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ABSTRACT

In this report splitting methods are discussed for a certain class of
second order hyperbolic partial differential equations via the method of
lines, and in particular the time integration will be discussed. A class
of two-step integration formulas is defined, which contains several well-
known splitting methods. The first—and second- order two-step splitting
methods are unconditionally stable for a model problem. Numerical experiments

are reported.
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1. INTRODUCTION

It is the purpose of this report to discuss splitting methods for second
order hyperbolic partial differential equations (PDEs) via the method of
lines. In the literature second order hyperbolic PDEs have been treated with
alternating direction methods [2], locally one-dimensional methods [15] and
hopscotch methods [5] formulated via the direct grid approach.

Let

(1.1) 45 < f(e,y), f£: Rx B » R

denote a semi-discrete second order hyperbolic PDE, where we assume that f
can be linearly split into k terms, k > 1 i.e.,

X N N
(1.2) f(t,y) = ) £.(6,y), £ :R xR > R .

i=1
The functions f; are called splitting functions [9] and depend on the original
PDE and the type of semi-discretization.

In section 2 of this report, we define a general class of two-step in-
tegration formulas for the systems (1.1)-(1.2),which we shall call splitting
formulas. We distinguish between splitting functions and splitting formalas,
and a combination of both will be called a splitting method [9]. In section
3 a survey of known, linear splitting formulas is given.

In section 4 we introduce the multi-argument splitting

(1.3) F(tyyseeesy) = £(t,y), F: Rx R x...x R' > Rx R,

where the (nonlinear) splitting function F has m (m >2) vector arguments
[8,9]. For the systems (1.1)-(1.3) we define in this section a rather general
class of two—step integration formulas.

The stability properties for the integration formula under comnsider-
ation will be investigated for the model problem (the k-dimensional wave

equation)



~ 3 X 3
(1.4) L - ) L. 0s<x.<1 ,i=1,...,k

with zero-Dirichlet-boundary conditions. When we semi-discretize (1.4) using
standard finite differences on an uniform grid, we obtain a linear system

of ordinary differential equations (ODEs) of the form

dzy k
(1.5) 5 =Jy , J= ) J

dt i=
2
i
eigenvalue spectrum and satisfy the common eigensystem condition [2,8].

where Ji corresponds with az/ax . The matrices J and Ji have a negative

In section 5 a few splitting functions are summarized, which are fre-
quently used in practice. Finally, in section 6 some splitting methods are
illustrated with numerical examples.

In this report we consider first and second order splitting methods
which are unconditionally stable for the model problem (1.4). This limitation
is a consequence of Dahlquist's theorem: a linear multistep method that is

A-stable cannot have order greater than two [1] .

2. LINEAR SPLITTING FORMULAS

Consider the m-stage, 2 - step integration formula

. . . k ..
) _ @G _.) 2 (Gi)
Yn#1 = M yn + (I-u )yn—l-FT iZIbZ’ fi(tn—l+inT’yn—l

) +

k .. il k
2 (Gi) 2 *®)
T isz‘ £ (nmg PBya ) T 1,21 121 Mi2ifi Com1"501 T ne)

j=1() m,

(m) (m)

yn+1 = yn+l s H = 2,

where Yo-1° Ip denote the numerical approximations respectively at t=t _i»

t=t and T = t -t_ =t -t . Each formula from class (2.1) is called
n n+l n n n-1

a linear 2-step splitting formula. The parameters b](Jl), bz(Jl), u(J)

ajﬂi’ Bji’ in and Xjﬁi serve to make this scheme a consistent and stable



approximation to (l1.1). In particular, however, they should be used to ex-
ploit the splitting property (1.2) in order to obtain an attractive compu-
tational process.

For future reference, we consider two linear 2-step methods for the

second —order ODE (1.1) . The first-order consistent linear 2-step method

2
(2.2) Yn+1 2yn T Yn-1 T f(tn+1’yn+1)

and the second-order consistent linear 2-step method

2

x )]
A

(2.3) Yool = Vn "V *

n+l |:f(tn—l"yn—l_)-‘- z‘f(tn’yn)'+f(t

n+1°Yn+1
belong to the class (2.1). The formula (2.3) has the smallest error constant
among second order accurate linear multistep methods [1,8]. Both methods
generate several splitting formulas and therefore the formulas (2.2) and

(2.3) will be called generating formulas.

