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Abstract: A fourth order fourstep ADI method is described for solving the systems of ordinary differential equations which are 
obtained when a (nonlinear) parabolic initial-boundary value problem in two dimensions is semi-discretized. The local time-discretiza
tion error and the stability conditions are derived. By numerical experiments it is demonstrated that the (asymptotic) fourth order 
behaviour does not degenerate if the time step increases to relatively large values. Also a comparison is made with the classical ADI 
method of Peaceman and Rachford showing the superiority of the fourth order method in the higher accuracy region, particularly in 
nonlinear problems. 
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I. Introduction 

In a few recent papers [ 1,4,5) multistep splitting methods were analysed for solving two-dimensional 
parabolic initial-boundary value problems. By using the method of lines the problem is first reduced to a 
(usually very large) system of ODE's of the explicit form 

dy dt = !( t • Y) • y( lo) =Yo, ( l.l) 

and then an implicit linear multistep method (LMM) is applied to obtain at each integration step an 
implicit equation for the numerical solution Yn+ 1 at tn+ 1: 

k 

Yn+1-bo'Tf(tn+1•Yn+1)= L [a1Yn+1-1+b1'Tf(t,,+1-1•Yn+l-I)] · 
1-1 

(l.2) 

Here, 'T is the integration step and {a1, b1} are coefficients defining the LMM. The papers mentioned above 
describe methods for approximating the solution of (1.2) by using a splitting of the right-hand side function 
f(t, y), e.g. f(t, y) = f 1(t, y) + /2(t, y) where / 1 and Ji have 'simply structured' Jacobian matrices. More 
generally, one may use splitting functions F(t, u, v) such that F(t, y, y)= /(t, y) and aF/iJu, aF/<Jv are 
again 'simply structured'. 

The method analysed and tested in this paper is a special case of a class of methods described in {S]. 
These methods explicitly use the information that ( 1.1) originates from a parabolic problem so that the 
eigenvalues of at/ ay will be located in a long narrow strip along the negative axis. At the same time, this is 
also a restriction in the applicability of these methods. 

An outline of the construction of the method is as follows. The system of equations ( 1.2) is solved by a 
(nonlinear) splitting method (e.g. ADI) and this iteration process is accelerated by using Chebyshev 
polynomials [9, p. 344]. The relaxation parameter in the splitting method is chosen such that the 
approximation obtained for the solution of (1.2) has a maximal order of accuracy as .,. -+ 0 for a given 
LMM and a given initial approximation used for starting the iteration process. The iteration parameters in 
the Chebyshev polynomials are chosen such that the lower frequencies in the initial error are strongly 
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damped. As a consequence we obtain a rather fast convergence to the solution of (l.2) in problems where 
the low frequencies are dominant in the solution of the initial~boundary value problem. For details of the 
construction we will refer to [5). 

In Section 2 the specification of the method will be given. its local error will be derived and the 
characteristic equation for a class of model problems will be analysed. In Section 3 the results of Section 2 
will be applied to the case where the LMM (1.2) is identified with the fourth order backward differentiation 
formula (BDF4) and where the initial approximation used in the iteration process is a ·smoothed' 
extrapolation formula. It will be shown that the resulting fourth order, fourstep splitting method has a real 
stability boundary bounded below by cm4, m being the number of iterations and c some constant 
(numerical verification reveals that c;;; 4). Finally, in Section 4 the method proposed in this paper is 
compared with the classical ADI method of Peaceman and Rachford [71 showing the superiority of the 
present method (particularly in nonlinear problems} if higher accuracies are desired. This favourable 
behaviour is due to the property that the fourth order method really behaves as a fourth order method even 
for relatively large integration steps (this behaviour is not shared by the high order splitting methods 
analysed in [4], the order of which degenerates for larger values of the time step). 

2. Multistep splitting methods for nonlinear equations 

2.1. Specification of the method 

The method constructed in [5] and more fully analysed in this paper is defined by 

y< 0> =some predictor formula for Yn+ 1, 

y<J+ I)= (µ.1 - ;\)yU> + (1 - µ.1 )yU- I) +>..1yu, j""' 0, 1, ... , m - l, 

Yn+I = y<m>, 

where y•• is determined by the two equations 

with 

wy** + (1 - "") y* - b0TF( tn+ 1,y** ,y*) =I, 

wy* + (1 - w) yUl - b0TF( In+ pyUl,y*) =I, 

k 

I= L [a1Yn+1-1+b(rf(tn+l-t•Yn+l-/}] 
1-1 

and F(t, u, v) a splitting function such that F(t,y, y)=f(t,y). 
The coefficients µ 1 and >.. 1 are defined by 

P.o ... 1, 
1j( wo) 

µ; = 2Wo T ( ) ' 
j+I Wo 

b+a 
wo= b-a' 

2 
Ao•--, 

b+a 

2µ. 
'A1 =b+'a• j=l,2, ... ,m-1, 

{2w - 1)(2S* + 1) 
a= 

(S* + "")2 ' 

2w - I 
b=--

w ' 

where 1j is the Chebyshev polynomial of degree j, w is the largest real solution of the equation 

(2.la) 

(2.lb) 

(2.2) 

(2.3) 

(2.4) 

(2S* + t)(cos 2: + 1 )w2 = [ 2 + w(cos ;m -1 }] (S* + w)2, (2.5) 

and S*( ;i. 0) is a free parameter to be used for maximizing the stability interval. The method is completely 



P.J. van der Houwen. H.B. de Vries/ Fourth order fourstep ADI 43 

defined if we specify yr0> by some predictor formula. :2 by choosing an appropriate LMM{a,, b1), and (m. 
S*) on basis of stability considerations. Notice that we do not need y<- 1> because p.0 = l. 

We remark that for a class of model problems (cf. Section 2.2) the interval [a, b] corresponds to the 
eigenvalue interval of those eigenvectors which are strongly damped by the Chebyshev iteration. Further
more, as we will see in the next section, the relaxation parameter w defined by (2.5) decreases the 
magnitude of the local error as r--> 0. 

2.2. The local error 

Let 1J denote the solution of (1.2) and define the iteration error eJ = yU> - 71. Furthermore, we write 
e* = y* - 'I) and s** = y** - 'I). The local error is given by 

(2.6) 

where we assume thaty1 = y(t1) for j ~ n (localizing assumption). Thus, when we are given the local error of 
the generating multistep method (1.2) and if we can find an estimate for the iteration error, then we have 
found an estimate for the local error of the splitting method (2.l)-(2.5). 

In order to derive a recurrence relation for the iteration error as ,,. --> 0 we first deduce from (2.2) the 
relations 1 

[w - Z 2 ]s* = [w- I+ Z1]e1 + T0(ile)l 2 + [ji)llle*ll + l\E*l\ 2 ), 

[w- Z 1]e** = [w -1 + Z2 ]e* + T0([[e*ll 2 + lle*l\lle**ll + lle**ll 2 ), 

(2.7) 

as 'T-> 0. Here 21 and Z2 are defined by boTaF I au and boTBF I av where the derivatives are evaluated at 
Un+!• 'I), 71). 

Let us assume that all iteration errors e1 are 0( Ts) as T-> 0 for s ~ 0. Then it follows from (2. 7) that 

e** = [w-z1r 1[w- l +z2 ](w-z2r 1[w- l + Z 1]E1 +0('T 2s+l) 

as 'T ..... 0. From (2.1) we derive the recurrence relation 

E1 + 1 =[µ1 -;\A]e1 + (l -µ 1 )e1_ 1 +0('T 2 '+ 1 ) asr->O, 

where the matrix A is defined by 

A =I - ["' - zl r 1 r"' - 1 + z2 H"' - z2 r 1 [ w - 1 + zl 1. 
Let us write 

e.=P.(A)e +c.,.is+I asT->0, 
J J 0 J 

where IJ· is the polynomial which satisfies the recurrence relation 

P0 =1, IJ+ 1 =(µ1 -X1A)PJ+(1-µ1 )PJ_ 1, j=O,l, ... 

(2.1') 

(2.8) 

(2.9) 

(2.10) 

and c1 yet to be determined. Substitution of (2.9) into (2. l ') reveals that the representation (2.9) is correct 
provided that c1 satisfies the recurrence relation 

c0 = 0, c1+ 1 = (µ 1 - ~\A)c1 +(I - µJc1 _ 1 + O(l) aST-> 0. 

