
ma 
the 
m 
tisch 

cen 
trum 

AFDELI NG NUMERIEKE WI SKUNDE 
(DEPARTMENT OF NUMERICAL MATHEMATICS) 

H.J.J. TE RIELE 

NW 127/82 APRIL 

RULES FOR CONSTRUCTING HYPERPERFECT NUMBERS 

Preprint 

amsterdam 1982 



stichting 

mathematisch 

centrum 

AFDELING NUMERIEKE WISKUNDE 
(DEPARTMENT OF NUMERICAL MATHEMATICS) 

H.J.J. TE RIELE 

NW 127/82 

RULES FOR CONSTRUCTING HYPERPERFECT NUMBERS 

Preprint 

~ 
MC 

APRIL 

kruislaan 413 1098 SJ amsterdam 



Pllinte.d at .the. Mathe.ma:Uc.a.l Ce.Yl.bte.., 413 K!U..U6laan, Amtdvuiam. 

The Ma.the.ma.:Uc.a.l Cen:tfC_e. , oou.11.de.d .the. 11-.th 06 Fe.btr.uaJr.y 1946, -U a. 11on
p11.o,6li -i..n6.tliu,t,i.o n a,,un,ln.g ctt. .the. p1tomotio n. on pu.Jte ma.thema:Uc.-6 a.nd ,la 
a.pplic..a.;t,lon.o. I:t ,il., .6 pon.oM.e.d by the. Ne.thvr.hlnd6 Gove.11.n.me.nt .thll.ough the. 
Ne.theJ1.ia.ndb 01tga.nlza:Uon. 6on the. Adva.nc.e.me.n.:t of; PUite. Reoe.a.nc.h (Z.W.O.). 

1980 Mathematics subject classification: Primary: 10A20 



*) Rules for constructing hyperperfect numbers · 

by 

H.J.J. te Riele 

ABSTRACT 

Two rules are given by which hyperperfect numbers with k+2 different 

prime factors can be constructed from certain related numbers with k+l and 

with k different prime factors, respectively. By means of these rules many 

HP's with three and with four, and one with five different prime factors 

were constructively computed. 

It is proved that aU HP' s of the form paq, a e: ]N, (below a given 

bound) can be found with one of these two rules or with an additional rule 

for the construction of certain HP's of the form p2q. Furthermore, the re

sults are presented of an exhaustive search for all HP's ~ 108 . It turns 

out that all HP's found could also have been computed (but using much less 

computer time) with at least one of the rules given here. 

Finally, a generalisation of HP's to so-called hypercycles is described. 

KEY WORDS & PHRASES: Hyperperfeat numbers 

This paper will be submitted for publication elsewhere. 



1. INTRODUCTION 

As usual, let cr(n) denote the sum of all the divisors of n (with 

a(l) = 1) and let w(n) denote the number of different prime factors of n, 

with w(l) := O. The set of prime numbers will be denoted by P. The set of 

hyperperfect numbers (HP's) is the set M := ll00 M, where n=l n 

(1) M := {m € JN I m=l+n [a(m)-m-1]}. 
n 

We also define the sets 

( 2) := {m € M 
n 

I w(m)=k}, k,n € JN, 

00 00 

and kM := Un=l kMn; 
00 
clea~ly, we have Mn = Uk=l kMn. We will also use the 

related set M* := U 1 M, where 
n= n 

(3) * M : = {m € :IN I m= 1 +n [ cr (m) -m]}, 
n 

and the sets 

(4) * {m € M 
n 

w(m)=k}, 

00 * * := U l kM, so that also M = n= n n 
It is not difficult to verify that 1Mn 

* 
OMn = { 1}' Vn € :IN and 

(5) a. {(n+l) , a.€ JN}, 

* 
IMn = 

0 ' 

k € :IN u {O}, 

00 * 
uk=O kMn. 
= 0, Vn € :IN , and that 

if n+l € p' 

if n+l ¢ P. 

M1 is the set of perfect numbers (for which cr(m)=2m). The n-hyperperfect 

numbers M, introduced by MINOLI and BEAR [1], are a meaningful generali
n 

zation of the even perfect numbers because of the following 
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P • a+l 1 P th a M RULE O ([2]). If p e: , a e: lN and 1.f q := p -p+ E en P q e: p-l • 

There are 71 hyperperfect numbers below 107 ([2],[3] and [4]). Only one of 

them belongs to 3M, all others are in 2M. In [5] and [6] the present author 

has constructively computed several elements of 3M and two of 4M. 