2.1, Consistency conditions

Expanding y in a Taylor series at the point (t l) the order

n+l n-1’Yn-
conditions for scheme (2.1) can be derived. Conditions up to order p = 2

are listed in Table 2.1. The derivation of these conditions is straightfor-

ward.
Table 2.1 Consistency conditions for (2.1)
. . m
p =1 bfml) + b§m1)+ z Amzi =1 , i = 1(1k,
£=1
_ mi) . § (@) _ -
p=2 b, + 221 u ‘e =1 » 1= 1(Dk,
p@D L @) g LT oy - 1Dk
2 Tmi " 71 mi T L Ywli Cwli ’ '




By deleting the last condition in table 2.1 the order conditions for
scheme (2.1) are also listed in table 2.1 for an autonomous system
(i.e.,. Q_% = f(y)). For an autonomous system the integration formula (2.1)
is third torder consistent when, in addition to the order conditions up to

to order p = 2,

. m
(2.4) b, ™) & zz WY, =176, 1= 1K,
=1
. m . .
(2.5) bfml)-+2‘£Z Aei [Eﬁz)+b§£3)-+bézj)3 +
=] 2
Pl
+ 2 Y oA, A, . =17/6, i,7 = 1(1)k.
221 =1 mli “Lrj

For convergence of a p-th order consistent scheme (2.1) we refer to

convergence results of linear multistep methods (cf.[7,12]).
2.2, Stability

DOUGLAS AND GUNN [2] give a general formulation and stability analysis
of ADI methods for second order hyperbolic PDEs via the direct grid approach.

By using the method of lines the characteristic equation of the inte-
gration formula (2.1) can be obtained in a direct manner (cf.[8]) and is for

m > 1 defined by the formal relations

B 2 K (mi) € (mi)
(= apeezde =@+ L b z)c+(- ] b7z
i=] i=] i=1
m-1 k
_ «@) _
KZI izl "mep 23 BT 70

k
@) = - §

k .
N R TR I NP
i=1 i=1

k .
(2.6a) + 1- u(l) + z béll) zi},

i=1



k .
SRR R A RER

k
Ry = - ]
=] 1=1

i

W, § 0,

+ 1 -y .
1=1 1
£k ()
+ E _Z Aﬁqi z, RV(@}, £=2(1) m-1,
q=1 1=l

. 2 .
where z, and z represent eigenvalues of 12 Ji and 1~ J, respectively. For

m=1 the characteristic equation of (2.1) is defined by
2 1
.eb)y 2 -rWD ) =o.

' In order to have an infinite negative interval of stability for formulas
of type (2.1), the characteristic equations (2.6a) and (2.6b) should have
their roots on or within the unit circle for all negative z and z;.

We conclude this section with the formulas for the characteristic
equation of the linear 2-step methods (2.2) and (2.3). The characteristic

equation of the first order formula (2.2) given by
: 2
(2.7) (l1-z) 0 -2+ 1=0

has its roots within the unit circle for all negative z, whereas the charac-

teristic equation of the second order formula (2.3) given by
A 2 z z
(2.8) (1—4—) C (2 +~-2—) z + 1 e 0

has its roots on the unit circle [8]. A simple calculation reveals that the

roots of (2.7) satisfy the relation

+ 1 .
| c.(zy | = Azl o ,i=1,2, as lz] > =,
J Vi-z ! Vlzl

i.e. formula (2.2) has a very strong damping effect on the higher harmonics.



3. A SURVEY OF LINEAR SPLITTING FORMULAS

In this section we consider only splitting formulas of type (2.1); for
the definition of useful splitting functions we refer to section 5. Several
examples of known unconditionally stable splitting methods are discussed in
the following subsections.

The splitting formulas will be considered for a rather general class

of nonlinear initial-boundary value problems given by

2 k azu
(3.1a) °u = Z G.(t,x,u, — ) , x = (x ,...,xk) . x € QU S Q,
— 21 1 axz 1
ot t i
(3.1b) u(to,x) = uo(x) , %%—(to,x) = vo(x) , xe QUuUsés Q,
(3.1c) ao(t,x) u(t,x) + al(t,x)un = az(t,x),lﬁlnormal derivative,

x € § Q,

where @ is a bounded and path-connected region in the (xl,...,xk)—space with
sides parallel to the coordinate axes and 8Q is the boundary curve of Q. By
applying the method of lines, that is by replacing the region  US Q by a
rectangular grid with grid lines parallel to the coordinate axes the equa-
tion (3.la) and the boundary condition (3.lc) together convert into a system
of ODEs (1.1).

The splitting formulas in the subsections 3.1 and 3.2 are suitable for
the k-dimensional problem (3.1a) - (3.1c), whereas in the other subsections
only splitting formulas for 2-dimensional problems, i.e. k=2 in (3.1a) -
(3.1c), are considered.

The splitting formulas together with a suitable splitting function could
also be applied to the more general 2-dimensional nonlinear initial-boundary
value problems

82
(3.2a) — = G(t,xl,xz,u,ux

u
3t2 , U ), (XI’XZ) €e QU dQ

X X2

11 *2

and



u .
(3.2b) —_— = G(t,x],xz,u,uX x {uxlxz,uxzxz

) (x,x)) eqQusaQ,
ot 171

with the boundary and initial conditions defined in a similar way as for
problem (3.1a). However, for the problems (3.2a) and (3.2b) numerical results

obtained by splitting methods are hardly available in the literature.

