 < 00 • 

p~O p 



For solving equation (4.2) we use a multiple grid technique (see HEMKER & 

SCHIPPERS [3]). From that paper we deduce our iterative method; considering 

only two levels we obtain the following iteration scheme: 

Let gp be the righthandside of (4.2) and let µ;O) = 0. 

Let O :s; .t < p. 

(4.3) µp 
(i+½) 

= T K /i) + g p p p 

(i+I) (i+D (I-T K)-IT (g -µ(i+!) ('+I) 
(4.4) µp = µp + + T Kµ 1 z) .t .t p p p p 

and eventually 

(4.5) = T Kµ(i+I) + g. 
p p p 

(.) (i) 
We can show this in a diagram, where dp 1 is the defect of µp 

(4.6) 

(i+6) (i+!)(4.S) ~(i+l) 
µ + V -µ 

p p p 

We determine the amplification-operator M of iteration (4.3)-(4.4). 

/i+I) =T K/i) +g + (I-T K)-IT 0 {g -T K/i) _g +T K(T K/i) +g )} 
p p p p .t ~ p p p p p p p p 

/i+I)_µ =T K(µ(i) -µ) + (I-T 0 K)-IT 0 T K{(T K-I)(µ(i)_µ )} 
p p p p p ~ ~p p p p 

Soµ (i+l) - µ 
p p 

= M(11 (i)_ ) with 
1-'p µp ' 

(4.7) 

This iteration corresponds in defect-correction formulation (STETTER [7]), 



with 

(4.9) 

as the approximate inverse of A. 
p 

When we apply (4.5), we get 

µ (i+l) _ µ = T Kµ (i+l) + g _ µ = 
p p p p p p 

~ (i+l) (i) Soµ ~ µ = T KM(µ -µ ). 
p p p p p 

Before we discuss the convergence of the iteration process, we give 

the following lemma: 

LEMMA 4.3. Let SE Lt,a. Then 

a' 0 (I-T )KIi s C.h , for h + 0, 
p p p 

where a'= a if a< 1, and O < a' < I arbitrary if a= I. 

PROOF. Let'¥= {Kflf E Z(S) and llfll < I}. From lemma 2.1 it follows that 
0 a' 

'¥ c H' (S). Use lemma 3.1 to obtain 

I 

II (I-T )KIi = sup II (I-T )zll s C.ha for h + O. 
p ZE'Y p p p 

THEOREM 4.4. For Xl sufficiently large (i.e. hl sufficiently small), the 

iteration process (4.3)-(4.4) converges to the unique solution of (4.2). 

PROOF. The convergence of the process (4.3)-(4.4) depends on the norm of 
~ the amplification operator M = I - BA given by (4.7), as a mapping from p p 

11 

X to X. So its convergence rate is given by IIMT II, and we prove DMT II < I, p p p p 
if hl sufficiently small. 

MT = (I-T 0 K)- 1T0 (I-I+T )K(T K-I)T + T KT = p ~ ~ p p p p p 

= (I-TlK)-I {(I-TlK)TPK - TlK(I-TPK)}Tp + 

+ (I-TlK)-l{TlTpKTPK - TlKTPK + TlK - TlTpK}Tp. 
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Hence 

+ Or 0 II II (I-T )KIi IIT II IIKII + IIT 0 II II (I-T )KR} RT 11, 
~ p p ~ p p 

,. 
where D(I-T,e)KII ~ C.h.l' ll(I-Tp)KR ~ C.h;, according to lemma 4.3. From lennna 

4 we have DTPII = IIT,ell =I.Boundedness of IIKII follows from the linearity and 

the continuity of K as operator on the space Z(S). Because a> 0 we conclude 

that IIMTPII < I for h,e sufficiently small. ~ 

From the proof of theorem 4.4 it follows that the iteration process 

(4.3) - (4.5) has the same order of convergence. In practice it converges 

faster than iteration process (4.3)-(4.4). 

Now we investigate the convergence of the multiple grid process de­

.fined by (see HEMKER & SCHIPPERS [3]): 

(I - BA )µ(i) + B g 
p p p p p 

where B is recursively defined by p 

with 

I + Q T T K p-1 p-1 p' 

y-1 
Q = l (I-BA)~, 

p m=O pp p 

for some positive integer y. 
~ From now on with B we denote the operator as defined in (4.9), 

p 
with l = p-1. 