Evidently, for j ~ m the coefficients c1 are bounded as ,. -> 0, hence 

e1 = P/ A )e0 + O{ T 2'+ 1) as T-> 0. (2.9') 

Finally, we have to determines, that is the order in r of e, as T-> 0. Suppose that the linear multistep 
method ( 1.2) and the predictor formula for y<0 l have orders of accuracy p and q, respectively. Then 

Eo = y<Ol - 'I) = /0) - y( In+ I)+ y( tn+ I) - 71 = 0( Tq+ I + Tp+ I)• 
1 For the sake of simplicity we will omit the unit matrix whenever a scalar quantity ( s !) is multiplied by it, e.g...., - Z 2 is written 

instead of wl - Z 2 • 
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From (2.9') it follows that apparently ei=O(Tq+ 1 +-rP+ 1) provided that lj(A) is bounded as T-+0 for 
j = 1, 2, ... , m. Thuss= min{p + 1, q +I}. Since it follows from (2.4) that Jj(A) can be identified with the 
shifted Chebyshev polynomial 

7j(Wo+W1A) -2 
lj(A)= 7j(Wo) 'Wi=b-a' 

so that lj(A) is bounded as T-+ 0 for all finite} and S*, we may summarize the results in the form of the 
following theorem. 

Theorem 2.1. The local error of the method (2.1)-(2.5) is given by 

y(m) _ y(tn+)) = [ / - P.,, (A)]{ 71 - y(tn+I}) + P ... (A )(y<Ol _ y( I,.+ I))+ 0( 7'lp+ 3 + 7'lq+ 3 ). 0 

(2.11) 
In practice, we often have p > q so that the term originating from the predictor formula will largely 

determine the magnitude of the local error. It is therefore of interest to estimate the norm of the 
amplification matrix P ... (A) as T-+ 0. In [5] an estimate is given which assumes the form 

llP ... (A)ll ~ D[ Tm( Wo + W1ao) + o( T/D11"')] as T-+ 0, (2.12) 

provided that s• ... 0 and where 

2w- l 
CXo=--2-· 

"' 
(2.13) 

From (2.4) and (2.5) it follows that T ... (w0 + w1a 0 ) = 0, i.e. P.,,(a0 ) = 0, hence by assuming that D = 0(7'') 
as .,. -+ 0 it follows from (2.12) and Theorem 2.1 that the order of consistency of the method (2.1 )-(2.5) is 
given by 

p=min{p,q+r+1-r/m), s•*o. (2.14) 

In our experiments we used fixed S* values for given m and therefore by virtue of (2.5) fixed values for w. 
Since D is related to w by the formula 

D = T; i( 1+"':,a~(7/2m) ). (2.13') 

we conclude that D does not depend on 7', i.e. r = 0, so that 

ft = min( p, q + I), S* "" 0. (2.14') 

Thus, even for zero order predictor formulas (q = 0) the method (2.1)-(2.5) is still a consistent integration 
method provided (of course) that the generating LMM is consistent ( p ;i. I). 

Apart from the estimate (2.12) it is of interest how the operator Pm(A) damps the lower and higher 
frequencies in the predictor error y< 0 >-y(tn+ 1). In [5] a result is given for the following class of model 
problems: 

(i) The matrices Z1 =b0T(aF/au)(tn+I• 11. 71) and Z 2 -b0T(aF;av)(tn+i• 71, 71) have a common 
eigensystem {e;}· 

(ii) The eigenvalues zy> of Zi, j = 1, 2, are negative. 

Theorem 2.2. Let the local errors of y<0> and y<m> have the eigenvector expansions 

Y<0>-y(t )='t°'c(i>e n+l L,,, 0 i' 

then 

for - s• ~ zf'>, zi'> < 0, 

otherwise. 0 
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We will choose the splitting function F( t, u, v) such that the eigenvectors e; of low frequency correspond 
to eigenvalues z)'>, j= 1, 2. on the right end of the eigenvalue interval (e.g. if F corresponds to ADI 
splitting). Then, Theorem 2.2 implies that the low frequencies in the local error of the predictor formula are 
damped by a factor D. Thus, if the problem is smooth so that no high frequencies are involved and if the 
LMM and the predictor formula themselves do not introduce high frequencies, we may expect a fast 
convergence to the solution of the LMM ( 1.2). 

2.3. The characteristic equation 

Here, we confine our considerations to the class of model problems specified in the preceding section. 
For such problems it was derived in [5] that the variational equation of the method (2.1)-(2.5) is given by 

..1yn+ I = Pm(A}.1y<0> + [ J - Pm(A)][J - Z1 - zi)- 1.12, (2.15) 

where ..1y<0 > denotes a perturbation of y<0>, and LlYn+ 1 and ...12 denote perturbations caused by perturbations 

of Yn• Y,,- 1.- • · •Yn+ 1-k· 

Let us assume that ..1y<0 > can also be expressed in terms of the perturbations .dy,,, .•• , .dy,, ... 1 -k• say 
k 

.1y<o>= °E c,(Zp Z2)..1Y,,+1-1· 
1-1 

Then using the definition of :E in (2.3) we find the characteristic equation 

k ~{ () ( ) 1-Pm(a)[ b,( >]} k-1 t -=~pm a C1 Z1,Z2 +1- - a,+-b Z1+Z2 t . 
1-1 Z1 Z2 0 

where a denotes an eigenvalue of A, i.e. 

1-z -z 
a= (2w - 1) ( )( 2 ) , w-z1 w-z2 

with z1 and z2 assuming values in the eigenvalue intervals of 2 1 and 2 2 • 

(2.16) 

(2.17) 

(2.18) 

The method (2.1)-(2.5) will be called stable if (2.17) has its roots on the unit disk for all z 1 and z2 in the 
eigenvalue intervals of Z 1 and 2 2 , respectively. This condition will be called the root condition. If the 
functions c1 are constant and b1 = 0, I> 0, this root condition usually leads to a condition on Pm( a) of the 
type 

-1<-D1 ~Pm(o:(zpz2 ))....:;D2 :i;;1, 

where D 1 and D2 are positive constants. 
In the following stability theorem T11m( ·)means cosh(arccosh( · )/m). 

(2.19) 

Theorem 2.3. Let a be the spectral radius of a// (}y at ( t,. ... 1, 1J) and let the root condition be satisfied if Pm 
satisfies (2.19) for all z1 and z2 in the eigenvalue intervals of Z 1 and 2 2 • Then the method (2.1)-(2.5) is stable 
if 

_ T11,,,(1;i>)+1 

"'= T11m(I/i>)-cos( '1T/2m)' 

P=2w(I +v'f=d)-2, 
b0 (1-../l-a) 

where a is the point where Pm( a) assumes the value D2 , i.e. 

a= {o 2w - 1 ( 
2 ( ) ) l+wcos('1T/2m)-(w-l)T11m(D2/D)] 

w (cos '1T/2m + l 

with D given by (2.13'). 

if D2 = 1, 

if D2 < l, 

(2.20a) 

(2.20b) 

(2.21) 
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I 

I I 
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I I b 
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-D 1. - - - - - - - - - - - - - - - - - - . - - - :--,. ·--~ 

I 

I 
-D - ... 

I I 
""'', - - - -· - -----· ----· --'\, 

Fig. 2.1. The polynomial P.,(a) form= 3. 

Proof. It may be helpful to consider the behaviour of Pm( a) as a function of a (see Fig. 2.1). Pm( a) assumes 
the value I at a= 0 and it has a zero at a= a0 where a0 is defined in (2.13). Furthermore, Pm( a) assumes a 
minimal maximum norm of magnitude D defined in (2.13) over the interval [a, b]. We observe that the 
eigenvalue interval of the matrix A is given by (cf. (2.4) and (2.18)) 

[a, b], a= (2w - 1) S +I , b = 2w- l S +I . (2.22} 
(ts + w )2 w s + w. 

where S = b0-ro. 

It is now evident from (2.19} that D ::s;; D, hence from (2.13') it easily follows that w should satisfy 
(2.20a). Thus, (2.20a) implies that Pm( a)~ - D 1 for all eigenvalues a E [a, bJ. 