In section 2 of this paper we shall give rules by which one may find 

(with enough ~omputer time) an element of (k+2)Mn and of (k+l)Mn from*an 

~lement of kMn (k~O), and an element of kM; from an element of (k-2)Mn (k~2). 

Because of (5) this suggests the possibility to construct HP's with k dif

ferent prime factors for any positive integer k ~ 2. By actually applying 

the rules we have found many elements of 3M, seven elements of 4M and one 

element of 5M. 

In section 3 necessary and sufficient conditions are given for numbers 
a. of the form p q, a E ]N, to be hyperperfect. For example, for a. ~ 3, these 

a. conditions imply that there are no other HP's of the form p q than those 

characterised by Rule O. The results of this section enable us to compute 
C£ very cheaply all HP's of the form p q below a given bound. Unfortunately, 

we have not been able to extend these results to more complicated HP's like 

those of the form pa.qe,a. ~ 2 and S ~ 2, or pa.qSry with a~ 1, S ~ 1 and 

y .::: 1, etc. 

* Because of the importance of the set M for the construction of hy-

perperfect numbers, we give in section 4 the results of an exhaustive search 
* 8 for all m EM with m ~ 10 and w(m) ~ 2. It turned out that elements of 

* * 3M are very rare compared with 2M, in analogy with the sets 3M and 2M. 
8 This search also gave all elements~ 10 of M, almost for free, because of 

* the similarity of the equations defining M and M. 

The paper concludes with a few remarks, in section 5, on a possible 

g-eneralisation of hyperperfect numbers to so-called hypercycles, special 

cases of which are the ordinary perfect numbers and the amicable number 

pairs. 

2. RULES FOR CONSTRUCTING HYPERPERFECT NUMBERS 

We have found the following rules (we write a for ~(a)): 
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* RULE I. Let k E ]N , n E JN , a E kMn and p := na + I - n; if p E P then 

a p E ( k+ l ) Mn. 

* RULE 2. Let k E JN u {O}, n E ]N, a E kM and p := na + A. q := na + B, where 
- 2-2 n 

AB= J - n + na + n a ; if p E P and q E P then apq E (k+ 2)Mn. 

* RULE 3 • Let k E JN u { 0} , n E JN , a E k Mn and p : = na + A, q : = na + B , 
- 2-2 * 

where AB= I + na + n a; if p E P and q E P then apq E (k+2)Mn. 

The proofs of these rules don't require much more than the application 

of the definitions, and are therefore left to the reader. In fact, the 

proof of Rule 2 was already given in [6], although the rule itself was for

mulated there less explicitly. 
* Rule I can be applied fork~ I, but not fork= 0 since 0Mn = {l} and 

a= gives p = I ¢ P. Fork= n = l Rule 1 reads: if p := 2a+l_l E P, then 
a 2 p E 2M1, which is Euclid's rule for finding even perfect numbers. For 

k = Rule I is equivalent with Rule O given in section l. 

Rules 2 and 3 can both be applied fork~ O. For instance, fork= 0 

Rule 2 reads: let n E JN be given; if p := n + A E P and q := n +BE P, 
2 where AB= 1 + n, then pq E 2Mn. For n = 1, 2 and 6 this yields the hyper-

perfect numbers 2 x 3, 3 x 7 and 7 x 43, respectively. Rule 3 reads for 

k = 0: let n E ]N be given; if p := n + A E p and q := n + B E P, where 
2 * AB = I + n + n • then pq E 2Mn. For n = 4 and n = lO we find that 

* * 7 X 1 I E 2M4 and 13 X 47 E 2Ml O' respectively. 

Rule 3 shows a rather curious "side-effect" for k ~ I: if both the 
* numbers p and q in this rule are prime, the~ not only apq E (k+2)Mn' but 

also the number b := pq is an element of 2M -. Indeed, we have na 

b-1 
cr (b)-b 

= pq-1 
p+q+l 

2-2 -n a +na(A+B)+AB-1 _ 
= 2na+A+B+l -

2-2 - - 2-2 n a +na(A+B)+na+n a 
= 2na+A+B+l = na E lN • 

* For example, we know that 7 x 11 

a= 7 x 11 we find that 7 x 11 x 

E 2M4 . From Rule 3 with k = 2, n = 4, 

* 547 x 1291 E 4M4 ; the side-effect is that 

* 547 x 1291 E 2M( 4xSxlZ) = 
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In [5] we gave the following additional 

RULE 4. Lett E JN and p := 6t-l, q := 12t~l; if p E P and q E P then 
2 

p q E 2M(4t-l). 
For example, t=l and t=3 give 5213 E 2M3 and 17 237 E 2M11 , respectively. 

