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A fourth order ADI method for semidiscrete parabolic equations*) 

by 

P.J. van der Houwen & H.B. de Vries 

ABSTRACT 

A fourth order fourstep ADI method is described for solving the systems 

of ordinary differential equations which are obtained when a (nonlinear) 

parabolic initial-boundary value problem in two dimensions is semi-discre­

tized. The local time-discretization error and the stability conditions are 

derived. By numerical experiments it is demonstrated that the (asymptotic) 

fourth order behaviour does not degenerate if the time step increases to 

relatively large values. Also a comparison is made with the classical ADI 

method of Peaceman and Rachford showing the superiority of the fourth order 

method in the higher accuracy region, particularly in nonlinear problems. 

KEY WORDS & PHRASES: Numerical analysis, parabolic equations, method of 

lines, ADI methods 

*) This report will be submitted for publication elsewhere. 





I • INTRODUCTION 

In a few recent papers [1,4,5] rrrultistep splitting methods were analysed 

for solving two-dimensional parabolic initial-boundary value problems. By 

using the method of lines the problem is first reduced to a (usually very 

large) system of ODE's of the explicit form 

(I.]) dy 
dt = f(t,y), 

and then an implicit linear multistep method (LMM) is applied to obtain at 

each integration step an implicit equation for the numerical solution yn+I 

at tn+I: 

( I • 2) 

Here,. is the integration step and {al,bl} are coefficients defining the 

LMM. The papers mentioned above describe methods for approximating the so­

lution of (1.2) by using a splitting of the right-hand side function f(t,y), 

e.g. f(t,y) = f 1(t,y) + f 2(t,y) where f 1 and f 2 have "simply structured" 

Jacobian matrices. More generally, one may use splitting functions F(t,u,v) 

such that F(t,y,y) = f(t,y) and aF/au, oF/av are again "simply structured". 

The method analysed and tested in this paper is a special case of a 

class of methods described in [5]. These methods explicitly use the infor­

mation that (I.I) originates from a parabolic problem so that the eigen­

values of of/ay will be located in a long narrow strip along the negative 

a:cis. At the same time, this is also a restriction in the applicability of 

these methods. 

An outline of the construction of the method is as follows. The system 

of equations (1.2) is solved by a (nonlinear) splitting method (e.g. ADI) 

and this iteration process is accelerated by using Chebyshev polynomials 

[IO,p.344]. The relaxation parameter in the splitting method is chosen such 

that the approximation obtained for the solution of (1.2) has a maximal 

order of accuracy as• ➔ 0 for a given LMM and a given initial approximation 

used for starting the iteration process. The iteration parameters in the 
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Chebyshev polynomials are chosen such that the ZoweP fPequencies in the ini­

tial error are strongly damped. As a consequence we obtain a rather fast 

convergence to the solution of (1. 2) in problems where the low frequencies 

are dominant in the solution of the initial-boundary value problem. For de­

tails of the construction we will refer to [5]. 

In section 2 the specification of the method will be given, its local 

error will be derived and the characteristic equation for a class of model 

problems will be analysed. In section 3 the results of section 2 will be 

applied to the case where the LMM (1.2) is identified with the fourth order 

backward differentiation formula (BDF4) and where the initial approximation 

used in the iteration process is a "smoothed" extrapolation formula. It will 

be shown that the resulting fourth order, fourstep splitting method has a 

real stability boundary bounded below by cm4 , m being the number of itera~ 

tions and c some constant (numerical verification reveals that c ~ 4). 

Finally, in section 4 the method proposed in this paper is compared with 

the classical ADI method of PEACEMAN and RACHFORD [8] showing the superiority 

of the present method (particularly in nonlinear problems) -if higher accura­

cies are desired. This favourable behaviour is due to the property that the 

fourth order method really behaves as a fourth order method even for rela­

tively large integration steps (this behaviour is not shared by the high 

order splitting methods analysed in [4], the order of which degenerates for 

larger values of the time step). 

2. MULTISTEP SPLITTING METHODS FOR NONLINEAR EQUATIONS 

2.1. Specification of the method 

The method constructed in [5] and more fully analysed in this paper 

is defined by 

(2. Ia) 
(0) 

y = some predictor formula for Yn+l' 

(2.lb) j = 0,1, ..• ,m-1, 

** where y is determined by the two equations 



** + (1-w)y * 
- bO-rF(tn+l 'y 

** * wy ,y) = I: 

(2. 2) ' 
* (1-w)/j) (j) * wy + - b0-rF(tn+l'y ,Y) = I: 

with 

(2.3) 

and F(t,u,v) a splitting function such that F(t,y,y) -

The coefficientsµ. and A. are defined by 
J J 

(2.4) 

a = 

T. (wO) b+a 
µ. = 2wo J w = 

J T j + I (w0) ' 0 b-a ' 

2µ. 
=-J 

b+a' 

* (2w-I) (2S +I) 

<s*+w)2 
b = 

j = I , 2, ••• , m-1 , 

2w-l 
w 

where w is the largest real solution of the equation 

f(t,y). 

(2.5) * 'IT 2 (2S +I )(cos 2m +I )w 'IT * 2 = [2 + w(cos 2m -l)](S +w) 
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ands* is a free parameter to be used for maximizing the stability interval. 

The method is completely defined if we specify y(O) by some predictor for­

mula, I: by choosing an appropriate LMM{al,bl}, and (m,s*) on basis of sta­

bility considerations. 

We remark that for a class of model problems (cf. section 2.2) the in­

terval [a,b] corresponds to the eigenvalue interval of those eigenvectors 

which are strongly damped by the Chebyshev iteration. Furthermore, as we 

will see in the next section, the relaxation parameter w defined by (2.5) 

decreases the magnitude of the local error as T ➔ 0. 

2.2. The local error 

Let n denote the solution of (L2) and define the iteration error 

£. = y(j) - n. Furthermore, we write e* = y* - n and e** = y** - n. The 
J 
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local error is given by 

(2. 6) 

where we assume that y. = y(t.) for j ~ n (localizing assumption). Thus, 
J J 

when we are given the local error of the generating multistep method (1.2) 

and if we can find an estimate for the iteration error, then we have found 

an estimate for the local error of the splitting method (2.1)-(2.5). 

In order to derive a recurrence relation for the iteration error as 

• ➔ 0 we first deduce from (2.2) the relations 

(2. 7) 

as. ➔ 0. Here z1 and z2 are defined by b0.aF/rlu and b0.aF/av where the 

derivatives are evaluated at (t 1,n,n). 
n+ 

s Let us assume that all iteration errors €j are O(T) as T ➔ 0 for 

s ~ O. Then it follows from (2.7) that 

as. ➔ 0. From (2.1) we derive the recurrence relation 

(2.1') 2s+l 
e:J.+1 = [µ.-LA]e:.+(1-µ.)e:. l + O(T ) as T ➔ O, 

J J J J J-

where the matrix A is defined by 

(2.8) 

Let us write 

(2.9) as • ➔ O, 



where P. is the polynomial which satisfies the recurrence relation 
J 

( 2. 1 O) p O = l ' p . + 1 = ( µ '-;>,_ • A) p . + (1-µ ' ) p ' 1 ' 
J J J J J J-

j = 0,1, .•• 

and c. yet to be determined. Substitution of (2.9) into (2.1') reveals 
J 

that the representation (2.9) is correct provided that c. satisfies the 
J 

recurrence relation 

cJ.+l = (µ.-LA)c. + (1-µ.)c. l + 0(1) 
J J J J J-

as 1: + 0. 

Evidently, for j ~ m the coefficients c. are bounded as T + O, hence 
J 

(2.9') as T + 0. 

