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1. Introcduction,

This report
defined by:

g

[+ 1V S° =tTu4n)” )sinm{uin
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g a er, and conglists of nine sectlons.
turally, the introduction 1is the first of all, the second glving
me general properties of this class of functions.

It 1s the intention to show that for positive values of t the
zeros of F, (t,u) are on the lines Re u = n + 3, with n an integer.
The proof of this theorem, however, 1s very difficult for values of
k> 2 and so only the number of zeros in the strip Oé Re ’u\< 1 18
given,

Thls 1s dealt with the sectlons three and four,

The next two sections give the rroductrepresentations of Fk(t,u),
and the seventh section 1s used for recurrence-relations and the
differential-equation.

The case k = 0 1s dealt with in the following section, and the
report ends wilth an asymptotic expansion, connected with the zeros

of F,(t,u),and some numerical values.
Some notatlons are given here:

Ré stands for the { real } part of,

Im stands for { Ilmaginary

7 stands for the complex conjugate of,

| ] stands for the 1integer part of.

propertles.

The functions k{t,u) are entire functions of the parameter u as
long as Re t) 0. The case t = 0 is treated by I.J. Schoenberg (1).
The functions are all periodic and one finds:
Fk(t,u+1)n Fk{tju) (2,1)
P (t,~u) = B, (t,u) (2,1)

ft,1-u) (2,1)

It also appears that one cnlyneeds to consider half the strip

L & U \g 1 > m u >O )




(o) 1is t he volume obtained by cutting the k-dimens:

cube of edgewlenth 2 with a (k-1)-dim 1 space perpendicular
o the principal diagonal of the k-cube in such a way that the
distance between the (k-1)-dimensional space and the origin 1is equal
to 6 . One may be acquainted with the properties of w (¢):

-k {0 { k, then W (5) 0.

Here, «(c

outslide this interval &(g)= 0.
Further when O<61 <0’2 < k, thenw (0} ) > w (0,) andw (-6)=W(T).
Using the identity of Poisson-Fourier, the relation (2,2) is
transformed into

2

ret u=ly,1.e. Ref{u.= 0, one will find directly F (t,1y >0,
and even one can prove that:
There 1s a constant KO> O Independent of y 80 that

Fk(t,iy)> Kq - (2,4)

In order to consider the functions on the line Re u = 3 one will
find from (2.2) and (2.3)assumlrg that u = 3 + 1 %— :

QKFk(t,%—!- )=e}cp(‘>\2m f_,,;b)(o‘)dﬁ ) exp{ (n%) -1 (2n41) (A mﬁllﬁf})
-K

n“m CN

From (2,6) it is apparent that F, (t,u) 1s real for Re u = £ and
every integer k}O,



find the i@entity:

where [\ ¢

knows already tha:

angle, and 1t 1s possible to choose
181l sg‘th:t there 1s no zero on the side

2mf1f¢,) eilther. Knowlng that Fk(t,u)}>0 on three

satisflied here:
zeros on three sides

(1 W , 1+ 1

sides of the rectangle
one can also use the
when only moving

-

, = 80 the argum

ent does not change there -,
symbol 4 arg for the increase of the argume:
along the upper side.
Rewriting (1,1)*one wilill find:

% 2
k @« =tT(u+n)
F (t, u)-- {812‘17"11} Z (__ﬂnk e

TC

iE 3 (3"1)
(u+n)

e OO

and re

garding the loop described by sin

ing along the
upperside of the rectangle, it appears that the increase of the
SRS

argument of {__....R_ } K 1s equal to kT .
In order to determine the increase in argument of the sum of

formula (3.1) one has to define the argument of the terms of this

sum in the point u = 1 + 1 = , and in such a way that these argu-

ments can be fixed between w(ka2)g-:nd~(k%2)gu The largest term of

the sum (the one with index n = -1) then has the argument -k g .

