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INTRODUCTION

This report R 53, Int 2 is the samond of a number of interim

reports giving information about computations carried out by the
Computation Department of the Mathematical Centre on behalf of

the National Aeronautical Research Institute in Amsterdam under
contract R 53. The final report R 53 that will be made up even-
tually will not contain much else than the final results of
the computations and, moreover, will be not availgble for gene-
ral distribution. As however in the course of the computations
a lot of information has to be compiled for internal use, and
part of this information may be of some value to others, this
compilation will be done in the form of interim reports, that

wlill be made available for limited circulation.
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{
T. Devzlopment of 3‘ n)

4 bl

in ¥Factorisl—-Series,

1. The coelficiertn ;‘( n) cf the FcurlprweXpan51on of the senwsolu«n
tions of th: Mathieu's equation obey the following recurrence v
relations. (C.f. Mac-Lachlan: Theocry and Application of M

athiern-
functions. )

(H*1+q> B(n)m q Bén): ;
: {1 L)

--(2r+1)‘“ ;;12_1 q(B(Q;l_Z,S + Bé;f)l)f-‘- 0 (r>1)

1T n is odd

and
(1=1) Bgn) qB(n) 0
Zy o(n) L (n) (n) \_ | (1.1%)
(1=477) Bop® = alBypip + Bppl5)= 0 (v 2) }

if n is even.

The Tirst formulae of both (1.1) and (1.1') differ from the
general oncs, but one can easily seethnat we can put them in that

general form by the introduction of B(n) )
m. In that way (1.1} becomes

] with wn-positive index

 am(zr+1)?;*B§§l1 - q<ﬂ£§la (n) 1= © g ’#i
- dea}
(- - 50,
and (1.1')
(a-4r-) 1 J(n) <E«§»§3-:» * Baplet= O 5
Bén)x ) a (1.2%)

Now it immediately fallows, that the (n) should have apn aiti=
metrical character for intemervalues of r, i.e. in those points that
interest us only. Moreover these B(n) should get small for larce
positive values of r. These two condlt jons can only be satisfied if
a has its characteristic wvalue.

“ We shall now assume that a ac'tually has its characterisetic
value b, and try to solve the ’Bm by means of expansion in Zacto-
rra.lwserles , making use of the fact, that we are looking for the
small solution. Then the initial conditions are automaitiocally satis-
- fied. ‘
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r in (1.2')Y by r + % we get the formulae (1.2), and so

we see that the two cases of odd and even values of n are essentially
We shall th
translate the obtained results feor odd values of n.

2 ® R e p 18. C i ‘4

identical. earefore only consider even values of n and

The small solution of the differencew,quations (1.2') can
asymptotically be decribed by A(~q/4)  (x!)”° for lorge values of r,

cin) (2.1)

(r-p)!(r+p)! - (1! )2
C:E,n) shall tend to a finite value if r ~.v , that is idependent ef
$
p. We expand C( n) in a factorial-series:
’
(n) = (2.2)
p So™

in which - (() n) is ifdependent eof p, but depends only on the way in
which the B( ? are normnlized.

Then from (1.2') we get, substituting for a its characteristic

value bn:

o,
(rz-- T) (r=p+l) (r+p+1) Cl(_n; - (r--p)(rwp'*l)(r*P)(r*'F*'l)
?
a(n) (n) _
r-—--l,p Cr+1,p 0
(2.3)
In this
(n) — (;an) (r—p+l):
CI‘+1 s P " ;\ r+ -ptl). ’ (2.4)
d
- > by (n) 2 bn\ (nl(rwp-l-l)l
e ..................... — = — — - e AR S
ePe D) (repel) (oepel) O = (2F- D (meprl) 3y
- (2.5)
with . ‘
(n) _ () L _(n)  (n)  p(n) . (n) (1) {n)
0D i ++4,D 5*’3,13 C 43, '+2,p "'*'2:13 "+1!p ¢+1,p
(2.6)
(n) ,4n) (n) peing defined by
the a5 p? ‘q”pnarﬁ c?’p eing def: 4
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b
(ro - ---~) (r+p+l)=(r+’=p) (r+ -p-1)(r+: -p=2 )+

with (n) (
n) _ ,(n) (n) (n)
o= N + ﬁ.. .
s P Y.+d,p T B +3,p +5,p * h“ﬁ+2yp ‘+2,p 7 (2.9)
the g I and h."“,p following from
(r+p) (r+p+l)=(r+ ' =p=-1) (r+/=p=-2)+ g, p(r-l-*?--p-l)i- h | b (2,10)
“y vy

