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Two-step splitting methods for semi-discrete second order hyperbolic partial 

differential equations 

by 

H.B. de Vries 

ABSTRACT 

In this report splitting methods are discussed for a certain class of 

second order hyperbolic partial differential equations via the method of 

lines, and in particular the time integration will be discussed. A class 

of two-step integration formulas is defined, which contains several well­

known splitting methods. The first-and second- order two-step splitting 

methods are unconditionally stable for a model problem. Numerical experiments 

are reported. 
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1 • INTRODUCTION 

It is the purpose of this report to discuss splitting methods for second 

order hyperbolic partial differential equations (PDEs) via the method of 

lines. In the literature second order hyperbolic PDEs have been treated with 

alternating direction methods [2], locally one-dimensional methods [15] and 

hopscotch methods [5] formulated via the direat grid approaah. 

Let 

( 1 • I) 
2 
~ = f (t,y), 
dt2 

N N 
f: lRxlR +lR 

denote a semi-discrete second order hyperbolic PDE, where we assume that f 

can be linearly split into k terms, k > I i.e., 

(I. 2) 
k 

f(t,y) = I 
i=1 

f. (t,y), 
l. 

N N 
f.:lRxlR + lR. 

l. 

The functions f. are called splitting functions [9] and depend on the original 
l. 

PDE and the type of semi-discretization. 

In section 2 of this report, we define a general class of two-step in­

tegration formulas for the systems (1.1)-(1.2),which we shall call splitting 

formulas. We distinguish between splitting funations and splitting formalas, 

and a combination of both will be called a splitting method [9]. In section 

3 a survey of known, linear splitting formulas is given. 

In section 4 we introduce the multi-argument splitting 

( 1. 3) F(t,y, ••• ,y) = f(t,y), N N N 
F: lRx lR x ••• x 1R + lRx 1R., 

where the (nonlinear) splitting function F has m (m~2) vector arguments 

[8,9]. For the systems (1.1)-(1.3) we define in this section a rather general 

class of two-step integration formulas. 

The stability properties for the integration formula under consider­

ation will be investigated for the model problem (the k-dimensional wave 

equation) 
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k 
( 1. 4) I 

i=l 
, o· :s;x. :s; 1 

1· 
,i=l, ••• ,k 

with zero-Dirichlet-boundary conditions. When we semi-discretize (1.4) using 

standard finite differences on an uniform grid, we obtain a linear system 

of ordinary differential equations (ODEs) of the form 

( 1. 5) 
2 
~ = 
dt2 

Jy 
k 

J = I 
i=l 

J. 
1 

where J. corresponds with a2 /ax~ • The matrices J and J. have a nenative 
1 1 1 · l:1 

eigenvalue spectrum and satisfy the common eigensystem condition [2,8]. 

In section 5 a few split'ting functions are summarized, which are fre­

quently used in practice. Finally, in section 6 some splitting methods are 

illustrated with numerical examples. 

In this report we consider first and second order splitting methods 

which are unconditionally stable for the model problem (1.4). This limitation 

is a consequence of Dahlquist's theorem: a linear multistep method that is 

A-stable cannot have order greater than two [1]. 

2. LINEAR SPLITTING FORMULAS 

Consider them-stage, 2 - step integration formula 

k (j i) 2 l b I f. ( t 1 +8 .• T, y ) + T • 1 1 n- J1 .. n 
1= . 

j = I (I) m, 

(m) (m) 
Yn+l = Yn+l ' µ = 2, 

kl b2{ji)f.(t ) +y •. T ,Y + 
1 n-1 J1 n-1 i=I 

where yn-I, yn denote the numerical approximations respectively at t = tn-I, 

t = t and T = t -t = t -t • Each formula from class (2.1) is called n n+l n n n-1 
a linear 2-step splitting formula. The parameters b 1 (ji), b2 (ji), µ(j) ,. 

a. 0 ., B •• , Y .. and A•o• serve to make this scheme a consistent and stable 
j,(..1 J1 J1 J,(..1 
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approximation to (I.I). In particular, however, they should be used to ex­

ploit the splitting property (1.2) in order to obtain an attractive compu­

tational process. 

For future reference, we consider two linear 2-step methods for the 

second-order ODE (I.I) • The first-order consistent linear 2-step method 

(2.2) 

and the second-order consistent linear 2-step method 

(2. 3) 

belong to the class (2.1). The formula (2.3) has the smallest error constant 

among second order accurate linear multistep methods [1,8]. Both methods 

generate several splitting formulas and therefore the formulas (2.2) and 

(2.3) will be called generating fomru.Zas. 

2.1. Consistency conditions 

Expanding y 1 in a Taylor series at the point (t J'.Y 1) the order n+ n-. n-
conditions for scheme (2.1) can be derived. Conditions up to order p = 2 

are listed in Table 2.1. The derivation of these conditions is straightfor­

ward. 