Now a large number m, exists,so,th&t for all numbersi@>rm3

!arg { 1+ 1 &% "%i'—&:} = | <1§-‘m (3,2)

WhET@J 1s a small positive number.
From (3.2) it follows. that also

and this shows that the lncrease of the argume
bounded by (2m+ € -8 and (2m+2+6+48)T.
Now consider separately the cases:

sing -§ ) d one ¢an deduce  that the lnerease
ment of the sum is equal to 2mTt.

O f t he 81l



When it has be e n shown

Im u = 21

In a similar way as for even k, it is possible to deduce:
For odd k and m) M s there exists such ané » ¢ that there is one
Zero Un of F, (t,u) on the line Re u = 5, and 1ts 1lmaginary part 1is

pounded by —/— < Im u —-g- , and 1im é = 0.
Al TS < M oe
LSO

For even k and m> my the number of zeros contained in the

equal to (m + % + 1) when 1t has

m
no zZero on Im u = -

Further for real z this function takes on only real values.
Remembering the properties ofw(g) mentioned in section 2, and

can transform (2,4%) into:

-
55555
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remains positive

5 o
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(4,3)

in which Yo is re:
But 81809 :{
sizn of Fj(t,f

hat the

Using this for m>pm1,

one

H
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&
jodbe
#5
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(A

o Re u (1 outside the line Re u = }
will find directly:

The gzeros of Fg(t,u) can also be represented by (4,3).

e values of)\ ) 0,

Third, k = 3: One can prove, that for larg

) sinh (>\°’) a4 (4,4)

gative sign.

The only function which becomes neg the interval

being 2<<;,< 3.
Splittin up (Q}Q} into two part:
Y 3




To minorize

one can gdedr
the line Re u = 3%,
There are alsoc at moast 2
Similar treatment for othe:
axlis Re u = 5 wilth the exceptior

The zeros of Fk
S &

twos the same 1lmagilnary pa

5. The product-representation.

SEeC -

For k = 1 and 2 and t) 0 it has

t -,E. on t ha t T he Z2erod O f F k ( C P U ) Call wr 'i tﬁ t & T 'i Tl t f OYrm

1
u o - = .
n,m n + 5 + 1 Yo

so that for large m
T
;ym RS !( t
but also 3ym - ym+1t>
This means Ymﬁaoan) (5,51}

exceptions to this rule, but suppose

For values ofkﬁ>2 there may
the same had bee
k) 2.
Now only t) C
Write

ffor

considerations also hold

n proved, the followlng

i3 degalt with.

down the product-representation:

@(u,t)} IT7 (1 4 eQTCiu - Eﬁym) (1+Q~2Wiu~2ﬂym)
- (5,2)

i

F { t,u ) = eXp

wich Q(u,t) is an entire function of u. Of course it is also a
function of t. Accerding to the theorem of Welerstrasz the product
(5,2) is absolutely convergent, (owlng to (5,1)).

The idea is to determine Q(u) first, Q(u) considered as a function
of u. Taking the logarithmic derivatlive of equation (5,2) one will

f'ind: ewzﬂiu




The two series in the right-hand side o1

singularities are annihilated by those ¢

Fﬁ(t,u)

Fk(t,u)
From (3,1) it may be deduced that

1.
n> N : mtnng _

em < ek (5,5)
and a ¥, > O so. that

3}1‘;‘\}"“< é/k: (5"5)

O

nwhich £ and ¢ are small positlve numbers.
Assuming that u X + 1 v, O\ x\< 1, one knows that the denominsator
(u+n)1~<. has an argument between (k %— ~ 65) and (g'- K +<§) for ‘yz > Yo

and fnl(fN;

Choosing Vv o= % , M be ing SO 1larg
of ¥y using:

|

e that y> Yo.and for that value
J 2 )l = as m-TC - 2 A s
exp{ -t (un ) = exp —— - tT(x+n)° - 2 mmi x} ,