Substituting (2.4), (2.5) and (2, _ 8) into (2.3), =nd equating the

coefficients of the terms with Focek with the snme wmlue of ¥
we get
~ {n) - (n) 2 (n) = O
‘> P 5P © =, D
- (n) (n) (n) y (n)
n in N n
+ |
(ga'}‘}’ 3’+3,p) f“"}rp (h:'l"g’p +2,P) +2’P
(n) (n) - 2 (n) —
k+1,p ‘:?*+1,p T “I' ‘}r%yp B O’ (2‘ ll)

a recuarrence-relation, from which we can calculnte the +'s succes-—

sively, making use of (n% = 0 for '~ 0, and first taking | (()n;
T2, ’

which gives values of B(n) that differ from the ones we want, by &
multiplicative constant, that can be determined later on with the

aid of the normalization-rule .. én)g 1.
From (2.7) and (2.10) we get
b .
(n) \ . 2 n: ;
- ()=2p=1) - (P-p)© - B ;
o,p = = (=2p=1) - (?-p) T 5
h - b(n) = - (! *p)z - (7 =2p=-2)+ EE l- (2.12)
9y P ‘s P 4 *
(n) _
& "y P &,:}’p ’ N
and so we can write (2.11) im the form, if we introduce ’;“n = - %,



Yy D n 30 -1,p
3 ) 2 (x) (2.13)
c s R ¢! .
+ ( T pm?) ( ;}“pmg) + ¥ 3 *;...g,p T v‘ 333 P = 0
| .

Wwe can put this recurrence-formuie in a form more suited for

computation by the introduction of an auxiliary qu.rtity.

n)r o2 ) Gepes) (- (R Liope2)? s

T ¢ <) (2.14)
n J 3*2,1}
Then we have
C(n) _ qy2 4. 0 L (np _ v (n) .15
Pe D - | (: P 1) * o n - Q”“l,p Y =3 y P ? ( : Sa)
and Trom (2.14) arnd (2.152)
(n) 2 (n)  _ (o_onzy i(n)
1"3,‘0 A gmayp ( 2p D) 3‘};“4}}3 y
) (n) (n)
n SRS ¢! n,
+ - A | . (Qu 15b
S P (~2p) i=1,p )

3. Now resuming the results we find that for even values of n we have

o - . (n)
4 - {_ I T . i; .
Ba., (-1) W - ; (3.1)
with
ari O . -b
%ﬁﬁ MZE (3.3)
(n}
s (3.4)
(3.5)
(3.1')
with _ _
T = 9- (3*&2!)
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.
and if N = 4“ (3.3")
(n) _ t,. VN s an) _ <(n) z A
‘ﬁx ﬁ;p - f("”“P“l) ( Sl ¢ 2)+ ’Hn P g”l,p “ 3m3,p (3'4 )
c(n) _ -2 ,(n) | (v on_yy (n) g
e SRR o ( 2p-1) v—=1,p (3.57)

4. As to the convergence of the factorial-serics,
consider the even case. Let

we shall again

i - 4. 1
}:P 9 P ( )

Substituting this into (2.13) yields

2 (n) | ) . . (n)
()=1) : o m(fwl}-az v 2 ~(4p+6) +(p+1)° +2p+3+z=nﬁ~,;_l,p
L2 -
x R 2, (n) , . (n)
(=2 A y=p=2 )T+ + ~— < = 0
( p 3) ;( p ) “g’p > “2 ' “3,p
(4.2)
For large values of v this gives asymptotically
2,
-+ R
) {}‘1} - D M -+ Umﬁj f(,n) + 31 _ M +
vy D ? 3 It 2 / =1 » D - ;
2 (4# 3)
(p+2)"+(2p+3) (2p+4)+ )+ ()
~- Y = {
;2 - ‘”2!p
Futting = (an)) « gives k = 2p+3 and k = 2p+2, Therefore,
T
)

f(}l_; - (v=2p-3;! and (n})) ~ (V-2p-2)! gives +the asymptetiec form
*.. = i# | é*“ 4

¢f w2 independent solutions of the difference—cquation (2.13). The
third solution is a smll onec. If we suppose for it that