3.1. The fractional step methods of Konovalov

Consider the k-stage formula

(1) _ _ 2 (1)
Yn+1 = zyn Yp-1 * T fl(tn+l’yn+1) ’
(3.3)
G) _ _(G-1) 2 (i) . _ .
Yprl = Ynrr  * T E(pvnyp) o 3= 2Dk

This splitting formula was introduced by Konovalov [10] and is fZrst order
consistent. For this formula the characteristic equation is given by

k 2
(3.4) m (1-z.) - - 2c¢ +1 = 0.

- j

J
From Hurwitz's criterion (cf.[12,p.81]) it follows that the roots of (3.4)
are within the unit circle for all negative zj.

In the same article Konovalov suggested another k-stage formula

k
(1) _ - 2 (1) 2
T+l © 2yn Yp-1 * T f](tn+1’yn+]) T iZZ fi(tn+]’yn) >
(3.5)
Gy - ,G-D 2 (3)y _ .2 o
AL A A LA AV LR AR

with the characteristic equation

k k

2
(3.6) U, (-z) ¢” - [0

i (l—zj) + z+11g+1=0 ,

1
It is easily verified that (3.5) is again first order consistent and that
the roots of (3.6) are within the unit circle. The splitting formulas (3.3)
and (3.5) have (2.2) as the generating formula. The splitting formulas of

Konovalov are also applicable to 2-dimensional hyperbolic PDEs containing



a mixed derivative [10] and hyperbolic PDEs arising in the theory of elas-

ticity for plane problems [11].

3.2. A second order 2-step splitting formula

Consider the k-stage splitting formula

(1 2 (1)

= - T
Va1 = Wy T Vpoy v DECe oy ) #28Ce Y+ E (e Ly

)1,

(3.7) 9
() _ G-D | T .
yn+l =Yy n+1 + 4 fj(tn+1’yn+] sy 1 = 2(1)1(-

For this second order consistent formula the characteristic equation is
given by

k

Z -
(3.8) AL =

. (]-{zj);2 —(2+§) c+ 1- 4 0.
For negative z and zj - values (3.8) has its roots within the unit circle,
whereas the characteristic equation (2.8) of the generating formula (2.3)
has its roots on the unit circle. As far as we know, the formula (3.7) has
not been discussed in the literature. When we compare the number of function
evaluations of the formulas (3.3) and (3.7) per integration step, it is clear
that (3.7) requires one extra function evaluation.

A second order analogue of (3.5) is the k-stage stabilizing corrections

splitting formula (cf.[2,8])

2

(D= gy - T (1)

Yn+1 Zyn n-1 %7 [f(tn—l’yn—l)+2 f(tn’yn)'+fl(tn+layn+1) +
k

(3.9) ) £,(t .y )],

i=2

Gy _ G- | )y _ .

Yn+1 T Yo+l g [fj(tn+l’yn+1) fj(tn’yn)] > ] 2(Dk

with the characteristic equation

k
_[.gl(l—%z.)+ z+1]1C + 1—2 =0.

N
~
Y

(3.10) T (1= 4z,

£~



It is easily verified that (3.10) has its roots within the unit circle.

3.3. The method of approximating factorization

Consider the 2-stage formula

(1) _ 12 (1)
yn+1 a yn * 2 fl(tn’yn+1 )
(3.11)
=2(1)— +12[f (t )y + £.(t )]
n+1 Yar1 ~ Tn-1 T2 ol Vng 2 n+12 Y0417

This second order consistent splitting formula has been suggested by
D'YAKONOV [3] for the 2-dimensional wave equation (see also YANENKO [17,p.50]).
The characteristic equation of the method of approximating factorization

(3.11) is given by
2 ' .
(3.12) (1- %zz) (l—ézz])c -‘21;+(1—%zz)(1—§..z]) =0.

The roots of (3.12) lie on the boundary of the unit circle.

3.4. A method of Lees

Consider the 2-stage formula

(ny _ o _ 2 —2n) T2
Vel = 29p Vo t 0T £ (e by ) v (O-2m) T £ (t 5y )
2 2 1
(3.13) + 1 E,(t L,y ) + nt fl(tn+]’yr(1+2) >

(1n 2 _
yn+1 B yn+] +ont [fZ(tn—]’yn—l) 2 fZ(tn’yn) + f2(t

n+]’yn+l):I ?

where n is still a free parameter. This splitting formula was introduced by
LEES [13] (see also MITCHELL [14]). It is easily verified that (3.13) is
second order consistent for every choice of n. The choice n = 1/12 leads for
an autonomous system even to a third order consistent splitting formula,
which can be easily verified by using (2.4) and (2.5).

The characteristic equation is given by
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(3.14) (l—nzz)(l—nzl)z;2 -z [2-+z(1-2n)-+2n2z]zz] + (l—nzz)(l—nzl) = 0.