Finally, we have to determines, that is the order in T of E. as 
J 

T + O. Suppose that the linear multistep method (1.2) and the predictor 

formula for y(O) have orders of accuracy p and q, respectively. Then 

5 

From (2.9') it follows that apparently E, = O(Tq+l+Tp+l) provided that P.(A) 
J J 

is bounded as T + 0 for j = 1,2, ••• ,m. Thuss= min{p+l,q+l}. Since it fol-

lows from (2.4) that P.(A) can be identified with the shifted Chebyshev 
J 

polynomial 

p. (A) 
J 

= Tj (w0+w1A) 

T/w0) 

* so that P. (A) is bounded as T + 0 for all finite j and S , we may sunnnarize 
J 

the results in the form of the following theorem. 

THEOREM 2.1. The local error of the method (2.1) - (2.5) is given by 

(2.11) 

□ 
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In practice, we often have p > q so that the term originating from the 

predictor formula will largely determine the magnitude of the local error. 

It is therefore of interest to estimate the norm of the amplification matrix 

P (A) as T + O. In [SJ an estimate is given which assumes the form 
m 

(2. 1 2) 

provided thats*# 0 and where 

(2.13) 2w-l 
(l = --

0 2 
w 

From (2.4) and (2.5) it follows that Tm(w0+w1a0) = O, i.e. Pm(a0) = O, hence 

by assuming that D = O(Tr) as T + 0 it follows from (2.12) and theorem 2.1 

that the order of consistency of the method (2.1) - (2.5) is given by 

(2.14) ~ . { r} p = Min p,q+r+l- - , 
m 

s* # o. 

In our experiments we used fixed s* values for given m and therefore by vir­

tue of (2.5) fixed values for w. Since Dis related tow by the formula 

(2.13') 

1T 

= T-l(l+w cos ziii) 
D m w-1 ' 

we conclude that D does not depend on T, i.e. r = O, so that 

(2.14') p = min(p,q+I), s* # o. 

Thus, even for zero order predictor formulas (q=O) the method (2.1) - (2.5) 

is still a consistent integration method provided (of course) that the 

generating LMM is consistent (p~l). 

Apart from the estimate (2.12) it is of interest how the operator 

P (A) damps 
m 

the lower and higher frequencies in the predictor error 

y(O) - y(tn+l). In [SJ a result is given ior the following class of model, 

problems 

(i) The matrices z1 and 
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have a aommon eigensystem {e.} 

(ii) The eigenvalues z~i) of Z., j = 1,2, are negative. 
J J 

THEOREM 2.2. Let the Zoaai errors of y(O) and y(m) have the eigenveator e:r:­

pansions 

(0) 
y - y(tn+l) = 

then 

D 

We will choose the splitting function F(t,u,v) such that the eigen­

vectors e. of low frequency correspond to eigenvalues z~i), j = 1,2, on the 
i J 

right end of the eigenvalue interval (e.g. if F corresponds to ADI splitting). 

Then, theorem 2.2 implies that the iow frequenaies in the local error of 

the predictor formula are damped by a faator D. Thus, if the problem is 

smooth so that no high frequencies are involved and if the LMM and the pre­

dictor formula themselves do not introduce high frequencies, we may expect 

a fast convergence to the solution of the LMM (1.2). 

2.3. The characteristic equation 

Here, we confine our considerations to the class of model problems 

specified in the preceding section. For such problems it was derived in [5] 

that the variational equation of the method (2.1) - (2.5) is given by 

(2.15) 

where 6y(O) denotes a perturbation of y(O), and 6yn+l and 6r denote pertur­

bations caused by perturbations of y ,y 1, ••• ,y +l k" n n.- n -
Let us assume that 6y(O) can also be expressed in terms of the pertur-

bations 6yn, ••• ,6yn+l-k' say 

k 
(2. 16) 1 

l=l 

Then using the definition of r in (2.3) we find the characteristic equation 
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( 2. I 7) 

where a. denotes an eigenvalue of A, 1..e. 

(2.18) 
I-z1-z2 

a.= (Zw-1) (w-z)(w-z)' 
I 2 

with z 1 and z2 assuming values in the eigenvalue intervals of z1 and z2 • 

The method (2. I) - (2.5) will be called stable if (2.17) has its roots 

on the unit disk for all z1 and z2 in the eigenvalue intervals of z1 and z2, 

respectively. This condition will be called the root condition. If the func­

tions c,e_ are constant and bi ... O)l > 0, this root condition usually leads to 

a condition on P (a.) of the type 
m 

(2.19) 

where D1 and u2 are also constant (see example 2. I). 

h f 11 · b·1· h () h(arccosh(•)) Int e o owing sta 1. 1.ty t eorem TI/m • means cos m . 

THEOREM 2.3. Leto be the spectral radius of af/ay at (t 1,n) and let the n+ 
root condition be satisfied if Pm satisfies (2.19) for aU z 1 and z2 in the 

eigenvalue intervals of z1 and z2.Then the method (2.1) - (2.5) is stable 

if 

(2.20a) 

I 
Tl/m(n)+l ~ w :::; w, w = D = min{D 1 ,D 2}, 

1 1T 
Tl/m(i-cos 2m 

(2.20b) T ::;; s s = 
w(I+II-~)-1 

' b (l-/1-~ 1
) 

f 
0 

0 

where a is the point where Pm(a.) assumes the value D2, i.e. 

0 

(2.21) a== 

if D = 
2 



with D given by (2.13'). 

PROOF. It may be helpful to consider the behaviour of P (a) as a function 
m 
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of a (see figure 2.1). P (a) assumes the value 1 at a= 0 and it has a zero 
m 

at a= a 0 where a 0 is defined in (2.13). Furthermore, Pm(a) assumes a mini-

mal maximum norm of magnitude D defined in (2.13) over the interval [a,b]. 

We observe that the eigenvalue interval of the matrix A is given by (cf. 

(2.4) and (2.18)) 

I 
D2.!- ... - .... 

I I 
I I 
I 

Dt-- - - -- _I_----- - - - - - - - - - - - - - - - - . ~-----
1 I 

'O a a a a0 
- D l - . - . - - - - . - - - - - - - - - . - . - .-:-. -=-------- ------. -------. ----------

I 
I 

-D - . - - - - -
I I 

Figure 2.1. The polynomial P (~)form= 3 
m 

(2. 22) [a,b], a = (2.w-1) ZS+l 
(S+w) 2 , 

b = 2w-l S+l , 
w S+w 

where S = b0,a. ~ 
It is now evident from (2.19) that D s D, hence from (2.13 1 ) it easily 

follows that w should satisfy (2.20a). Thus, (2.20a) implies that 

Pm(a) ~ -DI for all eigenvalues a€ [a,b]. 
The condition Pm(a) s D2 for all a€ [a,b] is satisfied if a~ a 

where a is the (first) point where Pm(a) = n2 (see figure 2.1), i.e. the 

point defined by (2.21). From (2.22) it follows that a~; if S satisfies 

the inequality 

(2w-l) 2S+l ~ a. 
(S:<u) 2 

Replacing S by b0,a leads to condition (2.20b). D 
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From this theorem it follows that (2.20a) presents an upperbound for 

wand by (2.5) an upperbound for s*. This means that only a limited number 

of low frequencies in the local error of y(O) can be strongly damped (cf. 

theorem 2.2). Of course, by decreasing T the number of strongly damped eigen­

vectors can be increased. 

The condition (2.20b) on the integration step. is illustrated in the 

following subsections. 

2.3.1. Stability boundaries for the method of successive corrections 

Suppose we chooses*= O, then w =A.=µ.= 1 and the method reduces 
J J 

to the method of successive corrections analysed in [4]. For this method 
~ we have D = 0 so that the equation for a reduces to 

Solving this equation and substitution into (2.20b) yields 

DI /2m 
2 2m I 

T :,;; ___ l_/,.....2m- = ---- (l+O(z)) 
b0a(l-D2 ) b0aln (1 /Dz) m 

(2.20'b) as m-+ 00 

Let us in particular consider the BDF4 formula defined by (cf. [7, 

p. 242]) 

(2.23) 
1 

E = -25 [48y -36y 1+16y 2-3y 3J, n n- n- n-

and let the predictor y(O) be defined by extrapolation. In order to satisfy 

the root condition we obtain the bounds for P (a) listed in table 2.1 (for 
m 

a proof we refer to [6, Appendix]). 