In section 3 we will prove that with Rules 1, 2 and 4 it is possible to 

find all HP's of the form paq, a€ JN, below a given bound. We leave it to 

the reader to find out why there is no rule (at least fork~ I), analogous 
* * to Rule l, for finding a.n element of (k+ I) Mn from an element of kMn. 

From Rules l - 3 it follows that elements of kM for some given k E JN 
* n * 

may be found from (k-l)Mn (with Rule I) and fro! (k-2)Mn (wit~ Rule 2) pro-

vided that sufficiently many elements of (k-l)Mn resp. (k-2)Mn ar! available; 

these can be found with Rule 3 and the "starting" sets 0M: and 1Mn 8iven in 

(5). We have carried out this "program" for the constructive computation of 

HP's with three, four and five different prime factors. 

(i) Construction of elements of 3Mn. With Rule 1 we found 34 HP's of the 

* form pqr, from numbers pq E 2Mn 

3M48 and the largest one 9739 x 

* elements of 2Mn were 

(the smallest one is 61 x 229 x 684433 E 

13541383 x 1283583456107389 E 3M9732). The 
* "generated" with Rule 3 from 0M = {I}. With Rule 2 

a * n 
we found, from prime powers p E 1Mn' 67 HP's of the form pqr (five of the 

smallest were given in [SJ, the largest one is 
2 8929 x 79727051 x 577854714897923 E 3M8928), 48 HP's of the form p qr (the 

smallest five were given in [5], the largest one is 

7459 2414994003583 x 34444004601637408163219 E 3M7458), 9 of the form p3qr 

(the smallest one is given in [5], the largest one is 

811 3432596915921 x 89927962885420066391 E 3M810),4 of the form p4qr (the 

smallest one is 7430893 x 36857 E 3M6, the largest one is 
4 223 553821371657 x 130059326113901 E 3M222) and furthermore 

,7 61340243 x 2136143 E 3M6, 137815787979 x 11621986347871 E 3M12 and 

198322687706723 x 1164084.4402910006759 E 3Ml8' 

(ii) Construction of elements of 4M. In order to construct elements of 
n * 

4Mn with Rule I, sufficiently many elements of 3Mn had to be avaiable. This 

was realised with Rule 3, starting with elements •,Pa E: 1M(p+l), p E: P. The 

following four HP's with four different prime factors were found: 

3049 X 9297649 X 69203101249 X 598}547458963067824996953 E 4M3048 , 



4201 x 17692621 x 7061044981 x 2204786370880711054109401 € 4M4200' 

181 25991031 x 579616291 x 20591020685907725650381 € 4M180' 

1a1 31108889497 x 33425259193 x 39781151786825440683346549261 € 4Ml80" 

By means of Rules 2 and 3 the following three additional elements of 4Mn 

were found: 

1327 x 6793 x 10020547039 x 17769709449589 € 4M1110 (already in [5]), 

1873 x 24517 x 79947392729 x 80855915754575789 E 4M1740 (already in [6]), 

5791 x 10357 x 222816095543 x 482764219012881017 E 4M3714· 

(iii) Construction of an element of 5Mn. We have also constructively com
* puted one element of 5M with Rule 1. The elements of 4M needed for this 

n * n 
purpose were computed from 0M by twice applying Rule 3 (first yielding 

* n * 

5 

elements of 2Mn and next elements of 4Mn). The HP found is the largest one 

we know of (apart from the ordinary perfect numbers). It is the 87-digit 

number 

2095497171870781405883328851321934328974054 

07437906414236764925538317339020708786590793 = 

4783 X 83563 X 1808560287211 X 297705496733220305347 X 

x 973762019320700650093520128480575320050761301 E 5M4524· 

3. CHARACTERIZATION OF ALL HP's OF THE FORM p0 q 

a 
The hyperperfect numbers of the form p q are characterised by the fol-

lowing 

THEOREM. Let m := p~q(aEN,pEP,qcP) be an hyperperfeat number, then 

(i) ~-= 1 => (3n EN with m E 2Mn suah that p = n + A, q = n + B, with 

2 AB= + n ); 

(ii) a= 2-. (3t EN with m E 2M( 4t-l) and p = 6t - I and q = 12t + I) 

v (m E 2M(p-l) with q = p3 - p + I); 

(iii) a> 2 .. (m E 2M(p-l) with q = p~+I - p + I). 