Table 2.1 Consistency conditions for (2.1) 

b (mi) b(mi)+ 
m 

p = + I Amii = i = I (l)k, 
l 2 ' l=I 

b (mi) 
m 

(l) A p = 2 + I = I i = I (l)k, 
1 µ mii ' l=l 

b (mi) b (mi) 
m 

Ymi + f3 • + I amii Amii = 
' 

i = l(l)k. 
2 1 mi 

l=l 
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By deleting the last condition in table 2.1 the order conditions for 

scheme (2.1) are also listed in table 2.1 for an autonomous system 
. d2y 

(i.e., --2 = f(y)). For an autonomous system the integration formula (2.1) 
dt 

is third order consistent when, in addition to the order conditions up to 

to order p = 2, 

(2.4) 

(2.5) 

b (mi)+ 
I 

m 

I 
l= 1 

b (mi) + 2 f ). . 
I l=I mli 

m l 
+ 2 l 'l Am.ti 

l=I r=I 
A() • 
,c..rJ 

1/6 , i = I (I )k, 

= 7/6, i,j = I (I )k. 

For convergence of a p-th order consistent scheme (2.1) we refer to 

convergence results of linear multistep methods (cf.[7,12]). 

2.2. Stability 

DOUGLAS AND GUNN [2] give a general formulation and stability analysis 

of ADI methods for second order hyperbolic PDEs via the direet grid approaeh. 

By using the method of lines the characteristic equation of the inte­

gration formula (2.1) can be obtained in a direct manner (cf.[8]) and is for 

m > 1 defined by the formal relations 

k 2 k (mi) k ( . ) 
(I- l A • z.) r; - (2+ l b 1 z.) r; + (I- l b 2mi z~) 

i=I mmi 1 i=I 1 i=I ... 

m-1 
- I 

l=I 

k 
' ~ R(l)(r) = O, l "'mli z. ., 

i=I i 

R (I) (r;) 
k -1 {(µ(]) + I b ( Ii) z.) = (I- I Al Ii z.) r; + 

i . I I i i=I 1= 

+]-µ{])+ 
k 

b (Ii) (2.6a) I z.} , 
i=I 2 i 



k 
R(l) (z;;) = o - I 

l-1 
+ I 

q=l 

i=l 

k 

1 
i=l 

, )-1{( (l) ~ b (ii) ) 
I\. (J (J. z. µ + l l z1. z;; + 
~1· i i=l 

>.. (J • z. R ( q) ( z;;)} , l = 2 (I) m - l , 
,{,.qi 1 

where z. and z represent eigenvalues of T 2 J. and , 2 J, respectively. For 
1 1 

m=l the characteristic equation of (2. 1) is defined by 

(2.6b) 

In order to have an infinite negative interval of stability for formulas 

of type (2.1), the characteristic equations (2.6a) and (2.6b) should have 

their roots on or within the unit circle for all negative z and z .. 
1 

We conclude this section with the formulas for the characteristic 

equation of the linear 2-step methods (2.2) and (2.3). The characteristic 

equation of the first order formula (2,2) given by 

(2. 7) (1-z) z;; 2 - 2 z;; + l = 0 

5 

has its roots within the unit circle for all negative z, whereas the charac­

teristic equation of the second order formula (2.3) given by 

(2.8) 
z 2 z z 

(1- 4 ) z;; - (2 + y) z;; + l - 4 = 0 

has its roots on the unit circle [8]. A simple calculation reveals that the 

roots of (2.7) satisfy the relation 

z;;. (z) 
J 

✓l+lzl t l 
~ 

✓1-z I /fzr 
j = l , 2, as I z I -+ 00 , 

1.e. formula (2.2) has a very strong damping effect on the higher harmonics. 
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3. A SURVEY OF LINEAR SPLITTING FORMULAS 

In this section we consider only splitting formulas of type (2.1); for 

the definition of useful splitting functions we refer to section 5. Several 

examples of known unconditionally stable splitting methods are discussed in 

the following subsections. 

The splitting formulas will be considered for a rather general class 

of nonlinear initial-boundary value problems given by 

(3.la) 

(3. lb) 

(3. le) 

2 a u = 
k 

l 
at:2 i=l 

xe:nuon, 

a0 (t,x) u(t,x) + a 1 (t,x)un = a2(t,x), un normal derivative, 

X € 0 n, 

where n is a bounded and path-connected region in the (x1, ••• ,~)-space with 

sides parallel to the coordinate ax~s and on is the boundary curve of n. By 

applying the method of lines, that is by replacing the region nu on by a 

rectangular grid with grid lines parallel to the coordinate axes the equa­

tion (3.la) and the boundary condition (3.lc) together convert into a system 

of ODEs (I.I). 