13 

DEFINITION 4.1. M = (I-BA), n = HM T U X X p p p p pp p+ p 

M = (I-BA), n = IIM T II X p p p p pp X + 
p p 

THEOREM 4. 5 • ;;'. :s; n + n y l [;;: + II T D II KU II T II J • 
p p p~ p p p 

PROOF. We can write Q = [I-(I-B A )y]A-l so we have p p p p , 

MT = T -{I+[I-(I-B 1A 1)Y]A- 1
1T 1(I-A )}AT = 

pp p p- p- p- p- p pp 

=(I-BA )T + (I-B IA l)YT l(B -I)A T = pp p p- p- p- p pp 

=MT + (M IT l)y{(I-A )T -MT}. pp p- p- p p pp 

Hence 

n :s; n + n y I (;;: +II T 1111 Kil II T II ) • ~ p p p- p p p 

From lennna 4.3, and HEMKER & SCHIPPERS [3, theorem 4.3] follows: 

HKII, it follows that 

§5. NUMERICAL RESULTS. 

In this section we give some numerical results of the described method, 

applied to the calculation of the potential flow around a sphere and an 

ellipsoid respectively. We calculate the dipole density and compare the 

numerical results with the analytic values. However, we are mainly concerned 

in the convergence rate and the amount of computational work of our 

multiple grid method. We compare the performances of the multiple grid 

method with the Jacobi iterative process. 

The discretization is carried out as follows: first dividing the sur­

face of the body into N rings, by planes orthogonal to the z-axis, and then 
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each ring into N* trapeziform elements. The spherical caps are tlivided into 

N* triangle-form elements. As collocation points are chosen the "midpoints" 

of these elements (see fig. 2). 

Fig. 2. 

- - * * The different grid-levels are related by N = 2N 1 and N = 2N 1• The 
p p- p p- (j) 

·projection operator is defined analogous to definition 2.5: if Q 1 . e: I:::. 1, 
p- ,J p-

1:::.(i) c !:::.(j)l for i = 1,2, ••• ,k, collocation point on level p-1, and Q . e: 
1 k p,i 

then f 1 (Q 1 . ) 
p- p- ,J = k l · 1 f (Q • ) • i= p p,i 

Since X 1 c X, 
p- p 

interpolation from a 

by piecewise constant interpolation. 

p p-

coarse to a finer grid is defined 

~ a From theorem 4.4 we get n = O(h 1). In case of a sphere and an 
p p-

ellipsoid we have a= 1. Hence 

n ~ v = C.h 1• p p p-

The successive mesh sizes are related by h ~ h ~-p so we have P ~ O"- , 

For the application of theorem 4.6, 

must be valid. The validity of this condition for a certain h0 only depends 

on the constant C, which depends on the Holder-constant of the Lyapunov 



surface S. 

In tables 5.1-5.4, we give the residuals Dd D (4.6) and the observed 
p 

rates of convergence of the iteration process: 

(i-Ou - µ • 
p 

We also give the mean convergence rates 

and the maximum errors between the numerical solutions and the analytic 

values. 

We express the operation count in work units (WU), i.e. (total number 

of multiplications)/(N * N*) 2• We only take into account matrix-vector 
p p 

multiplications, and the direct solution on the coarsest grid, for which we 
. 1 (- *> 3 1 . 1 · . count 3 N0 * N0 mu tip 1cat1ons. 

We mention the results for y = 1, because they hardly differ from those 

with y = 2. Furthermore one pre-relaxation (4.3) and one post-relaxation 

(4.5) was carried out. 
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Iter. 

Multiple grid 

residue 

9.97 10-3 

1. 21 1 o-4 

1.53 10-6 

2.03 10-8 

I conv. rate 

1.08 10-2 

t .23 10-2 

1.30 10-2 

mean conv. rate: 1.20 10-2 

8µ -T µff = 8.03 10-3 opera­
p p 

tion count= 8.54 WU. 

- * N - 4 N = 4 . 0 - ' 0 
Jacobi-iteration 

Iter. residue 

2.26 10-1 

4.97 10-2 

1. 10 10-2 

2.44 10-3 

5.41 10-4 

1.20 10-4 

. 

conv. rate 

2.35 10-1 

2. 20 10-1 

2.22 10-1 

2.21 10-1 

2.22 10-1 

2.89° 10-1 2.22 10-1 

-1 mean conv. rate: 2.23 10 

IIµ -T µII = 8.03 10-3 opera­
p p 

tion count= 10 WU 

Table 5.1. 2 2 2 + x + y. + z = 1, U parallel to the x-axis, y = 1, 

RT µU = 7.34 10-l. 
p 



3 = 32, '* 32 4, * p = N N = NO = N = 4 p p 0 

Multiple. grid Jacobi-iteration 

Iter. residue conv. rate Iter. residue conv. rate 

lo 2.69 10-3 lo 2.82 10-1 

20 3.97 10-5 3.11 10-3 20 7.80 10-2 2.84 10-1 

30 5.54 10-1 1.65 10-2 30 2 .16 10-2 2. 77 10-1 

. . . . . . 
' . . 