From (2.20'b) the stability boundaries 8 = 8(m) can now be derived. 

Evidently, they are infinitely large if D2 = 1, that is in the case of zero­

order and first order extrapolation. For higher order extrapolation predic­

tors we have conditional stability. In table 2.1 the values of 8 are listed 

form= 2 and form>> 1. From these values we may conclude that the method 

of successive corrections based on BDF4 is of less practical value if higher 

order predictors are used. 



Table 2.1. Stability boundaries for the method of successive corrections 

based on BDF4 and extrapolation 

11 

Predictor formula q -D $ p (a.) ~ D2 S(m=2) S(m>>l) 
1 m 

(0) = Yn 0 ..;.0.7493 $ p (a.) $ CC) y CC) 

m 
(0) 2y - 1 

$ p (a.) $ y = Yn-1 -3 co co 
n m 

(O) 3y - 3Yn-1 + yn-2 2 1 
$ p (a.) $ 0.4951 11.0 6.0 m y = n 7 m 

(0) 4y - 6Yn-l + 4Yn-2 3 
1 

p (a.) 0.1999 4.2 2.6 m y = - Yn-3 -- ~ $ 
n 15 m 

2.3.2. Optimal stability boundaries for the iterated BDF4 

Again we consider the BDF4 with the second and third order extrapolation 

predictors listed in table 2.1, but now with the maximal value for wallowed 

by condition (2.20a). In table 2.2 the corresponding s* and S values are 

listed for various values of m. 

Table 2,2. Stability boundaries for BDF4 combined with second and third order 

extrapolation as predictor formula 

q=28 ,_ 

q = 3 s ~ = 

m = 

.98 

6.9 

.44 

2 

m = 2 m = 3 m = 4 

9.4 

49 

4 

13 

43 

206 

18 

54 

131 

612 

54 

159 

m = 5 

316 

1449 

129 

376 

m = 6 

649 

2954 

264 

763 

We notice that the stability boundary obtained form= 2 and for optimal 

(maximal)s* is already considerably larger than that form= 2 ands*= 0. 
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2.3.3. Behaviour of the stability boundary for large values of m 

In order to get an impression of the stability boundary for large 

values of m we prove the following corollary of theorem 2.3. 

COROLLARY 2. I. If the conditions of theorem 2. 3 are satisfied then 

(2. 24a) 8 
32w2m2 I = 2 2 2 [ I +O ( 2) J 

b0[I6m -n w-4wd 2J m as 

(2.24b) 128 4 I 
8 ~ 2 2 2 2 m [I +O ( 2) J 

b0[n +4d1][d1-d2] m 

I D2 
d 1 = arccosh D, d2 = arccosh D, 

with D = min{D 1,n 2} and D given by (2.13'). 

PROOF. From (2.21) it follows that form>> 

~ a= 
2w-I 
2 

w (c+l) 

d2 
[l+wc - (w-1) cosh(-)J 

m 

m -+ "" 

2 
w = O(m ) 

2 2 

, 

= 
2w-I I d2 I d2 I 
2 [ 2+wc-w- 2(w- I )2 (I+ TT -z- + 0 ( 4)) J 

w (c+l) m m m 

where we have written c = cos n/2m. Expansion of c yields for a 

2 2 
~ I w(n +4d2) I I 
a = - [2- ---- + O(w) + 0(2 ) + 0( w4) ]. 

w 8m2 m m 

From (2.20b) it follows that 

8 = 4w~ [ I +O ( .!. ) +O ( .!,-) ] • 
b0a w :i:l' 

Substitution of; and using w = O(m2) yields (2.24a). 

The upperbound (2.24b) is obtained by substituting 

D 
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Thus, under the conditions of theorem 2.3 the stability boundary 

e = S(m) has at least an O(m4) behaviour as m +..,_In this connection,we 

remark· that explicit Runge-Kutta methods with maximal real stability inter­

val have a stability boundary S(m) of O(m2) as m + .., (see [9]) ~- The partial 

implicitness of the splitting method (2.1)-(2.5) is apparently compensated 

by a considerably larger stability interval (we recall that e =.., if n2 = 1). 

However, if we use higher order predictors we still need a relatively large 

number of iterations if ,a is large. 

As an example we consider BDF4 with third order extrapolation for y(O). 

Choosing s* maximal (i.e. w=;) we find from (2.24) and table 2.1 (D 1=1/15, 

D2= 0.1999) 

S(m) ~ .56 m4 as m >> 1. 

Hence, for given• and a we need at least 

m=YE .56 

iterations in order to have stability. For instance, if ,a= 1000 we need 

7 iterations which is rather expensive. 

3. A FOURTH ORDER SPLITTING METHOD WITH LARGE STABILITY BOUNDARIES 

The stability boundaries derived in the preceding section for the 

fourth order method based on BDF4 and third order extrapolation as predic­

tor formula, are relatively low. This is caused by a too fast increase of 

P (a) as a+ O, that is the high frequenaies are not damped sufficiently. 
m 

We can not correct this by choosing s* larger because s* is limited to the 

values given in table 2.2. In this section we investigate the effect of 

performing an adjusted Jaaobi itemtion on an extrapolation predictor in 

order to remove the high frequencies. This iteration leads to the following 

smoothed predictor 

(3. 1 a) 
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(3. lb) 
(0) 

y 

where F(t,u,v) denotes a Jacobi type splitting function which is required 

to satisfy the conditions 

~ 
(3. 2) F(t,y,y) 3F 

- f(t,y), dU = - 8crl 

with I the identity matrix, cr an estimate of the spectral radius of 3f/3y, 

and 8 a positive parameter to be determined below. 

(3. 3) 

(3 .4) 

~ Let us define F by specifying its i-th component F. according to 
l. 

F . ( t , u , v) = f . ( t , v 1 , • • • , v . 1 , y . u . + ( l -y .}v . , v . 1 , • • • , vN·) , 
l. l. i- l. l. 1 l. 1+ 

y. = 
1. 

1 = 1,2, ... ,N, 

where v 1,v2, ... ; u 1,u2, ... and y1,y2, ... denote the components of the vec­

tors v, u and y, respectively, and N is the number of vector components. 

Then using the definition of I in (2.3) we prove the following compari­

son theorem. 

THEOREM 3.1. Let the method (2.1)-(2.5) be stabZe if y(O) is defined by 

(3. 1 b) and if P (a.) satisfies ( 2. 19). Then 
m 

this method is aZso stabZe if 

(3.1)) and P (a.) satisfies the 
m 

the predictor-• is given by y(O) (defined by 

condition 

~ 
(3. 5) 

z+ebO -rcr 

- DI s 1+0b0-ro' Pm(a.(zl ,z2)) s D2, 

PROOF. The variational equation for the predictor y(O) is 
b 

al I+ o% (Z 1+z2)+a.t(z 1+z2+eb0-ral) 

l+Sbo-rcr 

k 

I 
.t= 1 

given by 

Substitution into (2.17) reveals that the characteristic equation assumes 

the form 

(3. 6) 
k 

z_; 

k 
= I 

l=l 
{P (a.) 

m 
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It is easily verified that this equation can be written in the form 

(3. 6') 

where 

(3.7) 
z+8bo't'O 

Pm(zl,z2) = 1+8bO't'~ Pm(a(zl,z2)), z = zl + z2. 

We observe that replacing the predictor y(O) (defined by (3.1)) by the 

predictor y(O) (defined by (3.lb)) implies that in the characteristic equa­

tion one should replace P by P • Since this latter equation satisfies the m m 
root condition if P satisfies (2.19), equation (3.6') will also satisfy 

m 
the root condition if - n1 ~Pm~ n2, that is if (3.5) is satisfied. O 

We apply this theorem to the case where b0 and E are defined by the 

BDF4 given by (2.23), and where y(O) is given by third order extrapolation. 