The splitting formulas in the subsections 3.1 and 3.2 are suitable for 

the k-dimensional problem (3.la) - (3.lc), whereas in the other subsections 

only splitting formulas for 2-dimensional problems, i.e. k=2 in (3.la) -

(3.lc), are considered. 

The splitting formulas together with a suitable splitting function could 

also be applied to the more general 2-dimensional nonlinear initial-boundary 

value problems 

(3. 2a) 

and 
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(3. 2b) 

with the boundary and initial conditions defined in a similar way as for 

problem (3.la). However, for the problems (3.2a) and (3.2b) numerical results 

obtained by splitting methods are hardly available in the literature. 

3.1. The fractional step methods of Konovalov 

Consideir the k-stage formula 

/1) = 
n+l 

(3. 3) 

J = 2(l)k. 

This splitting formula was introduced by Konovalov [ 10] and 1.s first order 

consistent. For this formula the characteristic equation is given by 

(3.4) 
k 
n 

j == l 
(1-z.) r; 2 - 27; +l = O. 

J 

From Hurwitz's criterion(cf.[12,p.81]) it follows that the roots of (3.4) 

are within t:he unit circle for all negative z .• 
J 

In the same article Konovalov suggested another k-stage formula 

2 
+ T 

(3.5) 

j = 2(l)k 

with the characteristic equation 

(3.6) 
k 2 k 

.TT 1 (1-z.) r; - [ .n1 (l-z.) + z+l] 7; + l = 0 • 
J= J J= J 

It is easily verified that (3.5) is again first order consistent and that 

the roots of (3.6) are within the unit circle. The splitting formulas (3.3) 

and (3.5) have (2.2) as the generating formula. The splitting formulas of 

Konovalov are also applicable to 2-dimensional hyperbolic PDEs containing 
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a mixed derivative [ I OJ and hyperbolic PDEs arising in the theory of elas­

ticity for plane problems [II]. 

3.2. A second order 2-step splitting formula 

(3. 7) 

Consider the k-stage splitting formula 

2 
+ .!. 

4 

2 
= (j-1) T f (t (j)) 

y n+ I + 4 j n+ I 'y n+ I J = 2(l)k. 

For this second order consistent formula the characteristic equation is 
given by 

(3. 8) 
k 
TT (1 1 )r2 (2+z)r+J z=O i=I -7;Zj .., - 2 .., - 4 • 

For negative z and z. - values (3.8) has its roots within the unit circle, 
J 

whereas the characteristic equation (2.8) of the generating formula (2.3) 

has its roots on the unit circle. As far as we know, the formula (3. 7) has 

not been discussed in the literature. When we compare the number of function 

evaluations of the formulas (3.3) and (3.7) per integration step, it is clear 

that (3.7) requires one extra function evaluation. 

A second order analogue of (3.5) is the k-stage stabilizing corrections 

splitting formula (cf. [2 ,8]) 

(3.9) + 

with the characteristic equation 

(3. IO) 

k 

l. 
i=2 

f.(t ,Y )] ' 
1 n n 

j = 2(l)k 
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It is easily verified that (3.10) has its roots within the unit circle. 

3.3. The method of approximating factorization 

Consider the 2-stage formula 

(3. 11) 
2 

Yn+l = 2Y~!~ - Yn-1 + ~ [f2(tn-1 'Yn-l) + f2(tn+1 'Yn+l)J • 

This second order consistent splitting formula has been suggested by 

D'YAKONOV [3] for the 2-dimensional wave equation (see also YANENKO [17,p.50]). 

The characteristic equation of the method of approximating factorization 

(3.11) is given by 

. (3. 12) 

The roots of (3.12) lie on the boundary of the unit circle. 

3.4. A method of Lees 

Consider the 2-stage formula 

(3. 13) 

where n is still a free parameter. This splitting formula was introduced by 

LEES [13] (see also MITCHELL [14]). It is easily verified that (3.13) is 

second order consistent for every choice of n. The choice n = 1/12 leads for 

an autonomous system even to a third order consistent splitting formula, 

which can be easily verified by using (2.4) and (2.5). 

The characteristic equation is given by 



(3.14) 

Application of Hurwitz's criterion reveals that (3.14) has its roots on the 

unit circle for all negative z 1 and z2 if n ~ 1/4. 

3.5. The locally one-dimensional method of Samarskii 

Consider the 3-stage formula 

(3. 15) (2) 2y - y ( 1) + T 2 (1) (2) 
Yn+l = 4 [f 1 (tn,Yn+l) + fl(tn,Yn+l)] , n n+I 

2 
Yn+l = 

2 (2) 
Yn+I - Yn + \ [f2(tn,yn) + f2(tn+l'Yn+I)]. 