(1) 3 (n> 0n) 33 (ﬂ)
U — O | a d v 9 -then the
\}v?p ( . ’““»ﬁ..,p) I ¥ ) ‘*1,13 ( P)
asymptotic fornlof*(2,13) becomes
b ’ i 2 vl (n) L 7 2 | (n) - \
(7=2p=3) (v-p-2)° + X [ ¥ fo2p FVT Wz, = O (4.4,

(4.5)

The largest solution behaves as (V=2p-2)! So we miake a safe
estimate of the region ef cﬁnvergence of the fact orlalwserles, if we
suppose that the f(n)_
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non-zero—~coefficient, therefore

{(n)

~ A =2p-2)! t (4.6)

Then the general term of the factorial-series behaves as

(4.7)
Therefore wa have (absolute) convergence as long as

I">"‘"" P - 1, *(408)

the convergence being of the same type as that of a hyperharmonic
ceries with exponent “r-i-p+2 (supposing A% 0).
Similarly in the case of odd n

j(n) _
Gy v AT, (4.71)

and there is convergence as long as
I')""‘P - 2, (4-8‘)

the convergence being of the same rate as in the case ol a hyper-—
harmonic series with exponent r+p+3.

5. Fer different values of p we get different factorial-series.
We may refer to the general theory of factorial-series as de=
veloped by Norlund (Cf. his work on "Differenzenrechnung") as
to the fact that those series define analytical functions with-
in their region on convergence, which are identical there.

In particular we have (for even n again)

(n)
Y

(n) ' u-:i T ;\i X \
BZI‘ = %r-}-p T I r-—~p+v§3

It

It




Therefore,

== 1{\ (kn) - (‘4--2}:)*;?} ;!’(n) . (5!' 2)

Similarly for odd n,

(n) —  \/ ( n) _ TN ARV,
v g PF 1 SN Ve P (V < D 3

h.w_

(5.2')

6. Another way of expanding
the following
using

the Bén) in factoriél series we get in
from Béi) A(wf)r/(rz)"g and

manner. Again starting

(6.1)
Therefore, 1f we put B } (6.2)
we find
llm.D(n) (6.3)
r>co
¥e now expand D(n) in a factorial series
(n) _
Dr = (644)
It then follows from (6.3) that
(n) _ V ( n) €
G [} 0, (6.5 )

From (1.2') we get the recurrence-relation

“(4r2“bn)(2r+%)(2r%)g D;f;-n) + (2r+3) (2r+3) (2r+d) (2r-3) D(n)

+ q Dﬁﬁ% 0 (6.6)

In this we have
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win)  (n) _ (n) [, 5.2 (1)
L5 =0 R — 20l w04 - bn} - (6.9)
X |
(4r2~bn)m(2r+%+v ) (2rmdty )= 2y (2r+54) )+() +3)° -b_. (6.10)
Finslly, . -~
bl (2I'+"‘é")r } (1'1)

(2r+%)(2r+%)(2r+%0(2r~%)D§Ei= 2 ‘“““f?“"”“*‘ V

2
X (2r+2)! - *
o c12’° (n) (6.11)
%:41(2r+%+V)1 V44
New (6.6) yields
oT
P+ Bo A -
1th
. S=% -b . - (6.13)

Fer the difference-cquation (6.12) we can give independent

solutions, with asymptotic behaviour respectively as

-V
()2 ey, (6.14)
)%
y+1).

Y

wnd * Tl(:) ~ %)'—“%3-,- : (6,16)

Assuming again that the first and largest one enters into the

solution we look for with a non-zero-coefficient, we make a sa.e

estimate of the region of convergence of the factorial—series for
B(g). We then have |

gi)r\) A, 2“V09-1): (6.17)
and so in () - GO (n)
n, __ g--gz l DY,




We see, that we are sure of convergence for any value of r,

-V -
the terms going down as 2 Y °r-+ . The final convergence of the

factorial-series now obtained is therefore much better than that of
those with the K ~coefficients. It appeared, however, that at the
beginning the convergence of the 5" ~series was much better, if p
was suitably chosen. For this reason we preferred the last ones for
actual computation. On the other hand we do still mention the T\ -

series, as they will q%pear to be usefull when slow—converging

series involving the B should be summed.

For odd values of n, we put

co (n)
Borly = ()7 \[g ; (e;gim (6.20)
Then (m) () 6. 21)
3 0D
v D - Dol D e (6.22)
and ()

n Vi PS-Y
___l_L_MA 2"""" ))21' % (6.23%)

7. We shall not give a detailed proof of the fact, that the y -

nd Y| -series also give the same interpolatory functions of the
(n) , only the relation between the (y - and TL —coefficient will be

glven.

