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fruncated power-series.

1. Introduction.

More than once al;

eady work has been done concerning theorems on
truncated power-series, i.e. those polynomials that are obtained by
truncating a complete series expansion of some functicn or other
after a certain term.

In the first place there is the work of 0. Blumenthal (1) who

J
considers the truncated series of the function (1+x)a'in his paper:
"La geométrie des polyndmes

binomiaux?",
Further there are the several asymptotic expansions on series of

the exponential type, the first of which we owe to a conjecture of
Ramanujan.(z’B’h’5’65.

Finally there are a number of papers that deal with parts of
power serles which remain limited within a certain area, among
others by W. Rogosinski and G. Szegd (7).

Now 1t is the intention to go into the matter in a similar way as
Blumenthal did; no longer, however, for the binomial polynomials,
but for those polynomials that are obtained by truncating the series
of the exponential type. In doing this, one or two things of the
asymptotic expansions will be required, which expansions are re-
corded in the references (2) up to and including (6), but there will
be no need to use the third kind of papers.

The list of authors that have been quoted is not complete, and

what hds been treated in the following passage remains rather
elementary.

2. Definitions.

First we introduce the following symbols, n is a natural number

(2.1)

(2.2)

(2.3)

(2.4)




by their behaviour for negative Xx.
Utilizing the remainder representeé
relation is easily found:

tion of Lagrange the followling

X . n
exp x - En(x) = J exp u -(%)—- du . (3.1)
O

So for x » O it holds good universally that
exp X > En(x), (3.2)

in which for every n an x can be chosen in such a way, that the
difference of the two functions exceeds any positive value, and with
fixed x n can be chosen so, that the difference of the two functlions
may take any small value.

For x> 0 and n> m of all values it holds good that

En(x) > Em(x), (3.3)

as En(x) has more terms (all of them being positive) than E_(x). So
the integral in (3.1) is a function of x, which goes down monotonous-
ly

For x = 0 1s E_(0)= 1 for every n.

For x < 0 assume that x = - Y.

o5 B (v)e (7 [ exp(n) L2007 5.4

O

If n is even, then En(--y) > exp (-y),
If n is odd , then E (-y) <exp (-v), }
and again,with fixed n,the difference of the two functions can be
made to take on any large value, whereas with fixed y the difference
may take on any small value.
Therefore the functions with even index-number x cannot possibly
have a real zero.
In what follows '‘zero'" will always signify "real zero". On
account of
d E_{>
ke L (5.6)
the functions with an even index-number cannot but go up monotonously
and so these functions have only one zero.
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even class has a minimum in the place where
and these curves have

A polynomlal from the
1ts predecessor from the odd class has &
no points of inflection.

The odd class does have a zero and a point of
maximum or minimum.

The place next to the zeros will be further stated in section 5.

It is easily seen that

[ _n)_. Enﬂe(-—n)m O (3'7)

n ¢

nflexion but no

B

l.e. £ (x) and E _,(x) meet in the points x = 0 and x = -n.

For the time being we conslder the polynomials from the even class.
The propertles that are derived below can easily be transferred to
the polynomials of the odd class.

So E,,(x) and E,_ _,{(x) meet in the points x = 0 and x = -2n
within the interval -2n{ x <O Ezn(x) is smaller than E, _,, outside
the interval 1t 1s larger.

Es,_n(x) and E, _,(x) meet in the points x = 0 and x = -(2n-2);
within the interval -(2n-2)< x< 0, E; _5(x) is smaller than E, _,(x),
outside the Iinterval it is larger.

SO within the interval u(2n~2)<: <<O Eenﬂk(x) 1s larger than

21,l(x)_,, for x% 0 E, (x) is larger than E, _,(x) and for x <-2n,
E,, (x) is larger than B, _y(x).