1t 1s apparent that the argument of the exponential does not depend
on n. That means:

and
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In what follows Kn means a constant independent of x and
One will find for y = £> y_ and fixed k:

I kcotgT u‘ < K’i’

co --t‘rr(u+n)2

k2 =

- and also

in which & and é may be glven exrtremely small values,.
The argument of the left quotient of these two sums lies between
k .27 -6 and k.2TC+0, so this quotiént is in the neighbourhood of
+1 .
From (5,5) 1t follows that

Fr(t,u)

= -2 tmrily + R, (5,6)
Fklf,uj

with R(K3 for y>v,-
For x = it 1s evident tThat:
2

< K)-l» etT[ d ’ (5:7)

The two sums of (5,3) can be dealt with as follows:
Put q = exp (-2wiu) so that |q| is large.
In order to avold the zeros of Fk(t,u), one chooses a number r;

1t may be small. Let M1 be that entire number so that

@ eXp(EHYM )+q |

|

3 m’T} . 1s a minimum.
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By avolding the circles with radiugs r anc
one has a ‘31 1) O and for every m 1

exp (2My, Y+q | o
q /q?w

ﬁﬂﬁﬁd1Q]1 does no®t depend on g.

The I'irst sum is aiways of the order q”1, The second 18 split

up into three parts:
M,~-5 M., -+1 s

c2.
P R

3 10w holds:

'ent sum remaining below a constant K5

———-W 18 a converg
b,

m=0 c m M --3 | MT -5

m(M1 -2) - _ ' '
T ‘m=0 q- m=0

= M, + 3(q).

One can divide the zeros of Fk(tﬂu) in two g

19 so, that 1in every y interval

29  the remalning ones,at mostT

en/t>>1,

in which f

)




For x = 0, (5,7) holds, but this a1so valid for x = n.
Describing the contour formed by the lines y mﬁeY and x = + X(Y)
etm) ¥ SR

el *in. X ( Y ) i S e

zero and that Q:!'fu) muet ant.

function of t. Knowilng

Q{u,t)= Q(t), a function of t only

and eTiu-2my_

) (1+e

-2 iu-?gym

2
Fk(t,u)mfP(t) TT (1+e
m=0

) : (5111)

6. Further dctermination

FP@S@ntitiﬂn*

Mcst of the preceding ?chapt-er also helds for odd K. One needs only

to alter y = %1- into y = %%1 , the symbol (-1 )nk becomes (-1 )I"1 here,

2 11‘1 ( 5 2 1 1 ) »

and 1in a simillar way one can deduce a

Now use the transforn

} = (2 sinTTu)”. (6,1)

The zeros of Fk(t,u) are now transformed 1nto

n = @ + e 2T ¥m 4+ e

so that ;Zrm> 2 for every m

2
and ? = o{e v M) (6,3)

The expression (5,11) 1s transfermed into

- 2
Fk(t,u)m Gk\t.v?’)m C(t) Tl (1 - )

m="1 ém

inwhidhC(t) may be calculated by putting u = n or% = (0, and one has
ffinally

© %
Fk(t_,u)m Gk(t,g,)m TC (1 - &) (6,4)

‘expansion >
nm

verges 1n the reg.
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7. The recurrence-relotions and the differe

AT 1

> F (t,u) 2.
k™2 sin 12 . .‘
v T - T T Fle_p(t.u) Kp) (7,1}
Now define the two sorts of functions,
, D
S K 2 -tmuin)”
- 3 1in; ¢ .
?k(t’u)m ;g e u) } L = e ? (7:2)
! Nn=-~cY (u+n)’
and 5
: k « -t (u+n)
s elinmmu n e 2
p(tul= G L () S (7,3)
[1==~ 0 (u+n;
Also ¢, (t,u)= F (t,u) when k even,
Ofk(t,u)m Fk(t,u} when k odd,
From (7,2) cne will find:
i _ _ _ sinTTtu 9o N
?1{+1(t’u)“ cosmtu ?k(t-’u) B T 3 ?k(t,u)+ .
.
2C sin T U |
- T kT S)k*'i(t’u) (7:”'}

and c’u(t,u) also satisfies this recurrence relation.
Considering the fact that the zeros of F, (t,u) are not due to