Putting
I - (7.1)
4% (r+p) ! (r+)-p) !
into (3.1), ene gets *
{3‘:3 |
r —
B, - (=) %
V 21T y=0
r X0
_ (=a)" (7.2)
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and therefore
I

lr(1n) — ;:; W (v, p) ‘ (7.3)
For the W's we find at first
LQO(\),p)-: \fg? 1im - e 2‘) (7.4)
r—5 47 (r+p)! (r+y-p)!
and the recurrcnce-relation
2§ WiV, p)=(§=3-2p+V) (§=3+2p-¥) % _; (¥, D) (7.5)
This yields
“Jj (V,p)= Jout j:w...:..z..g; :%:gp:ii (7.6)
Equally for odd n
'rhgn) :ib W 4,p) (3»’?1)3 (7.3")
with )
W, (¥,p)= 2 (7.4")
2 3 W), p)=(-5-2p+ M) (§+3+20-V ), (V,P) (7.5")
Ve (jm%—2n+\>)l (j+%+2p-V)! (7.6")

W.(VW,p)= 2 ‘
J 7 j! (%-—2;)-!-)))1 (3+2p-V ).

We only give the relations between 7} and a’ forsake of comple-
teness, as a matter of fact one can better derive the values of
directly from their recurrence-relation.
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1T, Development of the Fourier-coefficients g(;;) of
the non-periodical solution.

8, We define a non-periodic solution gen(z) in the same way as

Mac-Lachlan, only the normalization is done in that way that we
put the non-periodic part exactly +z sen(z) so0 We have

gen(z)z + Z Sen(z) + i g(g) cosS m 2z (8.1)
MmO
and correspondingly for the modified functions
_ — (n) ‘
Ge, (2) z Se (z)+ Z g '’ cosh m z. (8.2)
For the gén) exist the recurrence-relations (Cf. Mac-ILachlan)
(n) (n) _ (n)
(bn”l“Q) gl - g g3 = « 2 B 1
(8e3)
27 (n) (n) (n) \_ (n)
[bn“(2r+l) J g23:'+1 - q(g2:r'+3 + gzrwl)“ - 2( 2:"""':")323:"+1
(r21)
for odd values of n
wne (n) ()
n n) .
bn- go - q 8 o = O
(n) (n); 5 (n)y_ _ , w(n) '
(bn"4)g o -~ qfg 4 + 2 g o )= = 4 B > (8«-3')
2y _(n) (n) (n) \_ (n)
(bn"d'r )ng - q(g21~+2 * Eopap)= = 4T Bon
“ (r>» 2)

for even values of ni

The first equation of (83‘3) can again be fit inko the general
Torm bj(f 'i):he i?tzs'oduc‘tion of non-positive values of m and the condi«
n 131 '

t 1ioh 8.1 = 877, which implies that the gg;}ll s should have. a

symmetrical character for integer values of 1.

The first two equations of (8.3') can be fit into the general
form in a somewhat more complicated manner. Not gc()n) should be the
value of the function that obeys the general recurrence-relation
in the %oint r=0, but 2 ggn) , and further there is the condition
ggg)rz g g) y also implying a symmetrical character of gég)

teger values of r. Therefore in this case, we shall denote a func-

for in-

tion that obeys the general recurrence-relation and assume the

values gég) for »r> 0O by géﬁ} then we have
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(n) _ (n) .
S O N %é Q (84:4)
and from the first equ:tion of (8.3')
(n) _ n
on % a8 ) (8.5)

n ,.
9. If B(m) can be intcrpolated by an analytical function obeying
the reecurrcnce-rcelation of the B, one easily sees that that

dpin) ' B(n)
-~ -----5-—-—------ = - —— . is a particular solution of the rccurrence-
m xr
(n)

relation of the g s that becomes small for large values of r. The

general small ...;olu'tlon of the recurrence-relation is therefore,
with X indcpendent of m

(n)
B _
(n) 2 . (n) .
g = = % + A B _ ' (90» 1)
m D r m
as the recurrence-relations are the same as for B(g) but for the
inhomogenecous term.
Therefore
(n)_ _ r ¢ { £\-T (n)l -
T 5 (-0 oo (<O B (9.,2)

is a solution, because
9 "~ (n)l _

- 3 %F B(g) + 3 log(w‘E)Béln)

Defining B( n) by one of the factorial-series of the prm.eﬂing
chapter one can also gdefino T( n) accordlng to (9.2).