This splitting formula was introduced by SAMARSKII [15] (see also MITCHELL 

[14])for the 2-dimensional wave equation. The locally one-dimensional split­

ting formula (3.15) is seaond order consistent and its characteristic equa­

tion is given by 

(3. I 6) (I-¼ z 1) (l-¼z2 )r;; 2 -(2+~) r;;+ 1-: = O. 

From Hurwitz's criterion it follows that the roots of (3. 16) are within the 

unit circle. 

4. NON-LINEAR SPLITTING FORMULAS 

In this section some non-linear splitting formulas are discussed for 

general nonlinear systems (I.I), where the vector function f satisfies the 

non-linear splitting relation (1.3). Such general nonlinear systems are for 

example obtained from the semi-discretization of the initial-boundary value 

problems (3.la -3.lc),(3.2a) and (3.2b). For the definition of useful split­

ting functions we refer to section 5. 
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4.1. The method of successive corrections 

Consider the splitting (1.3) with only 2 vector arguments, i.e. 

( 4. I) F(t,y,y) = f(t,y). 

Let the splitting function F(t,u,v) have "simply structured" Jacobian ma­

trices J 1 = aF/au and J 2 = aF/av. Then a class of 2-step splitting formu­

las belonging to the more general class defined in [8] reads 

(0) (pred) 
ln = 2Yn - Yn-1 

2 2 
Yn+l = y n+l ' +b(r f(t ,y ) + b2T f(t 1,y 1), n n n- n-

y(j) ln + bo L 
2 F(t (j) (j-1) j 1,3,5, ••• = 'y n+l ) = , n+l n+l 'Yn+l , 

(4.2) 
y(j) ln +ho '[2 

(j-1) (j) j 2,4,6, ••• = F (tn+l 'y n+l 'Yn+l) . , = , 
n+l 

Yn+l = (m) 
Yn+l , 

where y(pred) is a predictor formula of order q. The integration formula 
n+l 

defined by (4.2) is consistent of order min{p,2m+q} ,where pis the order 

of the generating formula yn+l =En+ b0 T 2 f(tn+I ,Yn+l)(cf. [8]). Substi­

tution of a particular splitting function into (4.2) leads to a scheme which 

will be called the method of successive corrections. 

In the stability analysis we confine ourselves to the model problem 

(I .4) with k = 2, where the matrices b0 T 2 J 1 and b0 T 2 J 2 have a conunon eigen­

system with negative eigenvalues z 1 and z2 , respectively. In [8] the charac­

teristic equation of the method of successive corrections is given, where 

E corresponds to a linear k-step formula and y(p:e1d) corresponds to an one-
n ~ 

step formula or an explicit linear k-step formula. The behaviour of the roots 

~(z 1,z2) of the characteristic equation for large values of lz 11 and lz21 
is important. As I~ I is smaller for I z 1 I , I z2 I » I , the stronger is the 

damping of the higher harmonics in the numerical error. We can only have 

asymptotic stability of (4.2) for even m values if the predictor formula 

is also asymptotically stable. Therefore the formulas 
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(4.3a) (pred) 
y n+l = yn with q = - 1 

and 

(4.3b) (pred) 
y n+l = 2Yn - Yn-1 with q = 0 

seem to be plausible choices. 

Choosing in (4.2) m even, 

we obtain a seaond-order splitting formula with the characteristic equation 

(4.4) 
2 (1-z)r,; - {2(l+z) R(1+3z)} I',; +(1-R)( 1-z) = O, 

where R = [ 

0 < R < 1 

it is easily verified that the roots of (4.4) arP within the unit circle, 

whereas the characteristic equation (2.8) of the generating formula (2.3) 

has its roots on the unit circle. In [8] the case m = 2 was considered. 

Replacing the predictor formula (4.3a) by (4.3b) leads also the a seaond­

order splitting formula with the characteristic equation 

(4. 4)' 2 ~ (1-z)r,; - 2(1+z-2Rz)r,;+l - z = 0. 

However, the roots of (4.4)' lie on the boundary of the unit circle. 

Choosing in (4.2) m even, 

we obtain a first-order splitting formula with the characteristic equation 

(4.5). (1-z)r;2 - [2 -R(l+z)J r; + 1 - R = O. 

From Hurwitz's criterion it follows that (4.5) has its roots within the unit 
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circle for all negative z 1 and z2 , just as the characteristic equation (2.7) 

of the generating formula (2.2). Replacing the predictor formula (4.3a) by 

(4.3b) leads also to a first-order splitting formula with the characteristic 

equation · 

(4. 5) I (I - z) r; 2 - 2 (I -Rz) r; + 1 - Rz = 0 , 

which has again its roots hlithin the unit circle. 