Application of Hurwitz's criterion reveals that (3.14) has its roots on the

unit circle for all negative z, and z, if n = 1/4.

3.5. The locally one-dimensional method of Samarskii

Consider the 3-stage formula

2
(1) _ 1 _I
n+l 2(yn--l.*-yn) 8 [fZ(tn~I’yn—l)4'f2(tn’yn)] ’
2
(2) _ _ . () T (1) (2)
(3.15) Yo+l = 2yn Y n+l * 4 [fl(tn’yn+l) + fl(tn’yn+1)] ?
2
_ 2.(2) _ T
Y+l ~ 2yn+1 Ya * TI-[fZ(tn’yn) + f2(tn+l’yn+1)]'

_ This splitting formula was introduced by SAMARSKII [15] (see also MITCHELL
[14])for the 2-dimensional wave equaticn. The locally one-dimensional split-
ting formula (3.15) is second order consistent and its characteristic equa-

tion is given by

2 Z Z
1 _1 - z -z _
(3.16) (1-4 zl)(l 422)€ (2+,2) T+ 1 i 0.
From Hurwitz's criterion it follows that the roots of (3.16) are within the

unit circle.
4, NON—LINEAR SPLITTING FORMULAS

In this section some non-linear splitting formulas are discussed for
general nonlinear systems (1.1), where the vector function f satisfies the
non-linear splitting relation (1.3). Such general nonlinear systems are for
example obtained from the semi-discretization of the initial-boundary value
problems (3.1a -3.1c),(3.2a) and (3.2b). For the definition of useful split-

ting functions we refer to section 5.
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4,1. The method of successive corrections

Consider the splitting (1.3) with only 2 vector arguments, i.e.
(4.1) F(t,y,y) = f(t,y).

Let the splitting function F(t,u,v) have "simply structured" Jacobian ma-

trices J1 = 3 F/3u and J2 = 3F/3v. Then a class of 2-step splitting formu-

las belonging to the more general class defined in [8] reads

(0) _ _(pred) - _ 2 2
Yoal = Vopey 2 Ly = 29, Yoo tbyts £(r Ly ) + byt E(E Ly (),
(1) _ 2 3y _@G-n -
yn+] = zn + bO T F(tn+1’yn+l s Y n+1 ) ’ ] = 1’3,59"' ’
(4.2)
f 3) _ 2 G-1 _@Q) .
yn+l - Zn+bOT F(tn+l’y n+l ? yn+]) .9 ] = 23436,"-‘ ’
_ (m)
Yor1 = Tn+1
(pred) . . . .
where Yo+l is a predictor formula of order q. The integration formula
defined by (4.2) is consistent of order min {p,2m+q} , where p is the order
. 2 .
of the generating formula Yoel = I +byT f(tn+1’yn+l)(Cf' [8]). Substi

tution of a particular splitting function into (4.2) leads to a scheme which
will be called the method of successive corrections.
In the stability analysis we confine ourselves to the model problem
2 2 .
7 J,and b, 1~ J, have a common eigen-

0 1 0 2
and Zys respectively. In [8] the charac-

(1.4) with k = 2, where the matrices b

system with negative eigenvalues z,
teristic equation of the method of successive corrections is given, where
(pred)
- n+l

step formula or an explicit linear k-step formula. The behaviour of the roots

Zn corresponds to a linear k-step formula and y corresponds to an one-
g(z],zz) of the characteristic equation for large values of Izll and lzzl

is important. As |z| is smaller for Izll, |z2| » 1, the stronger is the
damping of the higher harmonics in the numerical error. We can only have
asymptotic stability of (4.2) for even m values if the predictor formula

is also asymptotically stable. Therefore the formulas
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(4.3a) y(ﬁz?d) =Y, with q = - 1
and '
d .
(4.3b) y(gi? ) - 2yn = Yo-1 with q = 0

seem to be plausible choices.

Choosing in (4.2) m even,

(pred) _ _ _ -
AN = yn’bO b2 = 1/4 and b1 =1/2

we obtain a second-order splitting formula with the characteristic equation
(4.4) (1-2)c” - {2(1+2) - R(1+32)} c+(1-R) (1-2) = 0,

212 Jm/2
(l-z])(l-zz)

where R=1[

sz = z_ +z, . Observing that for m even

172

O<R<1 |,

it is easily verified that the roots of (4.4) are withim tbe unit circle,
whereas the characteristic equation (2.8) of the generating formula (2.3)
has its roots on the unit circle. In {8] the case m = 2 was considered.

Replacing the predictor formula (4.3a) by (4.3b) leads also the a second-

order splitting formula with the characteristic equation
1 2 g
(4.4) (1-z)z" = 2(1+z=-2Rz)z +1 - z =0 .

However, the roots of (4.4)"' lie on the boundary of the unit circle.