Now one has :
M(g).._. T(n) + ﬁ(n) B(g) (3:3)

,3 (n) ean be calculated from the first relation of (8.3) or from
(8.5), according to whether n is odd or even.
For odd n one has

(bn*"l"Q.) T(il) - q T(n) + 3(1’1) { (bnmlmq)B(Q)-q B(%l);g )

but according to (1.1)

a B(;l) (b -1 + q) B(il), SO
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(bn;l“Q)T(§)”q T(?) (9.4)
2 q 51 .

1

g(n) _ al,, .

For even n this becomes

b_ T(g) - 24 T(g) . @(n) {bn B(él) - 24 Bén)% _ 0

but B(cr}l):'- 0, 80

n:“ O .
N, T——W (9.5)

(n)

10, Differentiation of the factorial-series for the Bm easily
gives the following developments of the T]gn-)
OO (n) |
(n) _ (?:(:l)f_'%; | J v \ .
n eca. T2r+1" r+p+l) ; | m \"(r pY)+
£\ (r+p+1)}3 (10.1)

the \{‘-function being defined as the logarithmical derivative of

the factorial-functior

=~ (n) |
(n) _ .y /2 v N 2r4-§+3 V}+ log 2
" Tarsy T 70 V:VZC’ (2r+5+7)! | + ; " 210. 2)
n even o N g)n)

(n) _ (-1)"<* ,g { . " } |
T2I‘ 5 4D l % r“p+\} 1 \{" (I', P+\})+ \P(NP) {10‘3)

00 = (In) |
Téﬁ) = m.._..._)—..tx-‘- Z m {Ur (2r+5+U)+ 1°gt 27] (10,9

ox

V 27 V=Q
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ITI. Calculation of Ne(i)(z) .

11. The Ne(§)~function 18 defined as that solution of Mathieu's
ewikeZ _
equation that behaves as W when z —>+ oo(k=\q), or, which is
e
all the same
2 _
Neg )(2) ~o A H(f)(kez) as 2 -» + %0 (11.1)

for arbitrary 1.

Here we do not bother about any normalization, so we can dis-
pense with the exact value of the factor A.

- . . . (2) .. ~
Now we shall try to write Ne, ’(z) in the form

(2)/_y_ ,
Ne* (z)= a Sen(z)+ b Gen(z) o (11.2)
Only the ratio % interests us.

12, Now, first taking n to be odd, we have
o

Sen(z)-: ; Bé?}_l sinh (2r+l)z
O -
B (n) (2r+1) (n) _—~(2r+l1)z
= % 1; BEI‘-i-l c - 3 é Bore1 ©

c< o0
_ (n) _(2r+l)z 1 7 L(n) _—(2rsl)z
Sen(z)w 2 ; B, .17 © - % éj Bopyq ©

- 3 { B(n) e(2r+1)z+ 0(e-32)

2 Byria . (12.1)

For Bézﬁ-&)-l we substitute the factorial-series (3.1') with p=Qi

this gives, using T = ( ---ilf‘-- )2 (the factorial-series converges for
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One can easily account for the change of the order of summation,
In the second term of (12.2) we have (V 2> 1)

( . ( z)2rnl _
-1 7, -

= (ke Z
in WhiCh (kez v“"""'l 71—'

3 J—~1 (kez)= § — cos(ke” cos ;0 )31112)} "250 dy“ .
(V=5)i Vi /
So the second term of (12.2) becomes
— %, 5(1’1) T oy
22 ; ~—3)-.%-9— ] cos(l{ez COS y)sin "2f) d y
1{‘:-‘/ 17 Vo (}) --2-' ! o #
But ()
n — oy

A3 =0 (-3):

and therefore
E (n)
= O(>>
(V= )
and finally . -
Z . 2 V2
cos(ke” cos ¢ )sin apl <

|/ ¢ papl < T,
so the second term is O(e Z):
Thus we find o

Se (z)" Z X(n) Jl(kez) + 0(e™ %) (12.4)

and consequently
— ...:.]..'. / (H) - kez _ . E} 7 e 2 |

13: Now we have

Gen(z):: Gn(z) - zSen(z); g (13.1)
(n) ( )
with G_(2z)= E g cosh(2r+1l)2z
n . O 2 +1
5° _(n) (2r+1) S (n) (2r+1)
_ n 2r+l )z 1 n —-(2r+1)2
- % r=v g21‘+1 © * < r=0 gZI‘*Pl °