The condition Pm(a)~D2 for all aE[a, bJ is satisfied if a~ii where ii is the (fi.rst) point where 
Pm( a)= D2 (see Fig. 2.1), i.e. the point defined by (2.21). From (2.22) it follows that a";?. ii if S satisfies the 
inequality 

(2w-1) S+ I 2 -;;.ii. 
os+w) 

Replacing S by b0-ro leads to condition (2.20b). D 

From this theorem it follows that (2.20a) presents an upperbound for wand by observing that S* is an 
increasing function of w (cf. (2.5)) an upperbound for S*. Th.is means that only a limited number of low 
frequencies in the local error of y<0 J can be strongly damped (cf. Theorem 2.2). Of course, by decreasing -r 
the number of strongly damped eigenvectors can be increased. 

The condition (2.20b) on the integration step r is illustrated in the following subsections. 

2.3.1. Stability boundaries for the method of successive corrections 
Suppose we choose S* = 0, then w ""'Aj == µ1 = 1 and the method reduces to the method of successive 

corrections analysed in [4]. For this method we have D = 0 so that the equation for ii reduces to 

Pm( ii)= (1 - ar = D2 • 

Solving this equation and substitution into (2.20b) yields 

2D 1/ 2 m 4m 
T & 2 = (1 + O(l/m2 )) as m--+ oo. 

""'b0o(l - D~/2 m) b0o ln(l/D2 ) 
(2.20'b) 
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Table 2.1 
Stability boundaries for the method of successive corrections based on BDF4 and extrapolation 

Predictor formula q - D,"" Pm( a)"" Di fj(m"' 2) j3(m»l) 

Y10>= Yn 0 -0.7493.;; P,.,(a).;; I oO 00 

Y10>= 2y. - Yn-1 - 5.;; P,.,(4').;; l 00 00 

Y(O) _ 3yn -3Yn-1 + Yn-2 2 - ~ ... p ,.,((I') .;; 0.4951 21.7 1 l.9m 

y<O) = 4y. -6Yn- l +4y.,_2 - Yn-3 3 -{s ... P.,,(a) ... 0.1999 8.4 5.2m 

Let us in particular consider the BDF4 formula defined by (cf. [6. p. 242]) 

(2.23) 

and let the predictor y< 0 > be defined by extrapolation. In order to satisfy the root condition we obtain the 
bounds for Pm(o:) listed in Table 2.1 (for a proof we refer to the Appendix). 

From (2.20'b) the stability boundaries f3 = {J(m) can now be derived. Evidently, they are infinitely large if 
D2 = 1, that is in the case of zero order and first order extrapolation. For higher order. extrapolation 
predictors we have conditional stability. In Table 2.1 the values of P are listed for m == 2 and for m » I. 
From these values we may conclude that the method of successive corrections based on BDF4 is of less 
practical value if higher order predictors are used. 

2.3.2. Optimal stability boundaries for the iterated BDF4 
Again we consider the BDF4 with the second and third order extrapolation predictors listed in Table 

2.1, but now with the maximal value for wallowed by condition (2.20a). In Table 2.2 the corresponding S* 
and {3 values are listed for various values of m. 

We notice that the stability boundary obtained for m = 2 and for optimal (maximal) S* is already 
considerably larger than that for m = 2 and S* = 0. 

2.3.3. Behaviour of the stability boundary for large values of m 
In order to get an impression of the stability boundary for large values of m we prove the following 

corollary of Theorem 2.3. 

Corollary 2.1. If the conditions of Theorem 2.3 are satisfied, then 

64 2 2 

P "' m [ l + 0( 1 / 2 )] as m - oo, 
= b0 [ 16m2 - 'lT 2w - 4c.ldi) m 

(2.24a) 

/3~ [ 2 
2;J[ 2 2]m4[1+0(1/m 2 )] asw=O(m 2 ), 

b0 'II' + 4d I d I - d 2 
(2.24b) 

Table 2.2 
Stability boundaries for BDF4 combined with second and third order extrapolation as predictor formula 

m=I m-2 m=3 m-4 m=S m-6 

s• .. 0.98 9.4 43 131 316 649 
q-2 

fJ.,,, 13.8 98 413 1224 2898 5908 
s• is 0.48 4 18 54 129 264 

q=3 
fJ-.:;. 4 26 109 319 751 1526 
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I 
d 1 = arccosh -::- , 

D 
D2 

d 2 = arccosh D, 

with D = min{D1, D2} and D given by (2.13'). 

Proof. From (2.21) it follows that form» I 

2w- l 
ii= 2 [l+wc-(w-l)cosh(d2/m)] 

w (c +I) 

2w - I [ di ( I di ( I ) )] = 2+wc-w-Hw-1)- I +---+0 -
w2(c+l) m2 12m2 m 4 

where we have written c = cos("' /2m ). Expansion of c yields for ii 

I [ w( w2 + 4di) ( 1 ) ( I ) ( w )] ii=-2- +o- +o- +o-. 
w 8m2 w mi m4 

From (2.20b) it follows that 

fJ = b8"'j I + o( 1 / w) + o( ii)] . 
oa 

Substitution of ii and using w = 0(m2 ) yields (2.24a). 
The upperbound (2.24b) is obtained by substituting 

16m2 
( ( I ) ) w=w= 2 2 1+0 -2 . 

'1T +4d1 m 
0 

Thus, under the conditions of Theorem 2.3 the stability boundary f3 = fJ(m) has at least an O(m4 ) 

behaviour as m-+ oo. In this connection, we remark that explicit Runge-Kutta methods with maximal real 
stability interval have a stability boundary fJ(m) of O(m2 ) as m-+ oo (see [8]). The partial implicitness of 
the splitting method (2.l)-(2.5) is apparently compensated by a considerably larger stability interval (we 
recall that fJ = oo if D2 = I). However, if we use higher order predictors we still need a relatively large 
number of iterations if TO is large. 

As an example we consider BDF4 with third order extrapolation for y< 0 >. Choosing S* maximal (i.e. 
w == w) we find from (2.24) and table 2.1 ( D1 = -fs, D2 == 0.1999) 

P(m) =-: 1.12 m4 as m »I. 

Hence, for given 'T and a we need at least 

=(~)1/4 
m 1.12 

iterations in order to have stability. For instance, if ra = 1000 we need 6 iterations which is rather 
expensive. 

3. A fourth order splitting method with large stability boundaries 

The stability boundaries derived in the preceding section for the fourth order method based on BDF4 
and third order extrapolation as predictor formula, are relatively low. This is caused by a too fast increase 
of Pm(o:) as a.-+ 0, that is the high frequencies are not damped sufficiently. We can not correct this by 
choosing S* larger because S* is limited to the values given in Table 2.2. In this section we investigate the 
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effect of performing an adjusted Jacobi iteration on an extrapolation predictor in order to remove the high 
frequencies. This iteration leads to the following smoothed predictor 

y<O> =}; + bo-rF( tn+ I' y<O>' y<O>) • 
k 

y<0 > = E a,Yn+ 1-1• 
1-1 

where F(t, u, v) denotes a Jacobi type splitting function which is required to satisfy the conditions 

F( t. y' y) = I ( t. y) • 
a.F -
du= -80/, 

( 3. la) 

(3.lb) 

(3.2) 

with I the identity matrix, a an estimate of the spectral radius of IJf ;ay. and 8 a positive parameter to be 
determined below. 

Let us define f: by specifying its ith component ft; according to 

(3.3) 

[ af;]_, 
Y; = -80 ~ , i = 1, 2, .. ., N, (3.4) 

where v 1, v2,. •• ; u 1, u2 , ••• andy1,y2, ••• denote the components of the vectors v, u andy, respectively, and 
N is the number of vector components. 

Then using the definition of 1: in (2.3) we prove the following comparison theorem. 

Theorem 3.1. Let the method (2.1 )-(2.5) be stable if y<0> is defined by (3.1 b) and if Pm( a) satisfies (2.19). Then 
this method is also stable if the predictor is given by _v<0> (defined by (3.l)) and Pm( a) satisfies the condition 

z + 6b0Ta 
-D 1 ~ 1 Ob _Pm(a(z 1,z2 )):i;:;D2 , z=z1 +z2 • (3.5) + 0TIJ 

Proof. The variational equation for the predictor y<0 > is given by 

-<O>- ~ a1/ + (b1/b0 )(Z1 + Z2 ) + a1(Z 1 + Z2 + 9b0Tdl) 
ily - .t... 1 Ob - .1yn+t-i· 

1-1 + oro 

Substitution into (2.17) reveals that the characteristic equation assumes the form 

,..k= ~ { ( )a1 +(b1/b0 )2+a1(2+8b0To) ( b1 ) 1-Pm(a)},..k-t 
;) .t... P,., a 1 Ob • + a,+ b z l - ;) . 