For Jz 11 J, Jz2 J + 00 the first order approximations of the dominant root 

of (4.4) and (4.5) are of the form (cf.[8]) 

~ 2 1 1 
t I + m ( - + -) .. 

zl Zz 
and 

~ m 1 1 
) (; +- (-+-

2 zl z2 

respectively. Hence, for a given even value of m and the predictor formula 

(4.3a) the second order splitting formula has a slightly stronger damping 

of the higher harmonics than the first order splitting formula. 

Furthermore, comparing the number of function evaluations of both for­

mulas per integration step (both with the same value of m) , it is clear 

that the second order splitting formula requires one extra function evaluation. 

4.2. The method of stabilizing corrections 

Let the splitting function F (t,u1, ••• ,um) satisfy condition (1.3), 

let J. = a F/au., j = 1,2, ••. ,m have a simple band structure, and consider 
J J 

them-stage splitting formula 

(4. 6) 

y<j) = 
n+l 

J=2,3, •• ,m, 
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where y~~~ed) is a predictor formula of order q anq. y~{~ occurs at the j-th 

place in the row of vector arguments of F. A straightforward Taylor expansion 

reveals that formula (4.6) with the predictor formula (4.3a) is consistent 

of first order when 

(4.7) 

second order consistent when, in addition, 

(4.8a) bl + 2b0 = I , 

(4.8b) 

The order conditions of (4.6) with the predictor formula (4.3b) are given 

by (4.7) and (4.8a). Substitution of a particular splitting function into 

(4.6) leads to a scheme which will be called the method of stabilizing aor­

reations [2,8]. 
Choosing in (4.6) 

we obtain a first-order consistent splitting formula. For the model problem 

(1.4) with k = m, the characteristic equation of this splitting formula as­

sumes the form 

(4.9) 
m 2 m 

• TT 1 ( I -µ . z . ) z;; - [ •. TT 1 ( 1 -µ . z . ) + z + 1 ] i; + I = 0 , 
J= J J J = J J 

where the z. denote the eigenvalues of the matrices 
J 

that (4.9) has its roots within the unit circle for 

2 
T J .• It can be proved 

J 
all negative z. if 

J 
µ. ~ I/ 2 , J = I ( I )m. For µ. = 

J J 
1,j = l(l)m and the differential operator 

splitting function (cf.[8,9]) 

m 
(4. 10) I f 1• <t,u.) 

• 1 l. 
1.= 



we obtain the earlier mentioned splitting formula of Konovalov (3.5). 

Replacing (4.3a) by (4.3b) leads also to a first order splitting formula 

with the characteristic equation 

(4. 9)' 
m 2 lll_ m 

. TI ( 1 - µ. z.) z; -2 [ z + . TT (1-µ. z.) J z; + . n1 (1- µ. z.) + z = 0 • 
J=l J J J=l J J J= J J 

15 

From Hurwitz's criterion it follows that (4.9)'has its roots within the unit 

circle for all negative z. ifµ.~ 3/4, j = l(l)m. 
J J 

Choosing in (4.6) 

we obtain a seccnd-order consistent splitting formula with the characteristic 

equation 

(4.11) m 2 m ~+l]r+J- z .n1 (1-1 z.)z; -[.n1 _(t-¼z.) + 4 .,, -4 = O. 
J= J J= J 

The roots of (4.11) are within the unit circle for all negative 

Choosing in (4.6) 

z .• 
J 

we obtain also a second-order splitting formula with the characteristic 

equation 

(4.lt)' 
m 2 m m 

. TT l (1 -µ . z . ) z; - [ 2 . TT l (1- µ • z . ) + z ]z; + . TI l ( 1 -µ . z . ) = 0. 
J= J J J= J J J= J J 

However, the roots of (4.ll)'lie on the boundary of the unit circle for all 

negative z. ifµ.~ 1/4, j = l(l)m. 
J J 

The method of stabilizing corrections requires one evaluation of E and 
n 

(m+l)-evaluations of F, whereas the method of successive corrections re-

quires one evaluation of E and m evaluations of F. 
n 
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5. SPLITTING FUNCTIONS 

In the preceding sections we only derived splitting formulas, which 

can be selected on the ground of accuracy, stability considerations and 

computational efficiency. Substitution of a particular splitting function 

into a splitting formula leads to a splitting method. In this section, we 

summarize briefly a few splitting functions, which depend on the class of 
problems under consideration. For a more complete discussion of these split-

ting functions we refer to [8,9] • Some suitable splitting functions for the 

splitting formulas discussed in this report are: 

1°. The differential operator splitting funation [8,9] for a (2k+l) - point 

coupled (nonlinear) function fin (I.I) which originates from the semi­

discretization of a k-dimensional hyperbolic PDE (3.1). 