Choosing in (4.2) m even,
(pred) _ = b = =
n+1 yn,b] b2 = 0 and b0 =1
we obtain a first-order splitting formula with the characteristic equation

(4.5) (I-Z)C2 - [2-R(1+z)) ¢ + 1 - R = 0.

From Hurwitz's criterion it follows that (4.5) has its roots within the unit



13

circle for all negative z, and z,, just as the characteristic equation (2.7)

1 2°
of the generating formula (2.2). Replacing the predictor formula (4.3a) by
(4.3b) leads also to a first-order splitting formula with the characteristic
equation -

4.5)" (1-z) 22 - 2(1-Rz) ¢ + 1 - Rz = 0,

which has again its roots within the unit circle.

For ]zll, |22| + o the first order approximations of the dominant root
of (4.4) and (4.5) are of the form (cf.[8])

e cdad
1 2

Y
IR

and

1+%(L+L
1 %

)

™
R

respectively. Hence, for a given even value of m and the predictor formula
(4.3a) the second order splitting formula has a slightly stronger damping
of the higher harmonics than the first order splitting formula.
Furthermore, comparing the number of function evaluations of both for-
mulas per integration step (both with the same value of m) , it is clear

that the second order splitting formula requires one extra function evaluation.

4,2, The method of stabilizing corrections

Let the splitting function F (t,u ..,um) satisfy condition (1.3),

1>
let Jj =3 F/Buj, j=1,2,...,m have a simple band structure, and consider

the m-stage splitting formula

(0) _ _(pred) _ _ 2 2
Yn#1 ~ Y n+1 2 Zn B 2yn Yn-1 * b1 T f(tn’yn).l-bZ T f(tn—l’yn--l) ’
(1 _ 2 (1) (0) (0) _ 2 (0)
Y+l T zn * T F(tn+]’ym+l > Yn+1 ""’yn+l) +(bO ul)T f(tn+l’yn+1) ?
(4.6)
3y _ ,G-D 2 (0) o @G _ (0)
yn+1 - Yn+] + UjT [F(tn+],Yn+1,-..,Yn+ls yn+1’ yn+I,...,yn+l)
0 .
- f(tn+l’yr(l+2)] s J = 2,3,n-§m Y
_
Tnt1 T Yne1?
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(pred) @)
n+l n+l

place in the row of vector arguments of F. A straightforward Taylor expansion

where y is a predictor formula of order q and y occurs at the j-th
reveals that formula (4.6) with the predictor formula (4.3a) is consistent

of first order when

(4.7) bO + b] + b2 =1,

second order consistent when, in addition,
(4.8a) b, + 2b, =1,

(4.8b) b0 + b1 + uj =1, 3j=1(1)nm.
The order conditions of (4.6) with the predictor formula (4.3b) are given
by (4.7) and (4.8a). Substitution of a particular splitting function into
(4.6) leads to a scheme which will be called the method of stabilizing cor-

rections [2,8].
Choosing in (4.6)

(pred) _ - - -

n+1 =Y, b1 = b2 = 0 and b0 =1
we obtain a first-order consistent splitting formula. For the model problem
(1.4) with k = m, the characteristic equation of this splitting formula as-

sumes the form

m 2 m
4.9 T (1-u.z. -[.M (1-u.z.) +z+1Jc+1 =0
(4.9) ;T (I=uyz4)¢ 50 ¢ My J) ,
where the zj denote the eigenvalues of the matrices Tz‘Jj. It can be proved
that (4.9) has its roots within the unit circle for all negative zj if

“j >1/2, j = 1(1)m. For uj = 1,7 = 1(1)m and the differential operator
splitting function (cf.[8,9])

m
(4.10) F(t,u,uy,..0u ) = izl £; (t,u;)
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we obtain the earlier mentioned splitting formula of Konovalov (3.5).
Replacing (4.3a) by (4.3b) leads also to a first order splitting formula

with the characteristic equation

m m
! ﬁ 1-u.z.) 2 -2 [z+ .M (1-p.z.)1g+ .0, (1-u.z.) + z = 0.
(4.9) j=1 ( MyZylt j=1 373 i=1 i73

From Hurwitz's criterion it follows that (4.9)'has its roots within the unit

1(1)m.

circle for all negative zj if . 23/4, j

Choosing in (4.6)

(pred)
n+l1

=Yy, ,b0 = b2 = 1/4, b] 1/2 and uj = 1/4 for j = 1(Dm

we obtain a seccnd-order consistent splitting formula with the characteristic

equation

3z
A

4.11) M (-z.)z2-[.0. (1-1z,) + 0
. . zj C fiU sz .

Z
50 +1] c+} - G

The roots of (4.11) are within the unit circle for all negative zj.

Choosing in (4.6)

(pred) b =b

ntl = 2yn--yn_l »bg=b, = 1/4 and b1 =1/2

we obtain also a second-order splitting formula with the characteristic

equation
4. . 1_ o Z . . e Z. + Z + . “H.Z. - °

However, the roots of (4.11)'lie on the boundary of the unit circle for all
negative zj if uj > 1/4, j=1(1)m.