S0 beside in x = 0, E2n u(x) and Egn(x) have only intersections
within the interval -2n< < -(2n-2). There 1s sure to be one inter-
section and there are three at most. Suppose there are three inter-
sections. Then it follows from the theorem of Rolle, that E, _,(x)
and E,  _ 5(}:) too must have three iatersections within the interval
-{2n-1) <x < -(2n-5). If we go on like this with Rolle we arrive at
the conclusion that Eu(x) and Eo(x)m 1 must have four lntersectlons,
This 1s certainly not true, as Eu(x) has only one minimum. Therefore
Ezn__n(x) and Ezn(x) have two intersections. In a similar manner it
is seen that E, (x) and E, (x), with m # n, have only two inter-
sections, and that for n approaching infinity the abscliss of one
intersection moves towards -co, the other remaining x = 0 all the
time.

4. Some properties of Co,(x) and Sn+1§x).

Without restriction nothing but X >O can be considered now, this
in connection with the odd/ even character of the polynomials.
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ction ) one will find:

COS

X - Cen(}()’m (m’})n'i’"! dy (4*1)

and
° (4,2)

n+1
sin x - 8,5 .,(x)= (-1) J

o

For even n it holds good that:

Cen(x) cos X

| sin x

S2n+1(x)
and for odd n:

CEn(X)
S

2n+1(x)

Further one has now:

d - w
ai‘cen(x)” S2n~1(x) (4.3)

and

d o , 4
52'82n+4(x)m B an(x)ﬁ

So C, (x) has extremities in the zeros of 82n~1(x) and points
of inflection in the zeros of C,. _,(x).

The question how many zeros C2n(x) rESpectively‘82n+q(x) have,
will be dealt with later on.

The intersections of the curves Cen(x) and C2nﬂ4(x) are easy to
compute, namely x = 0 and x = + 1). So for x>0 Cs,{x) and
Co,_u(x) have only one intersection. In a similar way as for the
polynomials E (x), it can be proved that C, (x) only meets each
Cgm(x) in one point, for x> O and that if n and m differ two and
four. The 1limit for n approachingcoof this intersection is again
infinite.

Generally Cem(x) and Cen(x) have more intersections. For if we
en is C,(x)= 1 and for a large n there

ce, t

choose m = O for insta:
mber of intersections

are also a large number of intersections. The nu
of C, (x) and C,(x) is, very roughly approximated, equal to the
number of zeros of C, (x). It is clear that the number of inter-
ber of zeros. For this also

sections 1is larger or equal to the nun
see section 6.

For even n the values of C, (x) are near those of x, which are
smaller than k7t (k entirely ,,_ ', whereas these extremities for odd
n occur with values of x that ' arge han k1w . The approach of
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these extremities towards kT 1s monotonous.
Similar properties also hold good for the 82n+1(X).

5. Asymptotic approximation of the zero of E_(X).

The problem 1s to determine for large n the behaviour of the
function,g :=E(n) which satisfies the relation En(~f)m 0 and
g;é 0.

In a forthcoming report of the Computation Department Mathematlcal
Centre 1T 1s shown that:

En(“y)m (_1)n %2‘ I(y,n)+ exp (-¥) (5.1)
in which
I(y,n)mjje”u(1 - %)n du (5.2)
For I(y,n) the following asymptotic expansilon holds good:
I(y,n),\,ﬁ%§;ﬂ T;E;%3-+ e (5.3)

For v there are certain restrictions, but for y>>0 the expansion
that is applied here is certainly allowed.

For y = % the right hand term of (5.1) equals rought provided
that n is odd.

If we introduce furthér that

a = & (5.4)

and if for a the following asymptotic series is substituted in (5.1):
b a. C
B 1 1 1 2 |

ama0+~ﬁ-logn+-ﬁw+;§log n + ... (5-5)

1T isxpossible to compute 2, s bn’ Ch etc.
Here only a,, a, and bi will be determined.
n_n
—— (“é“'~“~m~§3m-+ ...)=exp (-an).