Using y(O) as defined by (3.1) as the predictor formula, theorem 3.1 im­

plies that the resulting method is stable if (see table 2.1) 

(3.5') 

Let us assume that P (a)~ - 1/15 for z. ~ -s*, that is s* is bounded by 
m 1 ~ 

the values listed in table 2.2 for q = 3. Then Pm(z1,z2) is certainly bound-

ed below by -1/15 if z + eb0't'o ~ O. If z + eb0't'o < 0 (this happens when 

8 < o/o) then Pm(zl,z2) is bounded below by - 1/15 if 

~ -b 't'0+8b 't'O 
0 0 

By choosing 

(3.8) 

this inequality is satisfied. 

In order to satisfy the inequality Pm(z1,z2) ~ 0.1999 it is sufficient 

to consider the case zi ~ -s*. Let us consider the function Pm(z1,z2) along 
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the line z1 + z2 = const. Since in this region Pm(a(z1,z2)) is larger as 

a(z 1,z2) is smaller, we find a ~aximal value of Pm(z 1,z2) at the point 

where a(z1,z2) is minimal. From the definition of a it follows that along 

the line z1 + z2 = const. the minimum is reached at z 1 = z2• 

-b -ro 
0 

· · · · · · - - - - - - · - - · · r · - · · - - - · - · · · · · - 0. 1999 

P (z/2,z/2) 
m 

15 

-+----,1':.._--~------+-------+---r---t------r------,-- z 
-eb0-rcr z o 

~m(-b01:cr/2,-b01:cr/2) 

Figure 3.1. The function P (z/2,z/2) for - cr < - e; 
m 

Thus the function Pm(z1,z2) is maximal in magnitude along the line 

z1 = z2 = z/2. In figure 3 .1 the behaviour is illustrated. If ; is the 

point where Pm assumes a maximum value in the interval [-b01:cr,-2s*J, then 

we should choose.; such that Pm(-;/2,-;/2) ~ 0.1999. This yields an upper 

bound for.; which is just the stability boundary 8 of the method. In table 

3.1 these values are listed form= 1 until 6 ands* as large as allowed 

Table 3.1. Maximal stability boundaries for BDF4 

combined with the fourth order predictor (3.1) 

m=l m = 2 m = 3 m = 4 m = 5 m = 6 

s* .44 4 18 54 129 264 

S(m) 20 101 385 1095 2549 5150 

8/m4 20 6.3 4.8 4.3 4 .1 4.0 

by (2.20a). A comparison with the maximal boundaries attainable for the 

third order extrapolation as listed in table 2.2 reveals that we have 



gained a factor of about 7 by performing the Jacobi iteration (3.1). For 

large values of m the stability boundary tends to behave as 4 m4. 
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Summarizing, we conclude that the iterated BDF4 together with the 

predictor (3.1) where y(O) is defined by third order extrapolation, generate 

* a fourth order accurate splitting method which is stable for the S -values 

listed in table 3.1 and for integration steps satisfying the condition 

(3.9) 

This method will be denoted by SC method since it can be considered as a 

variant of the method of successive corrections introduced in [4] (see al­

so section 2.3.1). 

In actual application of the method we will choose form the smallest 

integer such that (3.9) is satisfied when T and cr are prescribed. 

4. NUMERICAL EXPERIMENTS 

4.1. Methods used 

We tested the SC method by comparing it with the ADI method of 

PEACEMAN and RACHFORD [8]. This method is denoted by PR(v) in the tables 

of results, where vindicates the nwnber of Newton iterations used for 

solving each implicit relation. In the SC method we performed only one 

Newton iteration in solving both (2.2) and (3.1). 

The splitting function F(t,u,v) used in the SC method was defined by 

the same ADI splitting function as used in the PR method. The Jacobian 

matrices aF/au and aF/av needed in the Newton iterations were updated at 

the beginning of each integration step. The examples are such that an 

analytical·exp~ession for the Jacobian matriees was available. 

The estimate cr needed for determining a safe number of iterations was 

either given in analytical form or computed by applying Gerschgorin's 

theorem to the matrix af/ay = aF/au + aF/av (this hardly requires additional 

effort). 

The starting values needed by the SC method were obtained by computing 



them from th«~ exact values prescribed at t_3 ,. t_2, t_ 1 and t 0 . 

4.2. Numerical examples 

The problems we chose were all of the form 

( 4. 1) 

where the diffusion coefficient d and the term v are functions of U,t,x1 
and x 2 to be specified below, and the integer rands are nonlinearity 

parameters. The domain in the (x 1,x2)-plane is given by the square 

0 ~ x 1,x2 ~ I; the Dirichlet boundary and the initial conditions at t 0 = 0 

either follow from the exact solution given in table 4. I. 

The initial-boundary value problems were semi-discretized by using 

standard differences on a uniform grid with grid points (jh,lh). The com­

ponents of the right-hand side function of the resulting system of ODE's 

( 1 .1) are evidently coupled according to a five-point molecule which allows 

the use of ADI splitting functions. 

In the examples I and III we used for a the expression listed 1.n table 

4.1. In example II, a Gerschgorin estimate was used. 

Table 4.1. Specification of the testproblems 

Example Solution d r s V (J 

-t 2 2 0 -t 2 2 Sh-2 I 1 +e (x 1 +x 2) -e (x +x +4)-2 
I 2 

-t 2 2 -t -t 2 2 
II 1 +e (x1 +x2) l+t 2 -e [4d+(l+4e )(x1+x2)] 

xl+x2 
2 

. 22 
Ill ½ (x 1 +x2) sin 27ft 3 0 -u 

(xl+x2) 
• 32 24 sin '1ft 

sin 1rt 
2 (I +t) l+t ') 

(l+t)h-

+ 2 - 1r(x1+x2)cos21rt] 
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4.3. Numerical results 

In the tables of results we listed the accuracy measured by the number 

sd of correct significant digits defined by 

(4. 2) sd = - log 10 I maximum absolute error at t = 1 I 

and the computational effort ae measured by the total number of right-hand 

side evaluations needed in the integration process. 

Problem I belongs to the class of model problems specified in section 

2.2, so that the stability theory can be rigorously applied. The results in 

table 4.2 show that the SC method does behave in a stable way. 

Table 4.2. sd/ce-values obtained for problem I with h = 1/24 

Method 

PR(l) 

SC 

1' = 1/2 

I. I /4 

2.0/22 

1' = 1/5 

2.0/10 

4.0/45 

1' = 1/10 

2.6/20 

5. 1 /90 

1' = 1 /20 

3.2/40 

6.3/140 

• = 1/40 

3.9/80 

7.4/280 

• = 1/80 

4.5/160 

8.7/400 

The second order and fourth order behaviour of the PR and SC method is al­

so reflected in the sd-values (on halving the integration step the sd-value ~ ' 
should increase with log10 2P, p being the order of the method). Due to the 

fourth order behaviour of the SC method this method is much more accurate 

than the PR method for the same step size. This makes the fourth order 

method much more efficient than the PR method if high accuracy is desired. 

For example, to get four correct digits 

Table 4.3. sd/ce-values obtained for problem II with h = 1/24 

Method 

PR(I) 

PR(2) 

SC 

• = 1/5 • = 1/10 • = 1/20 

* 
1. 6/20 

* 

* 
2.4/40 

* 

2.0/40 

3. 1 /80 

6.1/140 

• = 1/40 

3.6/80 

3.7/160 

7.5/212 

• = 1/80 

4.3/160 

4.3/320 

8.7/400 
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the PR method needs 80 right-hand side evaluations, whereas the SC method 

requires only 45 evaluations. 