The method of stabilizing corrections requires one evaluation of Zn and
(m+1)-evaluations of F, whereas the method of successive corrections re-

quires one evaluation of Zn and m evaluations of F.
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5. SPLITTING FUNCTIONS

In the preceding sections we only derived splitting formulas, which
can be selected on the ground of accuracy, stability considerations and
computational efficiency. Substitution of a particular splitting function
into a splitting formula leads to a splitting method. In this section, we

summarize briefly a few splitting functions, which depend on the class of
problems under consideration. For a more complete discussion of these split-

ting functions we refer to [8,9] . Some suitable splitting functions for the
splitting formulas discussed in this report are:

1°. The differential operator splitting function [8,9] for a (2k+1) - point

coupled (nonlinear) function f in (1.1) which originates from the semi-

discretization of a k-dimensional hyperbolic PDE (3.1).

2°. The odd-even and line hopscotch splitting function [8,9] for a 5-point

coupled (nonlinear) function f in (1.1).

3". The alternating direction implicit splitting function [9] for a 5-point

coupled (nonlinear) function f in (1.1),

Functions f derived from the 2-dimensional hyperbolic initial-boundary
value problems (3.1) with k = 2 and (3.2a) satisfy .a 5-point coupling. To
9-point coupled systems (1.1) the line hopscotch splitting function can also
be applied together with a particular splitting formula. Such systems arise
by semi-discretizing hyperbolic equations containing a mixed derivative
(see section 3).

The splitting formulas discussed in section 4 can be combined with each
splitting function, whereas the splitting formulas in section 3 can be com-
bined only with the differential operator splitting function and the hops-

cotch splitting functionms.

6. NUMERICAL EXPERIMENTS

The purpose of this section is to show that the splitting formulas to-
gether with a suitable splitting function can be applied to nonlinear hy-

berbolic initial-boundary value problems. To some extent the components of
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each splitting method discussed in this report, viz. the splitting function
and the splitting formula, are independent of each other [9]. For a linear
problem we illustrate that a certain type of splitting function can be com-

bined with more than one type of splitting formula.

6.1. The test examples

The initial-boundary value problems we tested are all of the form

a2 azur a2.u’-'
(6.]) ——— = a(t,xl ,Xz,u) [ + ] + v(t’xl’xz)

u
2 2 2
ot L Bxl sz

defined on {(t,xl,xz) [o<t<1 ’(XI’XZ) €}, where Q is given by
Q= {(x],xz) |0 < XX, <1}.

A splitting of v = iv + lv was used in all experiments. The initial and
Dirichlet boundary conditions follow from the exact solution given in table
6.1. By using standard differences the problems were semi-discretized on a
uniform grid €, with mesh width h. Evidently the components of the right-

hand side function f in (1.1) are coupled according to a five-point molecule.

Table 6.1. Specification of the test examples

Example Solution a(t,x],xz,u) v(t,xl,xz) T
-t 2 2 -t 2 2
: - 1
I l+e (x1+x2) 1 e (X1+x2 4)
- 2 -
IT e Sl 100 cos [(x1+x2)u] e t{xf+x§ - 1

2
400 cos![(xl+x2)

(1+e_t(Xf+X§))] }

ITI %(x1+x2) sin(2mt) -2ﬂ2(x1+x2)sin(2nt) 3

)
30T i3 ane)

4(1+t)
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6.2. Methods used.

Three splitting formulas were applied to the examples I - III (see
table 6.1). In our experiments we used the first order consistent formula
(3.3) with k = 2, the second order consistent formula (3.7) with k = 2 and

the second order splitting version of the method of successive corrections

defined by (4.2) with m even, b, = i b, = b, = i, i.e.,

2

(0) _ _(pred) _ _ 72 T

Yn+l =7 n+1 2n =2y, " Vp1 *3 f(tn’yn)+ 4 f(tn-l’yn-l)’
() _ o2 G) JG-Dy .. _

Y+l © bnt 7 FCE 19903197 pe1 ) o 3 = 1,355,...,m1,

(6.2) )

(3) _ T G- (3 .

yn+] - Zn*‘ A F(tn+l’y n+l syn+1), ] = 2,4,6,...,m,

3 _ (m)

yn+1 yn+l

, I even..

In the experiments we tested the predictor formulas (4.3a) and (4.3b) and
chose m = 2 and m = 4.

For all the examples the splitting formulas are combined with the dif-
ferential operator splitting function (D.O.splitting). Note that in the dif-
ferential operator splitting the inhomogeneous term v(t,x],xz) will be split
into iv + }v. For the linear problem 1 the formulas (3.3) and (3.7) are
also combined with the odd-even hopscotch splitting function (O-E H.split-
ting).