1 (n) (2r+1) 2 -5z
TR r;, Sope1 © + 0(e )
< (n) (2r+1)z . J T _(n) ( 3
1 n r+1)7z n 2r+1)z 37
= 3 ;I Thpq © + 5 ;_:.__{ Bypq © + O(e ) (13,2)

The term 3 ZI Bén)‘ 1 o(2r+l)z has already been discussed in section
-
12 and yields

3 Z‘ Bé?-?-l ‘ez :g 4 <()1:C)) J,(ke™)+ 0(e™). (1343)

We deal in the same way with the term % ) T(n) e(2r+l) “,

Inserting the factorial-series for the T(n) with p = 0O we ge¥

2r+ 1
o0 3 (_}E) 21 6(21‘4'1)5
';-E_ T(n) e(2r+1)z - (-1)T ,.......?...,__(.___ —— X
< Yoz ~— 21’+1 o= M= -/ I‘+m
0 K \51’1) \f/( ] OO ( ) ( 1) ( ......_......... 2r+1
N, O Y(r+l)+ r+v) n 275
?;—:} T ) ! 2  k Z § y O r;-l r+1) ! (.I"P‘r) !
ke ? 2r+ 1
(-1)* (%) k
¥ (r+1)+ ¥ (r+y 2{ (n) Z cep e W) ¥ (e d)
2 - o ! Cr—l-l)'
1 oD ( ) O\ ( br(kez ?I‘--l ( ) ( \
1 n Y (r)+ ¥{rsv-1)
-k é‘: Kv,,o Z‘ T’(’“‘F—T 2 (13.4)

In order to obtain an estimation of the second term of (13.4) in

the same way as we did for the second term of (12,2) we firs+t con-

sider
_ ’r) !

AT (r+e) I (peodvml)

cl
r

(1%.5)

Using the duplication theorem of the factoriecl-function we get

Il

Il




(13.7)

and therefore

la
(& =0

|}

il
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SO

The first integral is in absolute value certainly smaller than

|
1 / N\ _ o eﬁym%: .
('J}"'“““““““““%)l Jg [2 Y(V-%)~ 2 log (lmg )J (1.....§ ) dg

¥

This relation can be made true for »= 1 too by a small changs
of the value of C%. So we fipally find

in which C**can be chosen independent ef ¥ apd e.
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So in the second term of (13.4) the general . term of the sum
with respect toV 1s at most of the order e 2 Yy tlogl , therefore
the term itself is at most of the order e ~ in Z e

Then finally we have

“(p)+ H(r+l) T oz
o T (Tr1)] 5 = -5 Y,(ke")
e? 1
+ log T Jl(ke )+ —
ke
0T A(n) (2re1) Ty % (6% e
1 7l r+.1)%2 _ 2N ~f £ _
3 ;-.;; St = —-—-—-2-};-’-—— fl(ke )+ = )Jl(ke )
+ 0(e™ %) (1%.8)

Using (13.8), (13.3), (13.2), (13.1) and (12.5) we get
v(n) (n)
de (2)= - 522 ¥, (ke®)+ -1%1-9-{3 + log k} T, (ke®)+ 0(e™)
(13.9)

Now in (‘ 11.2) we have
Ne(g)(z):: a Sen(z)+ b Gen(z)z

(n)
= ---Q-:-- [ (a + b+ b log 2)Jl(ke )~ 1-b Y. (ke )} 0(e™)

X
Se, in ordexr that Ne(z) (z)vA H(i“) (kez) we must have

Xl
Xz X
a+bn/+b log ) |
e e R
RN
5 b
8 _ kK ;T

14, Equally we find for even values of n
Se (z) 1)(’(1’1) J (Kez)-l— 0(e™ ") (14.1)

and censequently

z e _(z)=

Alsp we have

Ge (z)




R 53, Int 2, 2l.

Substitution of (14.1) and (14.3) in (11l.2) gives:
(2) ¢,y -
Ne “/(z)= a Se_(z) + b Ge (2)=

/(n) 3
= 2050 T (a4 T4 log £)7, (ke®)= § b ¥y (ke®)| + 0(e™?)

So in order that Ne(z)(z) ~ A H&z) (kez) we must have again the for-
mula (13%.10)

‘8-: 1 Ewﬁu 1& .
b ”’3"1‘3@2 5 (44)‘

I