Problem II is mildly nonlinear; as a consequence one Newton iteration 

for solving the implicit relations is not sufficient if larger integration 

steps are used (indicated by* in table 4.3). For smaller steps we see a 

similar behaviour as exhibited by problem I. 

Problem III is rather nonlinear with a rapidly changing spectral radius. 

It turned out to be a more 

Table 4.4. sd/ce-values obtained for problem III with h = 1/24 

Method T ~ 1/40 T = 1/80 T = 1/160 

PR(l) * 2.1/160 2.7/320 

PR(2) * 3.0/320 4.1/640 

SC * 5.9/390 6.9/676 

difficult problem for both methods than problem II. For T ~ 1/40 both 

methods failed because the Newton process did not converge (indicated by 

*). Again the SC method is superior to the PR method if high accuracies 

are desired. 

4.4. Concluding remarks 

In the high accuracy region, the experiments reported in the preceding 

section show the superiority of the SC method over the classical PR method 

because of the order four behaviour which is maintained for realistic inte­

gration steps. In this connection we remark that the method of successive 
* corrections with S = 0, w =A.=µ.= 1, analysed in [4], shows its fourth 

J J 
order behaviour only for relatively small integration steps (relative to 

the spectral radius). For realistic integration steps the order of this 

method degenerates so that it is hardly more efficient than e.g. the PR 

method. By virtue of the effective fourth order behaviour of the SC method, 

a variable order splitting method, e.g. composed of the SC and the PR method, 



may turn out to be an efficient method for solving parabolic equations 

with an arbitrary degree of accuracy. 
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In the SC method described in this paper there are several choices 

which are not necessarily the best possible. For instance, the Jacobi 

iteration (3.1) may be replaced by Gauss-Seidel iteration (although this 

would complicate the theoretical analysis considerably). Furthermore, the 

relaxation parameter w (o.r equivalently the parameter s*) and the number of 

iterations m were chosen such that the effective stability boundary S(m)/m 

is as large as possible. An alternative may be the use of another predictor 

formula (e.g. linear extrapolation) which yields an infinite stability 

boundary (cf. table 2.1). This leaves wand m free for minimizing the local 

error. Finally, the choice of the splitting function F(t,u,v): Alternatives 

are odd-even hopscotch splitting which reduces the computational effort of 

solving the implicit relations, and line hopscotch which allows the inte­

gration of equations with mixed derivatives (for a treatment of hopscotch 

splittings we refer to [2,3]). 

In [6, Appendix] a lot of additional experiments are reported which 

give some insight into these questions. 
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APPENDIX 

For the BDF4 defined by (2.23) with y(O) defined by extrapolation we 

·show how the bounds n1 and n2 (cf. (2.19)) for Pm(a) listed in table 2.1 

are obtained by applying Hurwitz's criterion to the characteristic equation 

(Al) 

d (O) ~4 - h h ff' . -Here,z = z1 + z2 an y = l.l=l al yn+l-l' were t e coe 1.c1.ents al are 

specified in table 2.1. Note that (Al) is a special case of (2.17). 

We also describe a number of experiments for the linear problem I with 

the splitting method (2.1)-(2.5) based on BDF4. These results show the ef-
* feet of the parameter S and the number of iterations m, the dependence of 

the accuracy on the mesh spacing h, the order of accuracy, the use of other 

predictor formulas and the effect of violating the stability conditions. 

In order to test the theory developed for the splitting method (2.1)­

(2.5) by performing a large number of experiments, it is convenient to de­

note this splitting method in a slightly different manner than in section 3. 
* The method (2.1)-(2.5) with a given value of m and S will be denoted by 

* SC(q,m,S) where q indicates the predictor formula, i.e. q = 1,2,3 and 4 cor-

responding to the first order extrapolation, second order extrapolation, 

third order extrapolation and the smoothed predictor (3.1) where y(O) is 

defined by third order extrapolation, respectively. We recall that the 

generating multistep formula defining b0 and I is the BDF4 defined by (2.23). 

The results in the following sections have led us to the choice of the 

SC method defined in section 3, i.e.: 

(0,20) 

2 [20,101) 

* ~ SC - SC(4,m,Smax), m= 3 if .a e: [101,385) 

4 [385, 1095) 

5 [1095,2549) 

6 [ 2549, 5150) 
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Here, a is an estimate of the spectral radius of 'af/'ay as used in the pre-

* * dieter formula (3.1) and S ·-is given in table 3.1 (S 1.s the maximal * max max 
value of S allowed by condition (2.20a) for the third order extrapolation 

(see also table 2.2)). 

In our eixperiments for the linear example I (see table 4. I) presented 

* in this appendix, the starting values needed in the SC(q,m,S) method were 

prescribed by the exact solution. 

In the tables of results we also listed the maximal step T allowed 
* max 

by the stability condition (2.20b) for S > 0 and (2.20'b) for s* = 0. 

For more details concerning the implementation and notation we refer to 

section 4. 

Al • The stabi.li ty interval 

Writing (Al) as 

(Al') 

we find by applying Hurwitz's criterion [7,p.80] that (AI') has its roots 

on the unit disk if 

i = 0(1)4 

(A2) 

where 

(A3) y 2 = 6 - 2c 2 + 6c4 = 6 + 

y3 = 4 + 2c 1 - 2c3 - 4c4 2Pm(ci.)(a34a 1+za4) 

- P <ci.) I ao -
m l=l -c.. 

4 

, 
76 l-Pm(ci.) 

25 1-z 
1-Pm(ci.) 

1-z 

Note that for all predictor formulas listed 1.n table 2.1 l al= I, i.e. 
l=l 



1-P (a) 
m y =-z---4 1-z 

Evidently the conditions (A2) are satisfied for all negative z if we put 

P (a) = O, because (Al) then corresponds to the BDF4. For nonzero P (a) m m 
we have the following theorem. 
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THEOREM Al. The aha:r>acteristic equation (Al) has its roots on the unit disk 

for aZZ negative z 1 and z2 if Pm(a) satisfies the condition (2.19), i.e., 

where for each extrapoZation·forirruZa the bounds n1 and n2 are aZready given 

in table 2.1. 

PROOF. 1. Consider the third order extrapolation formula (i.e., q=3 in 

table 2.1). The relations for y. with i = 0,1,2,3 (see (A3)) can be simpli-
1. 

fied as follows: 

It can be 

Yo= 1 + 15 Pm(a) 

1-P (a) 
2 m 

103 1-P (a) 
+-- m 

25 1-z 

Y1 = 1-z (6 25 - 4z), 

1-P (a) m 
Y2 = 1-z (3 ~; - 6z), 

1-P (a) m y = 1-z 3 
24 

( 25 - 4z) • 

easily shown that if z SO and -1/15 SP (a) S 1 then y. ~ 0 for 
m 1. 

all i. Substituting y. in the nonlinear condition in (A2) gives after a 
1. 

tedious calculation the inequality 

(A4) 

where 

(1-P (a)) 2 
m R(z) ~ 0, 

3 2 R(z) = r 3z + r 2z + r 1z + r 0, 

r 3 = 320 Pm(a) - 64, r 2 = 92.16 - 471.04 Pm(a), 

= 17.69472 - 32.44032 P (a). 
m 
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It is easily numerically verified that R(z) ~ 0 if z s O and P (a) s 0.1999. . m 

Thus, the inequality (A4) holds for all z s O and -1 s P (a)~ 0.1999. 
m 

From Hurwitz's criterion (see (A2)) it follows that the characteristic equa-

tion (Al) with the third order extrapolation formula has its roots on the 

unit disk if z ~ 0 and 

2. Consider the first order extrapolation formula (i.e., q=l in table 2.1). 

The relations for Y. with i = 0,1,2,3 (see (A3)) may now be written as 
l. 

follows: 

Yo = 1 + 3 P (a) 
+ 103 l-Pm(a) 

m 25 1-z 
, 

52 1-P (a) 
Y1 = 4 + 4 P (a) +- m 

m 25 1-z , 

1-P (a) 4 4 + m 2z), Y2 = (- - -1-z 25 

1-P (a) 24 m 
y = 1-z ( 25 - 4z). 3 

It can be easily shown that if z ~ 0 and -1/3 ~ P (a) S 1 then y. ~ 0 for 
m l. 

all i. Substitution of y. in the nonlinear condition in (A2) gives 
l. 