The tridiagonal Jacobian matrices, used to solve the implicit equations
by means of a Newton-type process, wera obtained by analytical differen-
tiation. In case of constant partial derivatives 3f/3y, these matrices were
determined once; in all other cases they were updated every integration
step at the points (tn,yn). In all experiments the implicit equations were
solved with one Newton iteration. As initial approximation to start the
Newton iteration in the first stage of the splitting methods we chose an
extrapolation formula. In the scheme {(4.3a),(6.2)} we used formula (4.3a)
as initial approximation and in the other schemes we used formula (4.3b) as
initial approximation. In the other stages we used in the Newton-type process

the solution of the preceding stage as predictor.
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In order to compare the computational effort of the various methods
we have listed in the tables of results the number of f-evaluations per in-
tegration step. The splitting formula (3.3) costs one complete f-evaluation
per integration step. The splitting formulas (3.7) and (6.2) require the
functions f(tn,yn) and f(tn_],yn_]) in every integration step. For both for-
mulas one function evaluation per integration step can be saved, when in the
implementation f(tn,yn) is stored in an array with N components, where N is
equal to the number of interior grid points of Qh. Thus, the formulas (3.7)
and (6.2) cost per integration step 2 and (m+1) f-evaluations, respectively.
In our comparison of the computational effort of the various methods we have

not taken into account the evaluation of the Jacobian matrices, the LU-

decompositions, the solution of tridiagonal systems .of linear equations, etc.

6.3. Numerical results

The two starting values were obtained from the exact solution of the
initial-boundary value problems.
The accuracy 1is measured by the number of correct digits in the end

point t = 1, 1i.e.

(6.3) sd = - lolog |maximum absolute error in t = 1

From (6.3) it follows (see also LAMBERT [12,p.257]) that on halving the
integration step T the value of sd should increase by plolog 2= ,3p for a
method of order p (and T sufficiently small).

In the tables of results given below the values of the pair (f,sd) are

listed where f denotes the number of f-evaluations per integration step.



20

Table 6.2a (f,sd)-values for example I obtained by (3.3) and (3.7) together
with differential operator (D.0) splitting and odd—-even hopscotch (O-E H.)

splitting.
(3.3) with | (3.3) with |(3.7) with (3.7) with

h 1 |D.0.splitting|O-E H.splittingD.0.splitting| O-E H.splitting
/5 | (1,2.37) 1,.72) (2,2.94) (2,1.47)
/10| (1,2.78) (1,1.02) (2,3.61) (2,2.31)

/10 /90! (1,3.0) (1,1.63) (2,4.18) (2,3.12)
/40| (1,3.33) (1,2.38) (2,4.75) (2,3.80)
1/5 | (1,2.22) (1,0.5) (2,2.92) (2,0.95)
/10| (1,2.77) (1,0.62) (2,3.53) (2,1.4)

1720 1 190| (1,3.0) (1,0.95) (2,4.07) (2,2.38)
1/40| (1,3.33) (1,1.61) (2,4.62) (2,3.16)

In table 6.2a is illustrated for the linear example I that the splitting
methods lose accuracy when the boundary conditions are time—dependent and
if h - 0, which is a well-known phenomenon [4,16]. Table 6.2a shows that the
asymptotic order of the formulas (3.3) and (3.7) with the D.O. splitting is
more or less reached, whereas with the O-E H.splitting a higher order of
accuracy is shown. The splitting formulas in combination with the odd-even
hopscotch splitting functions are less accurate and more sensitive to grid
refinement than with the differential operator splitting function. Notice
that the splitting formulas with the D.0O. splitting require the solution
of tridiagonal systems of linear equations, whereas with the O-E H.splitting
only scalar linear equations have to be solved. Therefore a comparison based
on f-evaluations is far from complete. The splitting formulas with O-E H.
splitting satisfy the situation where a quick solution with little effort

and not too great accuracy is required.
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Table 6.2b (f,sd)-values for example I obtained by {(4.3a),(6.2)} and

{(4.3b),(6.2)} with the differential operator splitting function
and m = 2,4,

{(4.33),(6.2)} {(4.3b),(6.2)}

h T m= 2 m= 4 m= 2 m =4 7
1/5 (3,1.98) (5,2.09) | (3,2.66) (5,2.81)
1/10| (3,2.88) (5,3.66) | (3,3.98) (5,4.25)
1/20 | (3,3.74) (5,4.98) | (3,4.83) (5,4.97)
1/40|  (3,4.55) (5,5.64) | (3,5.65) (5,5.64)

1/10

1/5 (3,1.33) (5,1.6) (3,2.12) (5,2.42)
1/20 1/10  (3,2.21) (5,3.23) | (3,3.0) (5,3.73)
1/20|  (3,3.17) (5,4.35) | (3,4.32) (5,5.01)
1/40| (3,4.07) (5,5.67) | (3,5.56) (5,5.67)

In table 6.2b results are listed for example I but now for the method
of successive corrections (6.2) with differential operator splitting. For
m = 2 the scheme {(4.3b), (6.2)} is considerably more accurate than
{(4.3a),(6.2)}. For m = 4 and T = 1/20 a similar conclusion can be drawn.
Both schemes are rather sensitive to grid refinement. Table 6.2b also illus-
trates the effect of the value of m on the accuracy. For this range of
t-values the asymptotic order p = 2 is not clearly shown. Only for m = 4 the

scheme {(4.3b),(6.2)} has the tendency to show its asymptotic order.