1-1 + o"0 o z 
(3.6) 

It is easily verified that this equation can be written in the form 
k -

k "{· - ( ) ( b1 )l-Pm(zpz2 )} k-I t = ;'::. a ,P"' 21' z 2 + a r + bo z 1 - 2 t (3.6') 

where 

- z + 8b0'1'0 
Pm(z., z2) = l + BboTdP.,,( a(z 1, z2 )), z = 2 1 + z2 . (3.7) 

We observe that replacing the predictor yl0> (defined by (3.1)) by the predictor y<0> (defined by (3.lb)) 
implies that in the characteristic equation one should replace Pm by Pm. Since this latter equation satisfies 
the root condition if Pm satisfies (2.19), equation (3.6') will also satisfy the root condition if -D1 ~ P,., ~ D2 , 

that is if (3.5) is satisfied. O 
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P (z/2 ,z/2;/ 
m / 

....••.•...• - .. r .... 0.1999 

I -·. -· .... -- - .. ;.-\". 

z -2s* ~--·········· 
--+ z 

0 

Fig. 3.1. The function f>..,(z/2, z/2) for - a< - Sa. 

We apply this theorem to the case where b0 and I are defined by the BDF4 given by (2.23), and where 
y<01 is given by third order extrapolation. Usingy<0> as defined by (3.1) as the predictor formula, Theorem 
3.1 implies that the resulting method is stable if (see Table 2.1) 

- is~ Pm{z1, Z2)" 0.1999. (3.5') 

Let us assume that Pm( a)~ -is for z; ;;i: -S*, that is S* is bounded by the values listed in Table 2.2 for 
q = 3. Then Pm(z1, z2 ) is certainly bounded below by - is if z + 8b0-ra ~ 0. If z + Ob0-rii < 0 (this happens 
when 0 <a/ii) then Pm(z 1, z2 ) is bounded below by -is if 

-b0Ta + 6b0-ro 1 
----'----:..- :::. - -

l + Ob0Tii 7 15 • 

By choosing 

O=-ti. (3.8} 

this inequality is satisfied. 
In order to satisfy the inequality Pm(z1, z2 )" 0.1999 it is sufficient to consider the case z;" -S*. Let us 

consider the function Pm(z1, z:J along the line z1 + z2 = const. Since in this region Pm(a(z 1, z2 )) is larger as 
a(z 1, z2 ) is smaller, we find a maximal value of Pm(z1, z2 } at the point where a(z1, z2 ) is minimal. From the 
definition of a it follows that along the line z1 + z2 = const. the minimum is reached at z1 = z2 . 

Thus the function Pm(z 1, z2 ) is maximal in magnitude along the line z1 = z2 = ~z. In Fig. 3.1 the 
behaviour is illustrated. If i is the point where Pm assumes a maximum value in the interval [ -b0-ra, 

-2S*], then we should choose -rO such that Pm(-i/2, -i/2)" 0.1999. This yields an upper bound for Td 
which is just the stability boundary P of the method. In Table 3.1 these values are listed form= l until 6 
and S* as large as allowed by (2.20a). A comparison with the maximal boundaries attainable for the third 
order extrapolation as listed in Table 2.2 reveals that we have gained a factor of about 3~ by performing 
the Jacobi iteration (3.1). For large values of m the stability boundary tends to behave as 4m4 • 

Summmarizing, we conclude that the iterated BDF4 together with the predictor (3.1) where y<0 l is 

Table 3.1 
Maximal stability boundaries for BDF4 combined with the founh order predictor (3.l) 

m •I m•2 m-3 m-=4 m=5 m=6 

s• 0.48 4 18 54 129 264 
/J(m) 20 IOI 385 1095 2549 5150 
/J/m4 20 6.3 4.8 4.3 4.1 4.0 
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defined by third order extrapolation, generate a fourth order accurate splitting method which is stable for 
the S*-values listed in Table 3.1 and for integration steps satisfying the condition 

.8( m) 
'T~ -_-. 

(1 
(3.9) 

This method will be denoted by SC method since it can be considered as a variant of the method of 
successive corrections introduced in [4] (see also Section 2.3.l). 

In actual application of the method we will choose form the smallest integer such that (3.9) is satisfied 
when 'T and a are prescribed. 

4. Numerical experiments 

4.1. Methods used 

We tested the SC method by comparing it with the ADI method of Peaceman and Rachford {7). This 
method is denoted by PR(v) in the tables of results, where v indicates the number of Newton iterations 
used for solving each implicit relation. In the SC method we performed only one Newton iteration in 
solving both (2.2) and (3.1 ). 

The splitting function F(t, u, v) used in the SC method was defined by the same ADI splitting function 
as used in the PR method. The Jacobian matrices a F / 8u and a F / av needed in the Newton iterations were 
updated at the beginning of each integration step. The examples are such that an analytical expression for 
the Jacobian matrices was available. 

The estimate a needed for determining a safe number of iterations was either given in analytical form or 
computed by applying Gerschgorin's theorem to the matrix a11ay = aF ;au+ BF ;av (this hardly requires 
additional effort). 

The starting values needed by the SC method were obtained by computing them from the exact values 
prescribed at t_ 3 , t_ 2 , t_ 1 and t 0 • 

4.2. Numerical examples 

The problems we chose were all of the form 

-=d--+-- + -- + -- +v au [a2U' a2u'] [au]' [au1·· 
at ax~ ax~ ax, ax2 ' 

O~t,.;;;; l, (4.1) 

where the diffusion coefficient d and the term v are functions of U, t, x 1 and x 2 to be specified below, and 
the integer rand s are nonlinearity parameters. The domain in the (x 1, x 2 )·plane is given by the square 
0 =o; x 1, x 2 ,.;;; 1; the Dirichlet boundary and the initial conditions at t 0 = 0 follow from the exact solution 
given in Table 4.1. 

Table4.1 
Specification of the testproblems 

Example Solution d r s v jj 

I +e-'(x~ + x£) 0 -e-'(x; + x~ +4)-2 8h- 2 

Il I +e-'(x~ + xf) T+i 2 -e-'l4d +(I +4e-'Xxr + xi)] 

III i(x1 + x 2 ) sin 2'1Tt 
X1+ X2 

3 0 
3 (X1 + X2)2 . 24 sin2 2wt 

-[- sm32.,,., 
2(1+1) 4 I+ I (l+r)h2 

+ 2- 1r(x 1 + x 2 ) cos 2'1TI) 
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The initial-boundary value problems were semi-discretized by using standard differences on a uniform 
grid with grid points (jh, lh ). The components of the right-hand side function of the resulting system of 
ODE's (I.I) are evidently coupled according to a five-point molecule which allows the use of ADI splitting 
functions. 

In Examples I and III we used for a the expression listed in Table 4. l. In Example II, a Gerschgorin 
estimate was used. 

4.3. Numerical results 

In the tables of results we listed the accuracy measured by the number sd of correct significant digits 
defined by 

sd = -log10 lmaximum absolute error at t = 11 (4.2) 

and the computational effort ce measured by the total number of right-hand side evaluations needed in the 
integration process. 

Problem I belongs to the class of model problems specified in Section 2.2, so that the stability theory can 
be rigorously applied. The results in Table 4.2 show that the SC method does behave in a stable way. 

The second order and fourth order behaviour of the PR and SC method is also reflected in the sd-values 
(on halving the integration step the sd-value should increase with log10 2.D, p being the order of the method). 
Due to the fourth order behaviour of the SC method this method is much more accurate than the PR 
method for the same step size. This makes the fourth order method much more efficient than the PR 
method if high accuracy is desired. For example, to get four correct digits the PR method needs 80 
right-hand side evaluations, whereas the SC method requires only 45 evaluations. 