2°. The odd-even and line hopsaotah splitting funation [8,9] for a 5-point 

coupled (nonlinear) function fin (I.I). 

3°. The alternating direation impliait splitting funation [9] for a 5-point 

coupled (nonlinear) function fin (1.1). 

Functions f derived from the 2-dimensional hyperbolic initial-boundary 

value problems (3.1) with k = 2 and (3.2a) satisfy .a 5-point coupling. To 

9-point coupled systems (I.I) the line hopscotch splitting function can also 

be applied together with a particular splitting formula. Such systems arise 

by semi-discretizing hyperbolic equations containing a mixed derivative 

(see section 3). 

The splitting formulas discussed in section 4 can be combined with each 

splitting function, whereas the splitting formulas in section 3 can be com­

bined only with the differential operator splitting function and the hops­

cotch splitting functions. 

6. NUMERICAL EXPERIMENTS 

The purpose of this section is to show that the splitting formulas to­

gether with a suitable splitting function can be applied to nonlinear hy­

berbolic initial-boundary value problems. To some extent the components of 
\ 
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each splitting method discussed in this report, viz. the splitting function 

and the splitting formula, are independent of each other [9]. For a linear 

problem we illustrate that a certain type of splitting function can be com­

bined with more than one type of splitting formula. 

6.1. The test examples 

The initial-boundary value problems we tested ·are all of the form 

(6. 1) 

defined on { (t, x 1 ,x2) I O ~ t ~ 1 , (x1 ,x2) e: n}, where n is given by 

A splitting of v = ½v + ½v was used in all experiments. The initial and 

Dirichlet boundary conditions follow from the exact solution given in table 

6.1. By using standard differences the problems were semi-discretized on a 

uniform grid nh with mesh width h. Evidently the components of the right­

hand side function fin (1.1) are coupled according to a five-point molecule. 

Table 6.1. Specification of the test examples 

Example Solution a(t,x1 ,x2,u) v(t,x1 ,x2) r 

I 
-t 2 2 l+e (x 1+x2) 1 -t 2 2 e (x1+x2-4) 1 

II -t 2 2 100 cos2[(x1 +x2)u] -t{ 2 2 1 l+e (x1+x2) e x 1+x2 -

400 cos~[(x1+x2) 

-t 2 2 ] } (l+e (x1+x2)) ·. 

III ½(x1+x2) sin(2nt) 
xl+x2 

-2n2(x1+x2)sin(2nt) 3 2 (1 +t) 
3(xl+x2)2 sin3(2nt) -
4 (1 +t) 



18 

6.2. Methods used. 

Three splitting formulas were applied to the examples I - III (see 

table 6.1). In our experiments we used the first order consistent formula 

(3.3) with k = 2, the second order consistent formula (3.7) with k = 2 and 

the second order splitting version of the method of successive corrections 

defined by (4.2) with m even, h1 = ½, b0 = b2 =¼,i.e., 

Y~~~ = Y (p:+e:)' 2n = 2Yn - Yn-1 + f2 f (tn,yn) + f2 
f(tn-1 ,Yn-1) 

y(j) 
ln + 

.2 (j) (j-1) j I , 3 , 5 , ••• , m-1 , = 4 F(tn+l 'Yn+l 'y n+I ) , = n+I 
(6. 2) 

.2 y(j) 2 + 
(j-1) (j) 2,4,6, ••• ,m, = 4 F ( t n+ I 'y n+ I 'y n+ I ) ' J = 

n+I n 

y(j) = 
(m) , m even.• n+l Yn+I 

In the experiments we tested the predictor formulas (4.3a) and (4.3b) and 

chose m = 2 and m = 4. 

For all the examples the splitting formulas are combined with the dif­

ferential operator splitting function (D.O.splitting). Note that in the dif­

ferential operator splitting the inhomogeneous term v(t,x1,x2) will be split 

into }v + ½v. For the linear problem I the formulas (3.3) and (3.7) are 

also combined with the odd-even hopscotch splitting function (0-E H.split­

ting). 

The tridiagonal Jacobian matrices, used to solve the implicit equations 

by means of a Newton-type process, were obtained by analytical differen­

tiation. In case of constant partial derivatives af/ay, these matrices were 

determined once; in all other cases they were updated every integration 

step at the points (t ,y ). In all experiments the implicit equations were 
n n 

solved with one Newton iteration. As initial approximation to start the 

Newton iteration in the first stage of the splitting methods we chose an 

e~trapolation formula. In the scheme {(4.3a),(6.2)} we used formula (4.3a) 

as initial approximation and in the other schemes we used formula (4.3b) as 

initial approximation. In the other stages we used in the Newton-type process 

the solution of the preceding stage as predictor. 
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In order to compare the computational effort of the various methods 

we have listed in the tables of results the number of £-evaluations per in­

tegration step. The splitting formula (3.3) costs one complete £-evaluation 

per integration step. The splitting formulas (3.7) and (6.2) require the 

functions f(t ,Y) and f(t 1,y 1) in every integration step. For both for-n n n- n-
mulas one function evaluation per integration step can be saved, when in the 

implementation f(t ,y) is stored in an array with N components, where N is 
n n 

equal to the: number of interior grid points of ah. Thus, the formulas (3.7) 

and (6.2) cost per integration step 2 and (m+l) £-evaluations, respectively. 