(A5) 

where 

1-P (a) 
m 

3 ( 1-z) 
R(z) ~ O, 

3 2 R(z) = r 3z + r 2z + r 1z + r 0 , 

r = -64, 
3 

r = 2 

r = 1 

2 92.16 + 97.28 P (a) - 30.72 P (a), m m 

- 62.9456 - 70.8608 P (a) + 11 .3664 
m 

2 p (a), 
m 

r = 
0 

17.69472 + 13.76256 P (a) 
m 

- 0.73728 P2(a). 
m 

It is easily established that for Pm(a) in the interval [-1/3,1] r 2 ~ O, 
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r 1 ~ 0 and r 0 ~ O. Thus, the inequality (AS) holds for all z ~ 0 and P (a) 
. m 

in the interval [-1/3,1]. Again, application of Hurwitz's criterion reveals 

that the characteristic equation (Al) with the first order extrapolation 

formula has its roots on the unit disk if z ~ 0 and -1/3 ~ P (a)~ I. 
m 

In a completely analogous manner we can analyse the BDF4 with the 

other extrapolation formulas and derive for P (a) the bounds already given 
m 

in table 2. I • D 

REMARK I. When in (Al) the variables z1 and z2 are largely negative, then 

the characteristic equation can be approximated by 

(A6) 4 r; = p (a) 
m 

4 
~ .... 7 4-l 
I.. a.e.~ . 

l=l 

Applying Hurwitz's criterion to this equation we obtain a condition on P (a) 
m 

for each extrapolation formula. For the zero order, first order, second 

order and third order extrapolation the bounds (D 1,n2) for· Pm(a) are in this 

case (1,1), (1/3,1), (1/7,1/2) and (1/15,1/5), respectively. 

A2. Stability tests 

* In this section the stability of SC(q,m,S) is tested. Therefore the 
* SC(q,m,S) method is applied to the model problem I with a large number of 

integration steps and a relatively large step, say T = 1/10. 
* The second order method SC(l,m,S) should not give difficulties, be-

* cause theoretically it is unconditionally stable provided S is not too 

large (see table AO). This is confirmed by the results in table Al, where 

the model problem I is integrated from t = 0 until t = t = 10. Here the 
e 

accuracy is measured in the points t. = {j 
J 

j = 1,2, ••• ,10} by sd = -log 10 
I maximum absolute error int. I• Note that 

J 
the maximal stable step T 

max 
follows from theorem 2.3. 

* .Table AO. Maximal S values for the first order predictor (q=l). 

m 

* s 0,1 2.96 

2 

33.2 

3 

157 

4 

486 

5 

1176 

6 

2425 
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* Table Al. Results obtained by SC(l,m,S) with T = 1/10 

when applied to problem I with t = IO. 
e 

Method h T t=l t=2 t=3 t=4 t=S t=6 t=7 t=8 t=9 t=IO max 

SC (I, 2, IO) 1/10 00 3.0 3.4 3.9 4.3 4.7 5.2 5.6 6.0 6.5 6.9 

SC (I ,4, l 0) 1/20 00 3.0 3.4 3.9 4.3 4.8 5.2 5.6 6.0 6.5 6.9 

* The fourth order method SC(3,m,S) is only stable for relatively small 

values of T. Taking again problem I we found the results listed in table A2. 

* Table A2. Results obtained by SC(3,m,S) with T = 1/10 

when applied to problem I with t = 10. 
e 

Method h T t=l t=2 t=3 t=4 t=S t=6 t=7 t=8 t=9 t=lO max 

SC (3, 2, l 0) 1/10 * 4.8 4.5 3.7 2.7 1.6 .s * * * * 
SC (3, 4, l O) 1/10 .06 6. l 6.5 6.9 7.4 7.8 8.3 8.7 9. I 9.6 10.0 

SC(3,2,10) 1/20 * 4.0 2.8 l.4 . I * * * * * * 
SC (3 ,4, I 0) 1/20 .015 4. 5 3.7 2.7 l.5 .2 * * * * * 
SC(3,4,40) I /20 .04 5.3 5.7 6. l 6.1 5.7 5.5 4.9 4.7 4.2 3.7 

SC(3,4,52) 1/20 .OS 5.2 5.6 6.0 6.5 6.9 7.3 7.7 8.0 8.2 8.2 

SC(3,4,80) l /20 * 5.0 5.2 4.8 4. I 3.5 2.9 2.3 1.6 l.O .4 . 

Here, an asterisk means instability (for T max 
* it indicates that S is larger 

than allowed by table 2.2). According to the theory all experiments are 

unstable. Yet if Tis sufficiently close to T (say T ~ 2T ) the in-max max 
stabilities seem to vanish. By decreasing the step size T such that 

T ~ T we should get completely stable results. In table A3 these results 
max 

are listed confirming the theory. 
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Table A3. Results obtained by SC(3,4,10) with•= 1/70 = .0145 •.•• 

when applied to problem I with t = 10. 
e 

Method h • t=l t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=IO max 

SC(3,4,10) 1/20 .015 9.1-9.5 10.0 10.4· 10.8 II .3 Tl.8. 12.4. 12.4 12.3 

A.2.1. Amplification factors 

In order to see by what factor perturbations are amplified we have 

plotted the magnitude of the largest characteristic root of equation (Al) 

with the third order extrapolation (q=3) as a function of a (see (2.18)) 

with z 1 = z2 = z/2. In the figures Al and A2 the value of Isl is shown max 
for SC(3,2,10) and SC(3,4,IO), respectively. These plots show that ampli-

fications by a factor as large as 1.4 occur if a is less than .I and .05, 

respectively. 

Fig. Al. 

Is I 

0 
0 

0 
11) 

0 

0 
co 
0 

0 .... 
0 

0 
N 

0 

0 

max 

I 

I~ 
a 0 

-+---r---,---.-----.---'---r---,--'-r----.----r--.-? 
0 o.oo 0.20 0,-40 0,60 0,80 1.00 

a 

The value of Isl of (Al) for SC(3,2,10) as a function max 
of a with z. = z~ = z/2. 
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This happens if TO is larger than 150 in SC(3,2,10) and larger than 350 in 

SC(3,4,10). For convenience we list for both methods in table A4 the values 

of w defined by (2.5), b defined in (2.4), a0 defined in (2.13), D defined 

by (2.13') and a given by (2.21). The SC(3,2,10) method is unstable unless 
~ the integration step Tis so small that a lies in the interval [a,.83], 

i.e. TO< 8.54. It can be easily shown that if z 1 = z2 = z/2 and z ~ 0 then 

a (given by (2.18)) lies in the interval [0,1]. Notice that the curves in 

the figures A1 and A2 are obtained by calculating the values of l~lmax for 

a large number of values of a in the interval [O,l]. 

0 
CN 

0 

Fig. A2. 

a 

The value of l~I of (Al) for SC(3,4,10) as a function of max 
a with z1 = z2 = z/2. 



~ Table A4. The values of w,b,a0, D and a in the SC(3,2,10) and 

SC(3,4,10) method. 

Method 

SC (3, 2, 10) 

SC(3,4, 10) 

w 

2.36 

2.67 

b 

1.5763 

1.6255 

0.6679 

0.6088 

D 

0.1492 

0.0087 

a 

0.4685 

0.3074 

~ Figure A2 shows that SC(3,4,10) has a stability interval [a,b], i.e. 