According to Stirling is

~Nn _ nN4= 1 ‘1
n! =\/20 e "~ n '2 (1 + At —— o)
Ten 288n

and therefore 1s

n .
exp(-a)= e.a \/ % - (5.6)

in which T = ';l-i":'é" -~ mé—--*?m + ...
: (1+a)“n _
. and N = 2Ttn(1 + 5 T a2 coe)



t:

It 1s easy to compute tha

SO ao can be found from

exp(-a5 - 1)= a,

or a, = 0.278464 (5.7)
Further
Dy = (5.38)
2
*0
and &, = log ———m— = - 0.532124 (5.9)
(1+a5) 721

6. The number of zeros of Cen(x ) and S, .4 (x).

In the table below the order of the C or S-polynomlal is stated,
with the number of real zeros of the polynomial in the column next

to it.
Ch 0 Sg 1 Cao 2
S 1 Ce 2 S 14 3
Co 2 87 3 C1o 4
s3 3 Cq 4 S13 5
Cy 4 89 5 C 1y 6

fhis table can be easily verified with the help of very simple
means. For 1if a polynomial has a complex zero g , then also 1ts
complex conjugated f* 18 a zero.

But - f instead of § must also be a zero, on account of the odd/
even properties.

So the complex zeros always appear in fours. This 1s the proof of
the flrst row of the tagle. I

Now SS(X) = x (1 - 2{6_ + "T}%ﬁ') is a polynomial which for x) O

remains larger than sin Xx. "
2

The extremities of (1 - % + =) lle near x =\/10, but the value
of the minimum is still positive. Therefore SS(X) has one real zero

and four complex ones. If Cg(x) should have six real zeros (there




ling to Rolle, Ss(x) should have

_ q /56 C,(x) is larger than Cg(x),
which , in its tum is hen cos x. So Cg(x) has at least
as many zeros as C,(x) has, g which also holds good
universally for any set of polynomials that differ 4 in order.
In order to show that S (x) has five real zeros, the only thing
to do is to compute S (4)3 - 0.663. |
yield the last row of the ‘
There 1s a certain regul.
appear that once this regularity is distu:
From the formulas (5.1), (5.2) and

n-+1 X2n ( X2 . )

= cos x + (-1)

(6.1)

ralue of cos bounded by 1. The term

may exceed this value and if we want to make 1t

possible fongn(X} e

chosen so, that this term is not larger than 1. The extremities of
near x = rft , and therefore in these points the tTerm
nentioned above must not exceed the value 1.

If 1t 1s assumed that

g- d q
H = q qo -+ "ﬁw -+ .? + ... + "““""n 10@ n + ... (6'2)

Then 1t appears that:

ex /LR o]

0.23419933
4 .2698670

I

noted in {6] ’




and then, with the help of (6.1),
er C, (x) can possibly have a zero in X.
181¥tically, in which x is obtained by multiplying
asymptotic series by nTT, is not a pleasant Job.

Numerically for every n surely a q, can be found by meal
iteration and then it is also possible to determine the number of
zeros. For every n a certain amount of computations hawe to be performed.

The number of intersections of C, (x) and Cy(x) hs |
asymptotic representation in the form of (6.2), in which g, and q,
do not change.

Generally speaking, an (x) and CEm(x) have no more intersections

nan Cy(x) and C, o (x).(n) m). This is to be derived again via the

theorem of Rolle.

For the S2n+1 (x) -polynomials a similar treatise can be held and
then 1t appears that (6.2) and (6.3) can be maintained.

evaluated with other expedients
it can be verified wheth

the

8 also an

7. A next step.

RSk aiite oINS

Functions which resemble closely the exponential functions are
the

Bessel-Functions.
In order to examine the truncated power-series of these functlons,
(7.1) is introduced:

N h k = 0,1,2...

IN,k(x)m = 1! +] ! N = 031,29;-* (7‘1)

This way of defining gives an advantage: Both Bessellan functions are
dealt with at the same time, for

Lim Iy (x)= L (2Vx)/(Vx) (7.2)

N-co
X0

Lim Iy o (=x)= 3 (2\/x)/( V) (7.2)

N-co
x>/0
By means of differentiation one has:

dx INak(X)ﬂ IN*-'? » K+1 (}() (7.3)

Similar contemplations as with exp x, for x} 0O, give for N> M

lity are dropped in (7.4) if x ) 0. Thus it has
functions (7.1) are monotonous.