In our comparison of the computational effort of the various methods we have 

not taken into account the evaluation of the Jacobian matrices, the LU­

decompositions, the solution of tridiagonal ~ystems .of linear equations, etc. 

6.3. Numerical results 

The two starting values were obtained from the exact solution of the 

initial-boundary value problems. 

The accuracy is measured by the number of correct digits in the end 

point t = I, i.e. 

(6.3) s:d = - 1010g I maximum absolute error in t = I I . 

From (6.3) it follows (see also LP.MBERT [12,p.257]) that on halving the 

integration step , the value of sd shm; ld increase by p 1010g 2 ~ • 3p for a 

method of order p (and, sufficiently small). 

In the tables of results given below the values of the pair (f,sd) are 

listed where f denotes the number of £-evaluations per integration step. 
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Table 6.2a (f,sd)-values for example I obtained by (3.3) and (3.7) together 

with differential operator (D.O) splitting and odd-even hopscotch (0-E H.) 

splitting. 

(3.3) with (3.3) with (3.7) with (3. 7) with 

h 'C D.O.splitting O-E H. split tin~ :D. 0. splitting 0-E H.splitting 

1/5 (1,2.37) (1,.72) (2,2.94) (2,1.47) 

1/10 (1,2.78) (1,1.02) (2,3.61) (2,2.31) 
1/10 1/20 (1,3.0) (1,1.63) (2,4.18) (2,3.12) 

1/40 (1,3.33) (1,2.38) (2,4.75) (2,3.80) 

1/5 (1,2.22) (1,0.5) (2,2.92) (2,0.95) 

1/ 10 (1,2.77) (1,0.62) (2,3.53) (2,1.4) 
1/20 1/20 (1,3.0) (1,0.95) (2,4.07) (2,2.38) 

1/40 (1,3.33) (1,1.61) (2,4.62) (2,3.16) 

In table 6.2a is illustrated for the linear example I that the splitting 

methods lose accuracy when the boundary conditions are time-dependent and 

if h + O, which is a well-known phenomenon [4,16]. Table 6.2a shows that the 

asymptotic order of the formulas (3.3) and (3.7) with the D.O. splitting is 

more or less reached, whereas with the 0-E H.splitting a higher order of 

accuracy is shown. The splitting formulas in combination with the odd-even 

hopscotch splitting functions are less accurate and more sensitive to grid 

refinement than with the differential operator splitting function. Notice 

that the splitting formulas with the D.O. splitting require the solution 

of tridiagonal systems of linear equations, whereas with the 0-E H.splitting 

only scalar linear equations have to be solved. Therefore a comparison based 

on f-evaluations is far from complete. The splitting formulas with 0-E H. 

splitting satisfy the situation where a quick solution with little effort 

and not too great accuracy is required. 
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Table 6.2b (f,sd)-values for example I obtained by {(4.3a),(6.2)} and 

{(4.3b),(6.2)} with the ·differential operator splitting function 

and m = 2,4. 

{(4.3a),(6.2)} {(4.3b),(6.2)} 

h 't' m = 2 m = 4 1'il = 2 m·= 4 

1/5 (3,1.98) (5,2.09) (3,2.66) (5,2.81) 

1/ 10 (3,2.88) (5,3.66) (3,3.98) (5,4.25) 
1/10 1/20 (3,3.74) (5,4.98) (3,4.83) (5,4.97) 

1/40 (3,4.55) (5,5.64) (3,5.65) (5,5.64) 

1/5 (3,1.33) (5, 1.6) (3,2.12) (5,2.42) 

1/20 1/10 (3,2.21) (5,3.23) (3,3.0) (5,3.73) 
1/20 (3,3.17) (5,4.35) (3,4.32) (5,5.01) 
1/40 (3,4.07) (5,5.67) (3,5.56) (5,5.67) 

In table 6.2b results are listed for example I but now for the method 

of successive corrections (6.2) with differential operator splitting. For 

m = 2 the scheme {(4.3b), (6.2)} is considerably more accurate than 

{(4.3a),(6.2)}. Form= 4 and -r ~ 1/20 a similar conclusion can be drawn. 