jo 1.28 10-4 2. 77 10-1 

80 3.55 10-5 2.78 10-1 . . . . . . . 
110 10-1 

. 
10-1 7.62 2.78 

mean conv. rate: 7.14 10-3 mean conv. rate: 2.78 10-1 

D µ -T µII 1. 29 -2 IIµ -T µU -2 = 10 operation = 1. 29 10 operation p p p p 
count 6.40. count: 11 

Table 5.2. 2 2 
X + y 

2 + z = 1, U parallel to the x-axis, y = 1, 

IIT µII = 
p 

-1 
7 .46 10 • 

17 
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I 

I 
16, * p = 2 N = N = 16 

p p 

Multiple grid 

Iter. residue conv. rate 

lo I. 17 10-1 

20 2.04 10-3 4. I 3 10-2 

30 7.75 10-5 1.40 10-2 

40 1. 89 10-6 4.63 10-2 

50 6.54 10-8 2.36 10-2 

mean conv. rate: 2.83 10-2 

IIµ -T µII = 9.48 10-3 
p p 

operation count= 10.68 

2 
bl 5 3 ~ + 2 2 Ta e • • 4 y + z = l , 

y = 1, IIT µII = 2.37. 
p 

* NO = 4, NO = 4 

Jacobi-1teration 

Iter. residue conv. rate 

lo 1. 73 
20 8.05 10-1 4.51 10-1 

30 3.82 10-1 4.68 10-1 

40 1.83 10-1 4.75 10-1 

50 8.75 10-2 4.78 10-1 

60 4.20 10-2 4.79 10-1 

70 2.01 10-2 4.80 10-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
21° 

. 
10-7 

. 
10-1 6.94 4.80 

mean conv. rate: 4. 77 10-1 

IIµ -T µII = 9.48 -3 
p p 

10 opera-

I tion count= 21 

➔ 
U parallel to the x-axis, 
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* 32, - * p = 3 N = 32, N = NO = 4, N = 4 p p 0 

Multiple grid Jacobi-iteration 

Iter. residue conv. rate Iter. residue conv. rate 

lo 4.56 10-2 lo 2. 15 

20 4.38 10-4 1.67 10-2 20 1.20 5.44 10-1 

30 8.48 10-6 6.98 10-3 30 6. 72 10-1 5.57 10-1 

40 9.93 10-8 2.56 10-2 40 3.79 10-1 5.62 10-1 

50 2. 14 10- 1 5.64 10-1 

60 I. 21 10-1 5.65 10-1 

I 70 6.85 10-2 5.65 10-1 

80 3.88 10-2 5.66 10-1 . . . . . . . . . . . . . . . . . . 
27° 

. 
10-7 

. 
10-1 7.79 5.66 

mean conv. rate: 1.44 10-2 mean conv. rate: 5.64 10-1 

IIµ -T µII = 2.46 10-2 IIµ -T µII = 2.46 10-2 

I 
p p p p 

operation count= 8.53 operation count= 27 

2 2 2 -+ 
Table 5.4. X 

l , U parallel to the x-axis, l , 4+ y + z = y = 

IIT µII = 2. 41 • 
p 

REMARK. The rrtaximum errors between the approximate solutions and the analy­

tic values in the collocation points always appeared in the spherical 

caps. Here we see that the error increases, ash decreases. However, in 
p 

all of the other rings, the maximum error decreases ash decreases (see 
p 

table 5.5). The explanation of this feature is found in the discretization: 

the solid angle of a triangle-form surface element of one of the caps can­

not be approximated securely enough by the solid angle of a flat triangle. 
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2 
2 2 2 

x2 + 2 X /4 + y + z = 1 y + z = 1 

p = 2 p = 3 p = 2 p = 3 

max. error 8.03 10-3 1.29 10-2 9.48 10-3 2.46 10-2 

max. errcir ex-
eluding the caps 

2.71 10-3 1.46 10-3 7.38 10-3 2. I 6 10-3 

Table 5.5. Maximum errors between the approximate solution (iterated 

up to a re'sidual smaller than 10-6) and the analytic 

values in the collocation points. 

Finally we remark that applications in aerodynamics will often deal 

,with bodies which approximately have the shape of a very thin ellipsoid 

(for instance a symmetrical wing). We expect that for such surfaces the 

multiple grid method with a suitable relaxation scheme will have consider­

able advantage with regard to a conunon iterative method. Another advantage of 

our method is its robustness: it can be applied to a large class of bodies. 

Whenever the surface of the body is known, eventually only in a finite 

number of points, the method is applicable. 
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