LO< 47.3 (see table A4 and theorem,2.3); serious instabilities are to be 

expected if a~ 0.05, i.e. LO becomes as large as 350. This explains the 
* apparently stable behaviour of the experiment (h,m,S) = (1/10,4,10) in 

* 
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table A2, and the unstable behaviour of the experiment(h,m,S) = (1/20,4,10) 

in table A2. 

A.2.2. Smoothed third order extrapolation 

* Finally, we consider the method SC(4,4,S ) with its extended stabil:j.-

ty intervals (see section 3). Theoretically, the experiments in table AS 

should be stable which is confirmed by the ad-values obtained. 

* Table AS. Results obtained by SC(4,4,S) with L = 1/10 when applied 

to problem I with t = 10. 
e 

Method h L t=l t=2 t=3 t=4 t=S t=6 t=7 t=8 t=9 t=lO max 

SC(4,4, 10) 1/20 • 11 5.5 5.7 6.66.5 7. 1 7. 1 7.6 7.8 8.3 8.8 

SC(4,4,40) 1/20 .28 5.3 5.7 6.2 6.6 7.0 7.5 7.9 8.3 8.8 9.2 

SC(4,4,52) 1/20 .33 5.2 5.6 6.0 6.5 6.9 7.3 7.8 8.2 8.6 9 .1 

In order to suppress instabilities in the high frequency region we 

performed an adjusted Jacobi iteration on the third order extrapolation 

* predictor which leads to the SC(4,m,S) method (see section 3). It is 
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well known that also Point Gauss-Seidel (PGS) iteration removes the high 

frequencies from the iteration error. Replacing the Jacobi iteration (3.1) 

by Point Gauss-Seidel iteration complicates the theoretical analysis con­

siderably. Therefore, we give only some numerical results for the linear 

modelproblem I with a third order extrapolation predictor smoothed by PGS 

iteration. 

The PGS iteration leads to the following smoothed predictor 

(A7a) .... (0) ~ b F*( .... (0) (0)) 
Y = ~ + OT tn+l'y ,y ' 

(A7b) 

* where F (t,u,v) denotes a Gauss-Seidel type splitting function. 
* * Let us define F by specifying its i-th component F. according to 

I. 

(AB) * F.(t,u,v) = f.(t,u 1, ••• ,u. 1,u.,v. 1, ••• ,vN), 
I. I. 1.- I. I.+ 

where v 1,v2, ••• and u 1,u2, •••• denote the components of the vectors v and 

u, respectively, and N is the number of vector components. Then the com­

ponents y~O), i = 1,2, ... ,N of the smoothed predictor y(O) (A7a) are deter-
l. 

mined by solving 

(A9) 

for y and setting y~O) = y, i = I(I)N. One (nonlinear) Point Gauss-Seidel 
I. 

iteration is now defined by (approximately) solving (A9) performing just 

one Newton iteration for each scalar equation. For the linear problem I 

only linear scalar equations have to be solved. The iteration matrix in the 

PGS iteration, i.e., aF*/au and aF*/av, does not have the same eigensystem 

for the class of model problems specified in section 2.2. 

The iterated BDF4 together with the predictor (A7) will be denoted 

* by PGSSC(4,m,S ). In table A6 some results obtained by this method are 

listed for the linear example I. 
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* Table A6. Results obtained by PGSSC(4,4,S) with T = 1/10 when 

applied to problem I with t = 10. 
e 

Method h t=l t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=IO 

PGSSC(4,4,10) 1/20 4.9 2.7 .4 * * * * * * * 
PGSSC(4,4,40) 1/20 5.3 5.7 5.7 5.3 4.6 4.1 4.2 4.9 6.2 7.6 

PGSSC(4,4,52) 1/20 5.2 5.6 6.0 6.5 6.9 7.4 7.8 8.2 8.7 9.1 

Only the PGSSC(4,4,52) method gives stable results and is competitive with 

the SC(4,4,52) method (see table AS). Comparing the results listed in 

table AS and A6 it seems that it is better to smooth the third order extra­

polation predictor with Jacobi iteration (see section 3) than with Point 

Gauss-Seidel iteration ((A7)-(A9)). 

A3. The order of accuracy 

From (4.2) it follows that a p-th order method satisfies the relation 

(AIO) t.sd := sd(T) - sd(aT) p = log 10 a as T -+ 0. 

* Thus, on halving the step length we have t.sd ~ .3 p; for the SC(q,m,S) 

method we expect (cf.(2.14')) 

(Al I) * t.sd = .3 min{4,q+l}, S fixed and~ O. 

* If S = 0 the SC method reduces to the method discussed in [4] where it 

was shown that 

(Al 2) t.sd ~ .3 min{4,q+2m}, * s = o. 

In the following tables of results the sd-values (cf.(4.2)) are listed 

for the modelproblem I obtained by the various methods. We also listed the 

maximal step T allowed by the stability conditions (see theorem 2.3 max 
and section 2.3.1). 



34 

* Table A7. Results obtained by SC(q,2,S) when applied to problem I 

T 

1/5 

1/10 

1/20 

1/40 

1/80 

T max 

1/5 

1/10 

1 /20 

1 /40 

1/80 

T max 

with h = 1 / 10 • 

SC(q,2,0) SC(q,2,4) 

q=l q=3 q=l q=3 

1.5 2.6 1.9 3. 1 

2.3 3.9 3.2 4.6 

3.3 4.6 3.9 6.4 

4.4 5.5 4.4 7.6 

5.5 9.2 4.9 8.7 
co .005 co .017 

Table A8. Results obtained by 

with h = 1/10. 

SC(q,4,0) SC(q,4, 10) 

q=l 

1.8 

2.8 

3.9 

5.2 

6.6 
co 

q=3 q=l q=3 

2.9 2.9 4.1 

4.4 4.3 6.1 

5.9 4.5 7.3 

8.3 5.0 8.3 

10.0 5.4 9.3 

.012 co .06 

SC(l ,2,20) SC(l ,2,30) 

q=4 

3.5 2.3 2.2 

5.3 2.8 2.7 

6.5 3.4 3.3 

7.6 3.9 3.9 

8.8 4.5 4.4 

• 13 00 00 

* SC(q,4,S) when applied to problem 

SC(q,4,20) 

q=l q=3 

3.2 4.4 

3.7 5.8 

4.1 6.7 

4.6 7.8 

5.1 8.9 
00 .096 

SC (q, 4, 52) 

q=l q=3 q=4 

2.8 4.0 4.1 

3.2 5.2 5.2 

3.7 6.3 6.3 

4.2 7.4 7.5 

4.7 8.6 8.7 

co .2 1.3 

I 

* The results obtained for S = 0 should show a fourth order behaviour 

both for q = 1,3 and m = 2,4. Hence by virtue of (Al2) we expect 

6sd ~ 1.2 as T + 0. For q=l this behaviour is roughly confirmed by the 

tables A7 and A8, but for q=3 a much higher order of accuracy is shown 

inspite of the integration steps exceeding the maximal stable step T • 
* max 

If S > 0 relation (All) indicates that 6sd ~ .6 for q=l and 6sd ~ 1.2 

for q=3,4, as T + O. This behaviour is more or less reflected in the tables 



of results. The most interesting method seems to be SC(4,m,s*) because of 

its rather high accuracy, particularly for larger integration steps. 
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In order to increase the If stiffness" of the problem we choose h = 1 /20. 
* In table A9 results are listed obtained by SC(4,m,S ). The results again 

show the correct order behaviour. We also observe that comparing sd-values 

obtained for equal m/T-values, that is requiring roughly the same computa­

tional effort, reveals that SC(4,2,4) is more efficient than SC(4,4,52), 

although SC(4,2,4) is stable only for T = 1/40 and 1/80. A similar conclu­

sion can be drawn for SC(q,2,4) and SC(q,4,52) from the tables A7 and A8, 

where q=l,3 and 4. 

* Table A9. Results obtained by SC(4,m,S) when applied to problem I 

with h = 1/20. 