3

the factor (&Eﬁ K one can omit this factor, and defining:

.r‘: _
2 *-tTt(u-i—n)z
(t,u)= 25 5 S , 7,5
. n=-co (um)< (7,5)
(tsu) K-2 %?— (-1)" e-—-tn(u-m)g -y
| t sU )= 1 = 2 ~ 7’
& n=-co  fum)k )
one will obtain -68:5 Pk(tﬁu): /31{"2(1::11) (737)
and

(}/k(t,u) also satisfies the relations (7,6) and (7,7).
After some calculations one obtains the differential equation

3:5 i’\kitxll)
5 - 2 t(2k-5) ——LEe— +
du<dt

f”k(t,u)m O

+Te (k-2) (k-1)



k = 0 1s very easy:

“tﬁ(u+n)2 _ emtnu2 a;}oo(z/t)

./}
e

Fo(t,u)= S e

N &

wilith T«- = 1T
Zz = ul .

The zeros of Fo(tgu) are at the same time those OfQ?bO(Z/r)

2n-- 2m-+ . .
u = """““"‘,-*L"'L -+ 5;2“%“%" 1 5 n,m 1ntegers

n,m *
t > 0
and one gets the product-representation !

C>

Fo(t,u)m f(t) 1T (1 + 2 q2m+1 cos 27t u + q4m+2) s

- 1T
1f q = e /'t and f(t) dependson t only. Using again the transfor-
mation (6,1) one will find again |

= 2 + d
and é’m.
CO

FO(’C:;U-)m Go(tf): £ (t) T(O (1 “5'?') : (8,2)

- (2m+1) n q2m+“| (8,1)

From this last equation it oppears that the theorem mentioned at
the end of section © also holds for k = 0.

9. = 1,
It is ecasy to get more information about the zeros 12 of
2
F(t,u) for large values of m,
For, if "+ u = % + 1y, one can write
ST exp-t T{(n+3 2~y2§} '
F. (t,u)= 2 32 > (2n-+1 )cosi t(2n+1 )y} +
n=0 (n+3)" + v

- 2y sin{tw(2n+1)y{}.
The zeros of The equations

(2n+1 )cos{ tT( 2n+1 )y} -2y sin{ tr{2n+ }y} = 0 N= 0,1,2, ...

. ‘ (951)
will be also zeros of F1(t,u). It is clear, hcwever, that there does
not exist a value of y which simultaneously satisflies thls system
of equations. When y is large the solutions of these equations
approach each other, that is to say, only those that correspond
with the solution of the equation.(9,1) with n = 0. By substituting
for v the fellowing asymptotic series
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y=2_ Cpm" (9,2)

one will find that the
in the te

of different equations deviate mt:
one will find

only, and
~ M 1 1 |
Y> £ T 27T + O('};}'z (9,3)
with m a large integer.

10. Computations performed regardl

In order to have some more 1indications about the zeros of
Fk(t,u), a number of them are computed. The values of t f
It appears that for these values of t da4ll zeros of the fu
examined are on the lines Re u = n + 3.

If u = n + 3 + 1 )-5%3}- s the values of >\m are

n,m
table below:

t = '

wictions

|
\N
=
\U1
N

0,0756 0,0576 0, 0466
1 0,3852 0,2422 00,1748

-
.
®,

0,31248 0,27742 0,24940
0,97120 0,86136 00,7725
11,7096 1,5206 1,3626
22,5305 2,2706 22,0432
3,4120 3,098 2,811
3,648

-
|

VNN - O =
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