Problem II is mildly nonlinear; as a consequence one Newton iteration for solving the implicit relations 
is not sufficient if larger integration steps are used (indicated by * in Table 4.3). For smaller steps we see a 
similar behaviour as exhibited by Problem I. 

Problem III is rather nonlinear with a rapidly changing spectral radius. It turned out to be a more 
difficult problem for both methods than Problem II. For -r ~ 1/40 both methods failed because the Newton 

Table 4.2 
sd/ce-values obtained for Problem I with h -1/24 

Method 

PR(I) 
SC 

Table 4.3 

T= 1/2 

l.1/4 
2.0/22 

2.0/10 
4.0/45 

sd/ce-values obtained for Problem II with h = 1/24 

Method 

PR(I) 
PR(2) 
SC 

Table4.4 

1'-1/5 

• 
1.6/20 
• 

.,.-1;10 

• 
2.4/40 
• 

sd/ce-values obtained for Problem III with h -1/24 

Method 

PR(!) 
PR{2) 
SC 

nd/40 
.. 
• .. 

T = l/IO 
2.6/20 
5.1/90 

T = 1/20 

2.0/40 
3.1/80 
6.1/140 

T -1/80 

2.1/160 
3.0/320 
5.9/390 

.,-1120 

3.2/40 
6.3/140 

T= 1/40 

3.9/80 
7.4/280 

1'= 1/40 

3.6/80 
3.7/160 
7.5/212 

.,.., 1/160 

2.7/320 
4.1/640 
6.9/676 

., .. 1/80 

4.5/160 
8.7/400 

T"" J/80 

4.3/160 
4.3/320 
8.7/400 



P.J. van der Houwen, H.B. de Vries / Fourth order fours1ep ADI 53 

process did not converge (indicated by • ). Again the SC method is superior to the PR method if high 
accuracies are desired. 

4.4. Concluding remarks 

In the high accuracy region, the experiments reported in the preceding section show the superiority of 
the SC method over the classical PR method because of the order four behaviour which is maintained for 
realistic integration steps. In this connection we remark that the method of successive corrections with 
S* = 0, "'= A.1 = µ.1 = 1, analysed in [4], shows its fourth order behaviour only for relatively small 
integration steps (relative to the spectral radius). For realistic integration steps the order of this method 
degenerates so that it is hardly more efficient than e.g. the PR method. By virtue of the effective fourth 
order behaviour of the SC method, a variable order splitting method, e.g. composed of the SC and the PR 
method, may turn out to be an efficient method for solving parabolic equations with an arbitrary degree of 
accuracy. 

In the SC method described in this paper there are several choices which are not necessarily the best 
possible. For instance, the Jacobi iteration (3.1) may be replaced by Gauss-Seidel iteration (although this 
would complicate the theoretical analysis considerably). Furthermore, the relaxation parameter w (or 
equivalently the parameter S*) and the number of iterations m were chosen such that the effective stability 
boundary ft(m)/m is as large as possible. An alternative may be the use of another predictor formula (e.g. 
linear extrapolation) which yields an infinite stability boundary (cf. Table 2.1). This leaves wand m free for 
minimizing the local error. Finally, the choice of the splitting function F(t, u, v ): Alternatives are odd-even 
hopscotch splitting which reduces the computational effort of solving the implicit relations, and line 
hopscotch which allows the integration of equations with mixed derivatives (for a treatment of hopscotch 
splittings we refer to [2,3]). 

In the Appendix a lot of additional experiments are reported which given some insight into these 
questions. 

Appendix A 

For the BDF4 defined by (2.23) with y<0> defined by extrapolation we show how the bounds D1 and D2 

(cf. (2.19)) for P,.,(a) listed in Table 2.1 are obtained by applying Hurwitz's criterion to the characteristic 
equation 

(Al) 

Here, z=z 1 +z2 and y<0>,.,,I:1_ 1a1y,,+ 1 - 1, where the coefficients a1 are specified in Table 2.1. Note that 
(A 1 ) is a special case of (2.17). 

We also describe a number of experiments for the linear problem I with the splitting method (2.1)-(2.5) 
based on BDF4. These results show the effect of the parameter S* and the number of iterations m, the 
dependence of the accuracy on the mesh spacing h, the order of accuracy, the use of other predictor 
formulas and the effect of violating the stability conditions. 

In order to test the theory developed for the splitting method (2.1)-(2.5) by performing a large number 
of experiments, it is convenient to denote this splitting method in a slightly different manner than in 
Section 3. The method (2.1)-(2.5) with a given value of m and S* will be denoted by SC(q, m, S*) where q 
indicates the predictor formula, i.e. q = 1, 2, 3 and 4 corresponding to the first order extrapolation, second 
order extrapolation, third order extrapolation and the smoothed predictor (3.1) where y<0l is defined by 
third order extrapolation, respectively. We recall that the generating multistep formula defining b0 and 2 is 
the BDF4 defined by (2.23). 
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The results in the following sections have led us to the choice of the SC method defined in Section 3, i.e. 

l (0, 20), 

2 [20, 101), 

SC= SC(4, m, s.=0 x), 
3 [101, 385), 

m= if TUE 
[385, 1095), 4 

5 [1095, 2549), 

6 [2549, 5150). 

Here, a is an estimate of the spectral radius of Bf/By as used in the predictor formula (3.l) and si:ax is 
given in Table 3.1 (S!ax is the maximal value of S* allowed by condition (2.20a) for the third order 
extrapolation (see also Table 2.2)). 

In our experiments for the linear example I (see Table 4.1) presented in this appendix, the starting values 
needed in the SC( q, m, S*) method were prescribed by the exact solution. 

In the tables of results we also listed the maximal step 'T111 ax allowed by the stability condition (2.20b) for 
S* > 0 and (2.20'b) for S* = 0. For more details concerning the implementation and notation we refer to 
Section 4. 

Al. The stability interval 

Writing (Al) as 

S4 + C1f 3 + C2r 2 + C3r + C4 = 0 (Al') 

we find by applying Hurwitz's criterion [6, p. 80] that (Al') has its roots on the unit disk if 

Y; ~ 0, i = 0(1)4, Y1Y2'YJ - Y12Y4 - Yo"'d ~ 0, (A2) 
where 

• • • 103 I - Pm( a) 
"Yo=l-c1+c2-C3+c4=l+Pm(a)(a1-a2+a3-a4)+ 25 1-z , 

• • • 52 1 - Pm(a) 
-y1=4-2c1+2c3 -4c4 =4+ 2Pm(a)(a 1 - a3 + 2a4) + 25 1 _ z , 

• 54 I - Pm(a) 
y2=6-2c2+6c4=6+2Pm(a)(a2-3a4)- 25 l -z • 

• • • 76 1 - Pm (ex) 
-y3 =4+2c1 -2c3 -4c4 =4+2Pm(a)(a3-a1 +2a4 )- 25 l-z · 

4 • 1-Pm(a) 
-y4 =l+c1+c2 +c3 +c4 =1-Pm(cx)La1 - 1 . 

1-1 - z 

Note that for all predictor formulas listed in Table 2.1 L.J_ 1a1 = l, i.e. 

1-Pm(a) 
y4= -z 1-z 

(A3) 

Evidently the conditions (A2) are satisfied for all negative z if we put P,,,(a)= O. because (Al) then 
corresponds to the BDF4. For nonzero Pm( a) we have the following theorem. 

Theorem At. The characteristic equation (Al) has its roots on the unit disk for all negative z 1 and z 2 if Pm( a) 
satisfies the condition (2.19), i.e. 

-1 ~ -D 1 "P,,,(a)<;D2 " l, 

where for each extrapolation formula the bounds D1 and D2 are already given in Table 2.1. 
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Proof. (I) Consider the third order extrapolation formula (i.e. q = 3 in Table 2.1 ). The relations for Y; with 
i = 0, 1, 2, 3 (see (A3)) can be simplified as follows: 

( ) 
103 1 - pm (a) 

y0 =1+15Pm a +15 l • -z 

1-P,.,(a)( 2 ) 
Y1 = l 625 - 4z , -z 

l-Pm{a)(3ll_ 6 ) 
Y2 = I - z 2S z . 