Comparing the results in the tables 6.25 and 6.2b we observe that es-
pecially for large T values the method of the successive corrections is more
sensitive to grid refinement than (3.3) and (3.7) with D.O. splitting. In
the higher accuracy range {(4.3b),(6.2)} withm = 2 is the most efficient
in terms of the total number of f-evaluations. For lower accuracies the

method (3.7) with D.O. splitting becomes the more efficient one.
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Table 6.3. (f,sd)-values for example II with h = 1/10.

Each formula uses D.0. splitting.

Formula 1=1/20 = 1/40 1= 1/80

(3.3) (1,2.83) | (1,2.91) | (1,3.18)

(3.7) (2,3.7) (2,4.14) | (2,4.67)
{(4.3a),(6.2)}, m = 2 * * (3,3.39)
{(4.3a),(6.2)}, m = & * (5,2.89) | (5,4.55)
{(4.3b),(6.2)}, m = 2 * (3,3.32) | (3,5.23)
{(4.3b),(6.2)}, m = 4 * (5,4.03) | (5,5.9)

In table 6.3 results are listed for the nonlinear example II obtained
with various formulas together with D.O. splitting. Instability is indicated

‘ by an asterisk. For large t—values (3.7) is superior to the method of suc-
cessive corrections, whereas the method of successive corrections {(4.3b),
(6.2)} withm = 2 is competitive for T = 1/80. Again increasing m improves

the accuracy in the method of successive corrections considerably. The results
in table 6.3 show that only the asymptotic order of the formulas (3.3) and
(3.7) is more or less reached. The best choice for the predictor formula in

(6.2) is again (4.3b)

Table 6.4. (f,sd)-values for example III with h = 1/10
The splitting formulas are combined with the differential operator

splitting function.

Formula =1/10 =1/20 = 1/40
(3.3) (1,-.07) (1,.1) (1,.31)
(3.7) (2,.58) (2,1.26) (2,1.84)

{(4.3a),(6.2)} ,
{(4.3a),(6.2)} ,
{(4.3b),(6.2)} ,
{(4.3b),(6.2)} ,

(3,.63) | (3,1.23) | (3,1.83)
(5,.63) | (5,1.23) | (5,1.83)
(3,.37) | (3,1.23) | (3,1.83)
(5,.64) | (5,1.23) | (5,1.83)

B B B B
|
N RN
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In table 6.4 the results are presented for the nonlinear example III
with h = 1/10 showing that for T > 1/20 the effect of the choice of the pre-
dictor formula and the value of m in the method of successive corrections
on the accuracy is negligible. For this example (3.7) with D.0. splitting
is the most efficient method. The results show the correct order behaviour
of the second order methods. The first order method (3.3) has the tendency

to show its asymptotic order.

From the results of the three problems the following conclusions can be

drawn:

(ziff) =2y "y, ., 3 predictor formula in the method
pred)

of successive corrections (6.2) instead of (4.3a) (y( et

- Using (4.3b), i.e. y
= yn) is worth-

while.
- For large t1-values (3.7) with the differential operator splitting function

is the most efficient method.

' - For higher accuracies the scheme {(4.3b),(6.2)} with m = 2 and differential

operator splitting is preferable in the examples I and II.

7. CONCLUDING REMARKS

In this report a survey is given of the most important splitting methods

for second order hyperbolic PDEs via the method of lines. In the literature
the linear splitting formulas discussed in section 3 together with the dif-
ferential operator splitting function are usually formulated and analysed as
direct grid methods for the multi-dimensional wave equation with Dirichlet
boundary conditions.

Using the predictor formula (4.3a) the second order splitting formulas
discussed in section 4 have a stronger damping of the higher harmonics than
using the predictor formula (4.3b).

It is known that splitting methods will usually lose accuracy when the
boundary conditions are time-dependent (cf. FAIRWEATHER and MITCHELL [4]).
This phenomenon was investigated in [4,16] for a class of splitting methods
for parabolic PDEs and in [6] for a class of splitting methods for second
order hyperbolic PDEs., Following the approach of SOMMEIJER et al. [16] the

boundary-value correction can also be derived for splitting methods for a
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rather general class of hyperbolic initial-boundary value problems defined

by (3.1a)-(3.1b). These aspects will be subject for future research.
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