PROOF. (i) This case follows innnediately from Rule 2 (with k=O). 

(ii) If p2q is hyperperfect, then the number (p2q-l)/((p+l)(p+q)) must be 
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2 
a positive integer. Consider the function f(x,y) := (x y-1)/((x+l)(x+y)), 

x,y E JN. We want to characterise all pairs x,y for which f(x,y) E ]N. 

We can safely take x :2:: 2 and y ;,;: 2. Let x .~ 2 be fixed, then we have for 

all y 2:: 2 

2 2 
f( ) X y < ~ = x-1 + 

x' Y < ( x+ 1 ){ x+y) x+ 1 x+ 1 • 

Hence, the largest integral value which could possibly be assumed by f is 

x-1, and one easily checks that this value is actually assumed for 
3 y = x - x + 1 • So we have found 

(6) 3 f(x,x -x+l) = x-1, X E JN, X ~ 2. 

One also easily checks that f is monotonically increasing in y (x fixed) 

so that 

(7) 
3 2 S y :s; x -x+I. 

2 Now in order to have f E JN, it is necessary that x + l divides x y - I, 

or, equivalently, that x + I divides y - 1 (since (x2y-1)/(x+l) = 

= y(x-1) + (y-1)/(x+l)). Therefore, we have y = k(x+l)+l, with k E JN and 

S k S x(x-1) by (7). Substitution of this into f yields 

f(x,y) = 
2 kx +x-1 

(k+l) (x+l) 

2 x -x-k = x-1 - ----- =: x-1 - g(x,k). (k+ I) (x+ I) 

2 It follows that x+l must divide x -x-k or, equivalently, that x+l must 

divide k-2, Hence, k=j(x+l)+2, with j E ]N u {O} and O:::. j :::. x-2. Substitu

tion of this into g yields 

g(x,j(x+l)+2) = 
x-2-j 

j (x+ I) +3 

This function is decreasing in J, and for J = 0,1, .•• ,x-2 it assumes the 

values: 
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g(x, 2) = (x-2)/3 , 

g(x,x+3) x-3 
= x-4 < I, 

g(x,x(x-1)) = O. 

It follows that there is precisely one more possibility (in addition to (6)) 

for f to be a positive integer, viz., when j=O, k=2, y=2x+3 and x(mod 3)=2. 

So we have found 

(8) f(3t-1,6t+l) = 2t-l, t € lN. 

The statement in the theorem now easily follows from (6) and (8). 

(iii) As in the proof of (ii) we now have to find out for which values of 

x,y € ]N, x .:: 2 and y .:: 2, the function f(x,y) € JN, where 

a 
X y-1 f(x,y) := ---,-~----

a.-1 ' (x + ••• +l)(x+y) 
a> 2. 

For fixed x.:: 2 we have 

a. 
X f(x,y) < ----- = x-1 + -----a.-1 a.-1 • 

X + ••• +l X + ••• +] 

As in the proof of (ii) we find that f(x,y) = x-1 for y = xa.+l-x+l and 

that 2 ~ y s xa.+t_x+l. Furthermore, xa.-l+ ••. +1 must divide x0 y-1, so that 

y = k(xa.-I+ ••• +l)+l, with 1 ~ k ~ x(x-1). Substitution of this into f yields 

a certain function g, in the same way as in the proof of (ii), but in this 

case g can only assume integral values fork= x(x-1). This implies the 

statement in the theorem, case (iii). Q.E.D. 

It is easy to see that the characterizations given in this theorem 

are equivalent to Rule 2 (k=O) when a.=1, to Rule 4 or Rule 1 (k=l) when 

a.=2, and to Rule 1 (k=l) when a.> 2. 
a 

This theorem enables us to find very cheaply all HP's of the form p q, 

a. € JN, below a given bound. For example, to find all HP' s in M of the 
n 

form pq below 108 , we only have to check whether p := n+A € P and 
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2 
q := n+B E P for all possible factorisations of AB= 1 + n, for 

1 Sn~ 4999. This range of n follows from the fact that if pq EM then n 
pq > 4n2 , The following additional restrictions can be imposed on n: 

(i) 
2 

n should be 1 or even since, if n is odd and n ~ 3 then n + 1 = 
_ 2(mod 4), so that one of A and Bis odd and one of p and q is even 

and~ 4. 