_ 1 - P,,,(a) (-li _ ) 
"'/3 - } 2S 4z • -z 

It can be easily shown that if z ~ 0 and - fs ~Pm( a)~ I. then Y; ;;i. 0 for all i. Substituting y, in the 
nonlinear condition in (A2) gives after a tedious calculation the inequality 

where 

(l -P,,,(~))2 R(z)~o. 
(1 - z) 

R(z} = r3z 3 + r2z 2 + r1z + r0 , 

r3 = 320 Pm( a)-64, r2 = 92.16 - 471.04 Pm( a}, 

r1 = 203.5712 Pm{a}-65.9456, r0 = 17.69472- 32.44032 Pm( a). 

(A4} 

It is easily numerically verified that R(z) ;i. 0 if z ~ 0 and Pm(a) ~ 0.1999. Thus, the inequality (A4) holds 
for all z ~ 0 and - l ~ P,,,( a)~ 0.1999. From Hurwitz's criterion (see (A2)) it follows that the characteristic 
equation (A I) with the third order extrapolation formula has its roots on the unit disk if z ~ 0 and 

-fs ~ Pm(a) ~ 0.1999. 

(2) Consider the first order extrapolation formula (i.e. q = 1 in Table 2.1). The relations for Y; with i = 0, 
J, 2, 3 (see (A3)) may now be written as follows: 

( ) 103 I - Pm (a) 
Yo= 1 + 3 Pm a + "F 1 - z ' 

_ ( ) .R 1 - Pm( a) 
y 1 -4+4P,,, a + 25 l-z , 

1-Pm(a)( 4 ) 
Y2 = 4 + l - E - 2z , -z 

= 1 - P,,,( a)(~ _ 4 ) 
Y3 l _ z 2s z . 

It can be easily shown that if z ~ 0 and - t ~ P,..(a) ~ 1 then Y; ;;i. 0 for all i. Substitution of 'f; in the 
nonlinear condition in (A2) gives 

where 

I - P,,,(:) R(z) ;;i. 0, (A5) 
(1 - z) 

r3 = -64, r2 = 92.16 + 97.28 P'"( a)- 30.72 P,;(a), 

r 1 = -62.9456-70.8608Pm(a)+ ll.3664P,;(a), 

r0 = 17.69472 + 13.76256 Pm( a) - 0.73728 P~( a). 

It is easily established that for Pm( a) in the interval [- t. 1] r2 ;;,,: 0, r1 < 0 and r0 ;;,,: 0. Thus, the inequality 
(AS) ho1ds for all z < 0 and Pm( a) in the interval [-t, I]. Again, application of Hurwitz's criterion reveals 
that the characteristic equation (Al) with the first order extrapolation formula has its roots on the unit disk 
if z ~ 0 and - J <Pm( a)~ I. 

In a completely analogous manner we can analyse the BDF4 with the other extrapolation formulas and 
derive for P,..(a) the bounds already given in Table 2.1. 0 
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Remark 1. When in (Al) the variables z1 and z2 are largely negative, then the characteristic equation can be 
approximated by 

4 

t4 =Pm( a) E a,r4-I. (A6) 
1-1 

Applying Hurwitz's criterion to this equation we obtain a condition on Pm(a) for each extrapolation 
formula. For the zero order, first order, second order and third order extrapolation the bounds (D 1, D2 ) for 
Pm(a) are in this case (I, 1), (f. I), (t, !) and (-/s, ~).respectively. 

A2. Stability tests 

In this section the stability of Sqq, m, S*) is tested. Therefore the Sqq, m, S*) method is applied to 
the model problem I with a large number of integration steps and a relatively large step, say .,. = fo. 

The second order method sq1, m, S*) should not give difficulties, because theoretically it is 
unconditionally stable provided S* is not too large (see Table AO). This is confirmed by the results in Table 
Al, where the model problem I is integrated from t = 0 until t = te = 10. Here the accuracy is measured in 
the points t1 = {j lj =I, 2, ... , 10) by sd""' -log 10 jmaximum absolute error in t). Note that the maximal 
stable step -r"""' follows from Theorem 2.3. 

The fourth order method SC(3, m, S*) is only stable for relatively small values of T. Taking again 
problem I we found the results listed in Table A2. 

Here, an asterisk means instability (for Tm..,. it indicates the S* is larger than allowed by Table 2.2). 

Table AO 
Maximal S* values for the first order predictor ( q = I) 

m 
S"=-

Table Al 

I 
2.96 

2 
33.2 

3 
157 

4 
486 

Results obtained by SC(!, m, s•) with 1' == l/10 when applied to problem I with t, = 10 

Method h T'max t == 1 t=2 t==3 1=4 1-5 t-6 

SC(l, 2, 10) I 
00 3.0 3.4 3.9 4.3 4.7 5.2 Iii 

sq1, 4, 10) L 
00 3.0 3.4 3.9 4.3 4.8 5.2 20 

Table A2 
Results obtained by SC(3, m, s•) with 1'"' fo when applied lo problem I with'•= JO 

Method h 1'ma:il 1-1 1=2 t=3 t=4 1=5 t=6 

SC(3, 2, 10) 1/10 • 4.8 4.5 3.7 2.7 1.6 0.5 
SC(3, 4, 10) 1/10 0.12 6.1 6.5 6.9 7.4 7.8 8.3 
SC(3, 2. 10) 1/20 • 4.0 2.8 1.4 0.1 • • 
SC(3,4. JO) 1/20 0.03 4.5 3.7 2.7 1.5 0.2 • 
SC(3,4, 40) 1/20 0.08 5.3 5.7 6.1 6.1 5.7 5.5 
SC(3,4,52) 1/20 0.10 5.2 5.6 6.0 6.5 6.9 7.3 
SC(3, 4, 80) 1/20 • 5.0 5.2 4.8 4.1 3.5 2.9 

Table A3 

5 
1176 

t=1 

5.6 

5.6 

t= 7 

• 
8.7 

4.9 
7.7 
2.3 

Results obtained by SC(3, 4, 10) with 1' = ~ • 0.0294 ... when applied to problem I with r, = 10 

Method h 1'..,.,. 1= I 1-2 1=3 1=4 t=S 1-6 1-1 

SC(3,4, 10) I 0.0295 8.0 8.4 8.8 9.3 9.7 10.2 10.6 iii 

t=8 

6.0 

6.0 

1- 8 

• 
9.1 

• 
• 
4.7 
8.0 
1.6 

1=8 

11.0 

6 
2425 

t=9 

6.5 

6.5 

t=9 

• 
9.6 

• .. 
4.2 
8.2 
LO 

t - 9 

11.5 

I= 10 

6.9 

6.9 

1=10 

• 
10.0 
.. 
• 
3.7 
8.2 
0.4 

1-IO 

11.9 
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According to the theory only the experiment SC(3, 4, 10) with h = +o is stable. Yet if T is sufficiently close 
to Trnax the instabilities seem to vanish. By decreasing the step size T such that T ~ Tmax we should get 
completely stable results. In Table A3 these results are listed confirming the theory. 

A.2.1. Amplification factors 
In order to see by what factor perturbations are amplified we have plotted the magnitude of the largest 

characteristic root of equation (Al) with the third order extrapolation (q = 3) as a function of a (see (2.18)) 
with z1 = z2 = -!z. In Figs. Al(a), (b) the value of lrlmax is shown for SC(3, 2, 10) and SC(3, 4, 10), 
respectively. These plots show that amplifications by a factor as large as 1.4 occur if a is less than 0.1 and 
0.05, respectively. 

This happens if -ro is larger than 300 in SC(3, 2, 10) and larger than 700 in SC(3, 4, 10). For convenience 
we list for both methods in Table A4 the values of "' defined by (2.5), b defined in (2.4), a 0 defined in 
(2.13), D defined by (2.13') and ii given by (2.21 ). The SC(3, 2, 10) method is unstable unless the integration 
step,,. is so small that a lies in the interval [ii, 0.83], i.e. To< 1.14. It can be easily shown that if z1 = z2 = !z 
and z ~ 0 then a (given by (2.18)) lies in the interval [O, I]. Notice that the curves in Figs. Al(a) and (b) are 
obtained by calculating the values of ltlmax for a large number of values of a in the interval (0, l]. Fig. 
Al(b) shows that SC(3, 4, 10) has a stability interval [a, b], i.e. 'TO< 94.7 (see Table A4 and Theorem 2.3); 
serious instabilities are to be expected if a -+ 0.05, i.e. To becomes as large as 700. 