Both schemes are rather sensitive to grid refinement. Table 6.2b also illus­

trates the effect of the value of m on the accuracy. For this range of 

-r-values the asymptotic order p = 2 is not clearly shown. Only form= 4 the 

scheme {(4.3b),(6.2)} has the tendency to show its asymptotic order. 

Comparing the results in the tables 6.2a and 6.2b we observe that es­

pecially for large -r values the method of the successive corrections is more 

sensitive to grid refinement than (3.3) and (3.7) with D.O. splitting. In 

the higher accuracy range {(4.3b),(6.2)} with m = 2 is the most efficient 

in terms of the total number of £-evaluations. For lower accuracies the 

method (3.7) with D.O. splitting becomes the more efficient one. 
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Table 6.3. (f,sd)-values for example II with h = 1/10. 

Each formula uses D.0. splitting. 

Formula T= 1 /20 T= 1 /40 ,:= 1 /80 

(3.3) (I ,2.83) (1,2.91) (1,3.18) 

(3. 7) (2,3. 7) (2,4.14) (2,4.67) 

{(4.3a),(6.2)}, m = 2 * * (3,3.39) 

{(4.3a),(6.2)}, m = 4 * (5,2.89) (5,4.55) 

{(4.3b),(6.2)}, m = 2 * (3,3.32) (3,5.23) 

{(4.3b),(6.2)}, m = 4 * (5,4.03) (5,5.9) 

In table 6.3 results are listed for the nonlinear example II obtained 

with various formulas together with D.O. splitting. Instability is indicated 

by an asterisk. For large ,:-values (3.7) is superior to the method of suc­

cessive corrections, whereas the method of successive corrections {(4.3b), 

(6.2)} with m = 2 is competitive for T = 1/80. Again increasing m improves 

the accuracy in the method of successive corrections considerably. The results 

in table 6.3 show that only the asymptotic order of the formulas (3.3) and 

(3.7) is more or less reached. The best choice for the predictor formula in 

(6.2) is again (4.3b) 

Table 6.4. (f,sd)-values for example III with h = 1/10 

The splitting formulas are combined with the differential operator 

splitting function. 

Formula ·= 1 / I 0 ·= 1 /20 •= I /40 

(3.3) (I ,-.07) (1,.1) (1,.31) 

(3. 7) (2,.58) (2,1.26) (2, 1.84) 

{(4.3a),(6.2)}, m = 2 (3, .63) (3, 1 • 23) (3,1.83) 

{(4.3a),(6.2)} , m = 4 (5,.63) (5,1.23) (5, 1.83) 

{( 4. 3b) , ( 6 • 2) } , m = 2 (3,.37) (3,1.23) (3, 1.83) 

{( 4. 3b) • ( 6. 2) } • m = 4 (5,.64) (5, 1.23) (5, 1.83) 



23 

In table 6.4 the results are presented for the nonlinear example III 

with h = 1/10 showing that for•~ 1/20 the effect of the choice of the pre­

dictor formula and the value of min the method of successive corrections 

on the accuracy is negligible. For this example (3.7) with D.O. splitting 

is the most efficient method. The results show the correct order behaviour 

of the second order methods. The first order method (3.3) has the tendency 

to show its asymptotic order. 

From the results of the three problems the following conclusions can be 

drawn: 
. (pred) _ _ 

Using (4.3b), i.e. y n+l - 2yn yn-l, as predictor formula 

of successive corrections (6.2) instead of (4.3a) (y(p:+et) = 

in the method 

y) is worth-n . 
while. 

- For large .-values (3.7) with the differential operator splitting function 

is the most efficient method. 

For higher accuracies the scheme {(4.3b),(6.2)} with m = 2 and differential 

operator splitting is preferable in the examples I and II. 

7. CONCLUDING REMARKS 

In this report a survey is given of the most important splitting methods 

for second order hyperbolic PDEs via the method of lines. In the literature 

the linear splitting formulas discussed in section 3 together with the dif­

ferential operator splitting function are usually formulated and analysed as 

direct grid methods for the multi-dimensional wave equation with Dirichlet 

boundary conditions. 

Using the predictor formula (4.3a) the second order splitting formulas 

discussed in section 4 have a stronger damping of the higher harmonics than 

using the predictor formula (4.3b). 

It is known that splitting methods will usually lose accuracy when the 

boundary conditions are time-dependent (cf. FAIRWEATHER and MITCHELL [4]). 

This phenomenon was investigated in [4,16] for a class of splitting methods 

for parabolic PDEs and in [6] for a class of splitting methods for second 

order hyperbolic PDEs. Following the approach of SOMMEIJER et al. [16] the 

boundary-value correction can also be derived for splitting methods for a 
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rather general class of hyperbolic initial-boundary value problems defined 

by (3.la)-(3.lb). These aspects will be subject for future research. 
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