Utilizing the well-known

last equality (7.2) for x< O that the fun _ (x) can have
any dictated number of zeros, provided that N 1s suff iciently large.

And here too the problem arises to determine the number of zeros

as a functions of N, with k alre
simple is clear, after what has been seen in the cosine and sine-

case. Add to this that J (2\[?( is no long a periodical function
and that the asymptotic expansions mentioned in the sectlons 5 and
& have up till now not yet been proved for the Bessel Functlons.

It is easy to see that I, (x) has one and only one zero
[x = -(k+1 )] . I (:x) have no zeros for k> O, but a minimum, ai
minimum-double zero at x = -2. According to (7.3) Iy i (x) are again
funetions of x that go up monotonously, and that have only one 2Zero.

If Ry (%)= T o (x)- Iy (x),

%@,k(x)m %iﬁh IN k(x)’

and x} 0
than 1t is to be found from the remainder representation of Lagrange

RN,k(x)m -L£°’k (y)

and that: Ry k(“x)“ (- 1)

The conclusion, which follows directly from (7.5), that this re-
mainder is always positive, has already been derived in another

manner. In connection with (7.2), (7.6) becomes

RN,k("x)m du (7.7)

If now the transformation

u=—n—
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The object is to show that the integral in (7,8) is positive for
all values x> 0.

If for convenience it is assumed that vy = k+N+1 and if for J,(t)
the integral representation (7) is used, which is mentloned on page
48, Theory of Bessel Functions by G.W. Watson, then 1is:

T
z 2V =2
sin(t cos B)sin O cos©OdE (7.9)
O

in which Rev > 3.
(2v -1 22"9 +1
The factor is positive then anc

CELED

integratlions.

put before both

It only remains to proof that

\5 3 R
JZ J d 6 (x - t 2 N sin(t cos @)811'12“’"“2 O cos O }0 (7.10)

'O
for x ) 0. 5
Within the interval O\<t\<2 \/x, (x - T) 1s a function that goes
down monotonously. Therefore

£< N
r (x - T) sin(t cos ©)dt } 0 (7.11)
Q

for any O\< @\<-2" '
(7.19) is easy to be derived now.

By confining oneself to values of X > O it can even be shown that
the sign of equality in (7.10) can be dropped.

Now the question concerning the number of intersections of IN k(x)
and I k()r;) arises again. Only for those values of N and M that
differ an even number is beside x = 0 another intersection possible.
However, there can also be more intersectlons.

From the fact that I) k(x) can have only one minimum, it can be
derived, as in the cosine -case, that every two functions with N ~-M=4
can have only two intersections. x = 0 is always one of them, tThe
other is near a negative value of x and for limit N-—co this value
approaches -co.

The intersection of Iy k(x) and Iy o k(x) is near x = -N(N+k).
Hence it follows that, when I, N-2, k(x) is supposed to have \ zeros,
Iy 2, k(x) has at least y zeros too. The cosine, respectively sine-

case 1s different in this mspect that if the function has a caplx
wwated is a zero, but not the one that is

»

- zero, also the complex con}j
~ reflected in the origin.
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8. Conclusion.

It is clear that the ‘treatises held here have one parameter
lees than the work of 0. Blumenthal. For he has beside n also jf
at his dilsposal, (1+x)3Q But the asymptotic determination of the
zero in the case of the E_(x)-polynomials and the asymptotic

determination of the number of zeros in the case of the 02 (x) or

82n+1(x) -polynomials, has been added.

This attempt was successful via asymptotic expansions which for
the computation of the functions concerned, exp(-x), cos x and sin X
have no silgnificance whatever.

The polynomials could also be regarded in the complex plane, 1n
which case one does not confine oneself to real values of X.

Finally, an explanation (which is not yet completed) on polyno-
mials which are obtained by truncating the Besselian Functions has
been added.
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