A.2.2. Smoothed third order extrapolation 
Finally, we consider the method SC(4, 4, S*) with its extended stability intervals (see Section 3). 

Theoretically, the experiment in Table A5 should be stable which is confirmed by the sd-values obtained. 

fr;;! max li;lmax 
Cl 

"! - b 
Cl 

~ -
Cl 

"! -
0 • 
0 

Cl .. 
Cl 

.. 0 ... .. 
0 Cl 

0 0 .. ... 
0 0 

,_ 
ao 1& ao 0 a Cl 

"! a "! a 
0 0.00 a.to a.co o.ao 0.10 1.oa 0 0.00 o.zo 0.40 a.so o.eo 1.00 

Fig. Al. The value of 1r1.,..,. of (Al) for (a) SC(3, 2, 10) and (b) SC(3, 4, 10) as a function of o: with z1 - : 2 - ~z. 
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Table A4 
The values of"'· b, a0 , D and ii in the SC(3. 2, 10) and SC(3, 4, JO) method 

Method 

SC{3, 2, 10) 
SC(3, 4, JO) 

Table AS 

2.36 
2.67 

b 

1.5763 
1.6255 

0.6679 
0.6088 

Results obtained by SC(4, 4, S*) with -r =Jo when applied to problem I with t, -10 

Method h 7max I= l I= 2 t= 3 r = 4 t=5 t=6 

SC(4, 4, 10) I 0.1 I 5.5 5.7 6.6 6.5 7.1 7.1 iO 

SC(4, 4, 40) I 0.28 5.3 5.7 6.2 6.6 7.0 7.5 2o 

SC(4, 4, 52) I 0.33 5.2 5.6 6.0 6.5 6.9 7.3 2o 

D 

0.1492 
0.0087 

I= 7 

7.6 

7.9 

7.8 

1=8 

7.8 

8.3 

8.2 

0.4685 
0.3074 

r=9 

8.3 

8.8 

8.6 

1=10 

8.8 

9.2 

9.1 

In order to suppress instabilities in the high frequency region we performed an adjusted Jacobi iteration 
on the third order extrapolation predictor which leads to the SC{4, m, S*) method (see Section 3). It is well 
known that also Point Gauss-Seidel (PGS) iteration removes the high frequencies from the iteration error. 
Replacing the Jacobi iteration (3.1) by Point Gauss-Seidel iteration complicates the theoretical analysis 
considerably. Therefore, we give only some numerical results for the linear model problem I with a third 
order extrapolation predictor smoothed by PGS iteration. 

The PGS iteration leads to the following smoothed predictor: 

Y•(O) = 2: + b rF*(t y·(O) y(Ol) 
0 n+ l' ' ' 

/ 0)= 4yn -6Yn-I + 4Yn-2 -yn-3• 

where F*( t, u, v) denotes a Gauss-Seidel type splitting function. 
Let us define F* by specifying its ith component F( according to 

Fj""( l, U, V) = J;( l, U I,. •. , U; _I• U;, V; +I• ... , V N), 

(A7a) 

(A7b) 

(A8) 

where Vp v2 , ••. and up u 2,. .. denote the components of the vectors v and u, respectively, and N is the 
number of vector components. Then the components y/ 0 >, i = I, 2,. .. , N, of the smoothed predictor y< 0 > 

(A 7a) are determined by solving 

(A9) 

for y and setting y/ 0l= y, i = l(l)N. One (nonlinear) Point Gauss-Seidel iteration is now defined by 
(approximately) solving (A9) performing just one Newton iteration for each scalar equation. For the linear 
Problem I only linear scalar equations have to be solved. The iteration matrix in the PGS iteration, i.e. 
a F* I au and a F" / av, does not have the same eigensystem for the class of model problems specified in 
Section 2.2. 

The iterated BDF4 together with the predictor (A7) will be denoted by PGSSC(4, m, S*). In Table A6 
some results obtained by this method are listed for the linear Example I. 

TableA6 
Results obtained by PGSSC( 4, 4, S*) with ,. - ;\; when applied to Problem I with 1 < = JO 

Method h I= I I= 2 I .. J 1=4 1=5 r=6 r=7 /=8 t=9 (=JO 

PGSSC(4, 4, 10) I 4.9 2.7 0.4 • * • * .. • 2o 

PGSSC(4, 4, 40) I 5.3 5.7 S.7 5.3 4.6 4.1 4.2 4.9 6.2 7.6 :iii 

PGSSC(4, 4, 52) l 5.2 5.6 6.0 6.S 6.9 7.4 7.8 8.2 8.7 9.1 2o 
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Only the PGSSC(4. 4, 52) method gives stable results and is competitive with the SC(4, 4, 52) method 
(see Table AS). Comparing the results listed in Tables AS and A6 it seems that it is better to smooth the 
third order extrapolation predictor with Jacobi iteration (see Section 3) than with Point Gauss-Seidel 
iteration ((A 7)-(A9)). 

A3. The order of accuracy 

From (4.2) it follows that a p-th order method satisfies the relation 

.Asd := sd( -r )- sd( a-r) = log10aP as 'T--+ 0. (AIO) 

Thus, on halving the step length we have Asd == 0.3 p; for the SC(q, m, S*) method we expect (cf. (2.14')) 

.Asd = 0.3 min{4, q + l}. S* fixed and=>= 0. (Al I) 

If S* = 0 the SC method reduces to the method discussed in [4] where it was shown that 

Asd == 0.3 min{4, q + 2m}, S* = 0. (A12) 

In the following tables of results the sd-values (cf. (4.2}) are listed for the model problem I obtained by 
the various methods. We also listed the maximal step 'Tmax allowed by the stability conditions (see Theorem 
2.3 and Section 2.3. l }. 

The results obtained for S* = 0 should show a fourth order behaviour both for q =I, 3 and m = 2, 4. 
Hence by virtue of (Al2) we expect Llsd = 1.2 as 'T-+ 0. For q = l this behaviour is roughly confirmed by 
Tables A 7 and AS, but for q = 3 a much higher order of accuracy is shown in spite of the integration steps 
exceeding the maximal stable step 'Tmax· If S* > 0 relation (All) indicates that Asd = 0.6 for q = 1 and 
Asd = 1.2 for q = 3, 4, as T--.. 0. This behaviour is more or less reflected in the tables of results. The most 

Table A7 
Results obtained by SC(q, 2, S") when applied to Problem I with h = ;\, 

'T SC(q, 2, 0) SC(q, 2. 4) SC(l, 2, 20) SC(I, 2, 30) 
q-1 q-3 q=I q=3 q-4 

l.S 2.6 1.9 3.1 3.S 2.3 2.2 
I 2.3 3.9 3.2 4.6 S.3 2.8 2.7 iO 
I 3.3 4.6 3.9 6.4 6.S 3.4 3.3 2o 
I 4.4 s.s 4.4 7.6 7.6 3.9 3.9 40 
I s.s 9.2 4.9 8.7 8.8 4.S 4.4 80 

TmaA 00 0.0105 00 0.033 0.13 00 00 

Table AS 
Results obtained by SC( q, 4, S*) when applied to Problem I with h = to 
T SC(q. 4, 0) SC(q. 4, 10) SC(q.4, 20) SC(q,4, 52) 

q"' l q=3 q=I q• 3 q-1 q=3 q•I q=3 q=4 

1.8 2.9 2.9 4.1 3.2 4.4 2.8 4.0 4.1 
l 2.8 4.4 4.3 6.1 3.7 5.8 3.2 S.2 S.2 lo 
I 3.9 5.9 4.S 7.3 4.1 6.7 3.7 6.3 6.3 20 
I S.2 8.3 s.o 8.3 4.6 7.8 .4.2 7.4 7.S ~ 
l 6.6 lO.O S.4 9.3 S.I 8.9 4.7 8.6 8.7 ;;;; 

Tmax 00 0.023 00 0.12 00 0.193 00 0.39 1.3 
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Table A9 
Results obtained by SC(4, m, S*) when applied to Problem I with h .. io 
.,. SC(4, 2, 4) SC(4, 4. 52) 

2.9 4.0 
I 4.l 5.2 iO 
I 6.1 6.3 io 
I 7.6 7.4 40 
I 8.7 8.6 ii-0 

7 ma:11. 0.03 0.33 

interesting method seems to be SC(4, m, S*) because of its rather high accuracy, particularly for larger 
integration steps. 