T SC(4,2,4) SC (4,4 ,52) 

1/5 2.9 4.0 

1/10 4. 1 5.2 

1/20 6. 1 6.3 

1/40 7.6 7.4 

1/80 8.7 8.6 

T .03 .33 max 

Comparing the results listed in the tables A7, AS and A9 obtained by 

SC(4,2,4) and SC(4,4,52) we observe that for large T-values the SC(4,2,4) 

method is more sensitive to grid refinement than the SC(4,4,52) method. 

From the results presented in this section we may draw the following 

conclusions: 

(i) The asymptotic order of accuracy of the SC methods is roughly as pre­

dicted by the theory. 

(ii) The instability is rather mild, which could be expected from the 

results presented in section A2. 
* * (iii) SC(3,m,S) is considerably more accurate than SC(l,m,S ). 
* * SC(4,m,S) is more accurate than SC(3,m,S) for larger T. 
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* (iv) The accuracy increases as S decreases for T + 0. 
* * (v) SC(q,m1,s ) is more efficient than SC(q,m2,s ) if m1 < m2• max max 

A4. The effect of grid refinement 

It is well known that splitting methods loose accuracy if the mesh 

width his decreased, particularly for large time steps. Therefore, we 
* tested SC(q,2,S) by performing calculations for a sequence of h values with 

the test problem I. 

* Table AlO. sd-values (4.2) obtained by SC(q,2,S) with T = 1/10 when 

applied to problem I. 

SC(q,2,0) SC (q, 2, 10) SC(q,2,20) SC (q, 2,40) 
h TO 

q=l q=3 q=l q=3 q=l q=3 q=l q=3 

1/5 20 3.2 4.8 3.0 4.9 2.8 4.0 2.7 3. 1 

1/10 80 2.3 3.9 3.0 4.8 2.8 3.8 2.7 2.7 

1 /20 320 1.4 3.2 2.5 4.0 2.8 3.8 2.7 2.7 

1/40 1280 0.9 2.3 1.5 3.2 1. 7 3.4 2.0 2.7 

e 00 4.2 00 * 00 * * * 

All experiments listed in table AlO with q=3 are theoretically un­

stable (an asterisk for the stability boundary S given in (2.20b) means 
* that S exceeds its maximal value listed in table 2.2) and with q=l the 

* method is only unstable for S = 40 (see table AO). Because of the small 

number of integration steps (only 7) the instabilities have not yet devel­

oped to an extent which seriously affects the numerical solution. 

Therefore, these experiments suggest the following conclusions: 

(vi) * The accuracy of the SC(q,2,S) methods is strongly sensitive to 

grid refinement. 
* (vii) The sensitivity decreases if S increases. 

* (viii) The accuracy increases if S increases ash+ 0. 
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* AS. The effect of the parameters S and m 

* * The method SC(l,m,S) is completely defined if the parameters m...aml S 
* are specified. In particular, we are interested in the effect of S • In 

* table AIO this is investigated for the splitting method SC(q,m,S) for 

various values of h with m fixed (m=2) and q=l and q=3. In table All sd­

values (4.2) are given for h fixed (h=l/20) and various values of m and 
* * S (An asterisk indicates that S exceeds its maximal value listed in table 

AO). 

* Table All. Results obtained by SC(l,m,S) with -r = 1/10 when applied 

to problem I with h = 1/20. 

* * * * * m S =O S =10 S =20 S =40 S =80 

* k * * 1 1.1 1.6 1.7 1.8 1.9 
* * 2 1.4 2.5 2.8 2.7 2.3 

3 1. 7 2.8 3.2 2.9 2.7 

4 1.8 3.0 3.5 3.3 3.0 

5 2.0 3.2 3.7 4.0 3.4 

6 2.2 3.4 3.9 4.2 4.0 

From the results listed in table AIO and All we may draw the following 

conclusions: 

* (ix) For fixed hand m there is an optimal value for S • 

(x) This optimal value increases if h decreases and is less sensitive to 

changes in m. 

(xi) _The rate of convergence slows down for m > 2. 

* The conclusions (ix) - (xi) roughly apply to SC(3,m,S) too. 
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B. SMOOTHED SECOND ORDER EXTRAPOLATION 

Consider the following smoothed predictor 

(Bia) 

(Bib) Y(O) = 3y - 3y + y 
n n-1 n-2' 

~ where E and b0 are defined by (2.23) and F(t,u,v) denotes a Jacobi type 

splitting function as defined in section 3. The order of the predictor 

;<o) (Bl) is 3 (cf.(4]). Then the order of the method (2.1) - (2.5) with 

the predictor (B 1) is 4 ( cf. ( 2. 14') ) • 
~ The parameter a occurring iu F(t,u,v) ((3.2) - (3.4)) and the stability 

boundary 6 for this method can be derived in a similar way as for the SC 

method (see section 3). Theorem 3.1 implies that the resulting method is 

stable if (see table 2.1) 

~ where P (z1,z2) is defined by (3.7). The inequality P (z1,z2) ~ - 1/7 is 

satisfi:d by choosing Pm (a) ~ - I /7, a = ~ , ';; ~ CJ - ~ /7b0., where cr is an 

estimate of the spectral radius of 'df/ay (see section 3). The inequality 

Pm(z1 ,z2) :S: 0.4951 leads ;to the stability boundary 6 of the method. In 

table Bl these values for 6 are listed form= I until 4 ands* as large as 

allowed by (2.20a). 

Table Bl. Maximal stability boundaries for BDF4 combined with the 

third order predictor (BI) 

m=l m=2 m=3 m=4 
* s Q,! .98 9.4 43 131 

6(m) Q,i 120 755 3090 9040 
4 6/m c.c 120 47. I 38 .1 35.3 
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The method (2.1) - (2.5) with the predictor (Bib) and the predictor (Bl) 
* * are denoted by SC(2,m,S) and sc2(3,m,S ), respectively. In table B2 the sd-

values are listed for the modelproblem I obtained by SC(2,2,4) and 

SCz{3, 2,4). 

* If s 

Table B2. Results obtained by SC(2,2,4) and sc2(3,2,4) when applied 

to problem I with h = 1/10. 

T SC(2,2,4) _ SC 2 ( 3 , 2 , 4) 

1/5 2.5 3.0 

1/10 4. I 4.3 

1/20 5.2 5.2 

1/40 6.0 6.0 

I /80 6.8 6.9 

> 0 relation (All) indicates that ~sd ~ .9 for q=2 and ~sd ~ 1 .2 for 

q=3, as T + O. For SC(2,2,4) the third order behaviour is more or less re­

flected in table B2. The fourth order sc2(3,2,4) method shows only a third 

order behaviour. It appears that the smoothed predictor. (Bl) shows its 

third order behaviour only for relatively small integration steps just as 

the method of successive corrections [4]. 

The iterated BDF4 together with the predictor (Bl) generate a fourth 
* order accurate splitting method which is stable for the S -values listed 

in table Bl and T $ S(m)/a, where S(m) is also listed in table Bl (see also 

section 3). This method will be denoted by sc2 method. 

In table B3 the sd/ce-values are listed for problem I with h = 1/24 

obtained by sc 2• 

Table B3. sd/ce-values for problem I with h = 1/24 obtained by sc2 

Method T = 1/5 T = 1/10 T = 1/20 T = 1/40 

3.0/35 4.0/50 4.8/100 5.3/120 
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The order behaviour of the sc 2 method is not reflected in table B3. A com­

parison of the sd/ce-values for problem I with h = 1/24 obtained by SC and 

sc 2 as listed in table 4.2 and B3 show.s that the SC method is to be prefer­

red. However, for a given value of m the maximal boundaries for the 

smoothed second order extrapolation (Bl) as listed in table Bl are much 

larger than the maximal boundaries for the smoothed third order extrapola­

tion as listed in table 3.1. 
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