(ii) If n ~ 3 then n = 0 (mod 3) since if n = 1 or 2(mod 3) then 

n2 + 1 _ 2(mod 3), so that one of A and Bis= l(mod 3) and the other 

is_ 2(mod 3); consequently, one of p and q is - O(mod 3) and> 3. 

Hence, the only values of n to be checked are n = 1, n = 2 and n = 6t, 

1 ~ t ~ 833. 

4. EXHAUSTIVE COMPUTER SEARCHES 

From the rules given in section 2 it follows that it is of importance 

* to know elements of M, when one wants to find elements of M. Therefore, we 

* have carried out an exhaustive computer search for all elements of M be-
8 low the bound 10. Because of (5) the search was restricted to elements 

with at least two different prime factors. A check was done whether 

(m-1)/(cr(m)-m) E lN, for all m S 108 with w(m) ~ 2. Since the most time 

consuming part is the computation of cr(m), a second check was done (in case 

(m-1)/(cr(m)-m) ¢ lN) whether (m-1)/(cr(m)--m-l) E :N. If so, m was an HP, so 
8 that our program also produced, almost for free, all HP's below 10 • The 

results are as follows. 

Apart from the ordinary perfect numbers, there are 146 RP's below 108 . 

Only two of them have the form paqr (viz., 13 x 269 x 449 € 3M12 and 
2 

7 383 x 3203 € 3M6); these were also found in the searches described in 

section 2. All others have the form characterised in section 3, and could 

have been found with a search based on that characterisation (using the 

fact that if paq € 2Mn, then p > n and q > n). A question which naturally 

arises is the following: are there any HP's which can not be constructed 

with one of the Rules 1, 2 and 4? 

There are 312 numbers m ~ 108 which belong to M* and which ha~e 



w(m) ~ 2. 306 of them have the form pq and could have been found very 

cheaply with Rule 3 of section 
* 113 x 127 x 2269 c 3M58' 149 x 

* 151 x 373 x 1487 E 3M100 and 7 

* 2. The others are: 7 x 61 x 229 E 3M6, 
* * 

463 x 659 E 3M96' 19 x 373 x 10357 € 3M18' 
* x 11 x 547 x 1291 € 4M4 ; the second, third 

and fifth number could not have been found with Rule 3. 

5. HYPERCYCLES 

9 

A possible generalisation of hyperperfect numbers can be obtained as 

follows. Let n € JN be given and define the function f : lN \{l}.,. N as fol
n 

lows: 

(9) f (m) : = 1 + n[ er (m) -m-1 J, 
n 

me:JN\{1}. 

Starting with some m0 € JN\{I} one might investigate the sequence 

(10) 

For n = 1 this is the well-known aliquot sequence of m0, which can have 

cycles of length I (perfect numbers), length 2 (amicable pairs) and others. 

In order to get some impression of the cyclic behaviour for n > I, we have 

computed, for 2 s n S 20, five terms of all sequences (10) with starting 
6 term m0 ~ 10 and we have registered the cycles with length~ 2 and S 5 

in the following table. 



Table. Hypercycles 

i.e., different numbers m0,m1, .•. ,Il\.-l such that~= m0 where 

m. := f (m.), f defined in (9) 
1.+l n 1. n 

n 

5 

7 

8 

9 

k 

2 

3 

2 

3 

4 

2 

2 

2 

19461=3.13.499, 42691=11.3881 

925=5 237, 1765=5.353, 2507=23.109 

28145=5.13.433, 66481=19.3499 

238705=5.47741, 381969=337.43.47, 2350961=79.29759 

94225=5 23769, 181153=723697, 237057=3.31.2549, 714737=61.]1717 

3452337=3 27.54799, 17974897=53.229.1481 

469=7.67, 667=23.29 

1315=5.263, 2413=19.127 

2 1477=7.211, 1963=13.151 

2 

10 3 

12 2 

2737=7.17.23, 6463=23.281 

1981=7.283, 2901=3.967, 9701=89.109 

6 9 7 = l 7 • 4 1 , 2 04 1 = I 3 • 1 5 7 

2 3913=7.13.43, 12169=43.283 

2 54265=5.10853, 130297=29.4493 

14 2 

3 

19 2 

4 

1261=13.97, 1541=23.67 

508453=11.17.2719, 1106925=3.5 214759, 10126397=281 .36037 

9197=17.541, 10603=23.461 

184491=336833, 1688493=3.562831, 10693847=709.15083, 

300049=31 • 9 6 79 

2 5151775=52251.821, 24124073=89.271057 
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