In order to increase the 'stiffness' of the problem we choose h ==to. In Table A9 results are listed 
obtained by Sq4, m, S*). The results again show the correct order behaviour. We also observe that 
comparing sd-values obtained for equal m/1'-values, that is requiring roughly the same computational 
effort, reveals that SC(4, 2, 4) is more efficient than SC(4, 4, 52), although SC(4, 2, 4) is stable only for 
.,. ==;lo and -Jo. A similar conclusion can be drawn for SC( q, 2, 4) and SC( q, 4, 52) from Tables A 7 and A8, 
where q = l, 3 and 4. 

Comparing the results listed in Tables A7, AS and A9 obtained by SC(4, 2, 4) and SC(4, 4, 52) we 
observe that for large T-values the SC(4, 2, 4) method is more sensitive to grid refinement than the SC(4, 4, 
52) method. 

From the results presented in this section we may draw the following conclusions: 
(i) The asymptotic order of accuracy of the SC methods is roughly as predicted by the theory. 

(ii) The instability is rather mild, which could be expected from the results presented in Section A2. 
(ill) SC(3, m, S*) is considerably more accurate than SC(l, m, S*). SC(4, m, S*) is more accurate than 

SC(3, m, S*) for larger 'T. 

(iv) The accuracy increases as S* decreases for.,.~ 0. 
(v) SC(q, m 1, s:..,.) is more efficient than SC(q, m 2 , S!ax) if m 1 < m2 . 

A4. The effect of grid refinement 

It is well known that splitting methods loose accuracy if the mesh width h is decreased, particularly for 
large time steps. Therefore, we tested SC(q, 2, S*) by performing calculations for a sequence of h values 
with the test problem I. 

All experiments listed in Table AIO with q = 3 are theoretically unstable (an asterisk for the stability 
boundary fJ given in (2.20b) means that S* exceeds its maximal value listed in Table 2.2) and with q = 1 the 

Table AIO 
sd-values (4.2) obtained by SC(q. 2, s•) with T = fc; when applied to Problem I 

h 1'11 SC(q, 2, 0) SC(q,2, 10) SC(q, 2, 20} SC(q, 2. 40} 
q-1 q=3 q-1 q ... 3 q-1 q~J q-1 q=3 

20 3.2 4.8 3.0 4.9 2.8 4.0 2.7 3. l 
I 80 2.3 3.9 3.0 4.8 2.8 3.8 2.7 2.7 Iii 
I 320 1.4 3.2 2.S 4.0 2.8 3.8 2.7 2.7 20 
I 1280 0.9 2.3 l.S 3.2 1.7 3.4 2.0 2.7 co 

/3 00 8.4 00 • 00 * * .. 
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Table All 
Results obtained by SC(!. m, S*) with T -,\;when applied to Problem I with h =-lo 
m s• = o s•= 10 S*=20 S*=40 s•-80 

I 1.1 1.6* 1.7* 1.8* 1.9* 

2 1.4 2.5 2.8 2.7* 2.3* 

3 1.7 2.8 3.2 2.9 2.7 

4 1.8 3.0 3.5 3.3 3.0 

5 2.0 3.2 3.7 4.0 3.4 

6 2.2 3.4 3.9 4.2 4.0 

method is only unstable for S* ""40 (see Table AO). Because of the small number of integration steps (only 
7) the instabilities have not yet developed to an extent which seriously affects the numerical solution. 

Therefore, these experiments suggest the following conclusions: 
(vi) The accuracy of the SC{q, 2, S*) methods is strongly sensitive to grid refinement. 

(vii) The sensitivity decreases if S* increases. 
(viii) The accuracy increases if S* increases ash-+ 0. 

A5. The effect of the parameters S* and m 

The method SC{l, m, S*) is completely defined if the parameters m and S* are specified. In particular. 
we are interested in the effect of s•. In Table AlO this is investigated for the splitting method SC(q, m, S*) 
for various values of h with m fixed (m = 2) and q = 1 and q = 3. In Table All sd-values (4.2) are given for 
h fixed (h = i) and various values of m and S* (An asterisk indicates that S* exceeds its maximal value 
listed in Table AO). 

From the results listed in Table AIO and Al 1 we may draw the following conclusions. 
(ix) For fixed h and m there is an optimal value for S*. 
(x) This optimal value increases if h decreases and is less sensitive to changes in m. 

(xi) The rate of convergence slows down form> 2. 
The conclusions (ix)-(xi) roughly apply to SC(3. m, S*) too. 

Appendix B. Smoothed second order extrapolation 

Consider the following smoothed predictor 

ji(O) =I+ b0TF( In+ 1, p< 0 >, y< 0 >), (Bla) 

y'0 )= 3y., - 3Yn-I + Yn-2• (Blb) 

where I and b<1 are defined by (2.23) and F(t. u, v) denotes a Jacobi type splitting function as defined in 

Table BI 
Maximal stability boundaries for BDF4 combined with the 
third order predictor (BI) 

m .. I m=2 m=3 m•4 

S*= 0.98 9.4 43 131 
fl(m) = 120 755 3090 9040 
fJ/m4 .. 120 47.1 38.1 35.3 

Table 82 
Results obtained by SC(2. 2. 4) and SC2 (3. 2. 4) when applied 
to Problem I with h = ;~ 

T SC(2, 2. 4) SC2(3. 2. 4) 

2.5 3.0 
I 4.1 4.3 1U 
I 

5.2 5.2 iO 
I 

:;;, 6.0 6.0 
I 6.8 6.9 ii(, 
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Table BJ 
sd/ce-values for problem I with h - 2~ obtained by SC2 

Method 

3.0/35 

'T=·_!_ 
IO 

4.0/50 4.8/100 5.3/120 

Section 3. The order of the predictor y<0 > (BI) is 3 (cf. [4]). Then the order of the method (2.1)-(2.5) with 
the predictor (BI) is 4 (cf. (2.14')). 

The parameter fJ occurring in F(t, u, v) ((3.2)-(3.4)) and the stability boundary p for this method can be 
derived in a similar way as for the SC method (see Section 3). Theorem 3.1 implies that the resulting 
method is stable if (see Table 2.1) 

(B2) 

where Pm(z 1, z 2 ) is defined by (3.7). The inequality Pm(z 1, z2 ) ;;i. - ~ is satisfied by choosing Pm(o:) ;;i. - L 
8 =i. a ;;i. o - tb0 .,., where a is an estimate of the spectral radius of af/ay (see Section 3). The inequality 
.P,.,(z1, z2 )~ 0.4951 leads to the stability boundary {J of the method. In table Bl these values for fJ are listed 
for m = I until 4 and S* as large as allowed by (2.20a). 

The method (2.1)-(2.5) with the predictor (Blb) and the predictor (BI) are denoted by SC(2, m, S*) and 
SC2(3, m, S*), respectively. In Table B2 the sd-values are listed for the modelproblem I obtained by SC(2, 
2, 4) and SC2(3, 2, 4). 

If S* > 0 relation (Al 1) indicates that .Asd l!: 0.9 for q = 2 and .dsd l!: 1.2 for q = 3, as.,.-+ 0. For SC(2, 2, 
4) the third order behaviour is more or less reflected in Table B2. The fourth order SC2 (3, 2. 4) method 
shows only a third order behaviour. It appears that the smoothed predictor (BI) shows its third order 
behaviour only for relatively small integration steps just as the method of successive corrections [4]. 

The iterated BDF4 together with the predictor (BI) generate a fourth order accurate splitting method 
which is stable for the S*-values listed in Table BI and.,...; /1(m)/5, where /3(m) is also listed in Table Bl 
(see also Section 3). This method will be denoted by SC2 method. 

In Table B3 the sd/ce-values are listed for problem I with h = -h obtained by SC2• 

The order behaviour of the SC2 method is not reflected in Table B3. A comparison of the sd/ce-values 
for problem I with h = iA obtained by SC and SC2 as listed in Tables 4.2 and B3 shows that the SC method 
is to be preferred. However, for a given value of m the maximal boundaries for the smoothed second order 
extrapolation (BI) as listed in Table Bl are much larger than the maximal boundaries for the smoothed 
third order extrapolation as listed in Table 3.1. 
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