Stichting

MATHEMATISCH CENTRUM

2e Boerhaavestraat 49

Amsterdam

R 183

Calculations Concerning a Filter

Calculations concerning a filter.

The following calculations were performed on behalf of the N.S.F., O.C.L.T., Hilversum and according to data given by Mr. Irani.

The work consisted of two main parts: calculations of some integrals and a filter calculation.

I. The integrals were given as:

$$I(\omega) = 2 K_{1} \omega_{1} \int_{0}^{\omega} \frac{d\omega}{(\omega^{2} - \omega_{1}^{2}) \sqrt{(1 - \omega^{2})(1 - k^{2}\omega^{2})}} - 2K_{1} \bar{\omega}_{1} \int_{0}^{\omega} \frac{d\omega}{(\omega^{2} - \omega_{1}^{2}) \sqrt{(1 - \omega^{2})(1 - k^{2}\omega^{2})}} + 2K_{2} \omega_{2} \int_{0}^{\omega} \frac{d\omega}{(\omega^{2} - \omega_{2}^{2}) \sqrt{(1 - \omega^{2})(1 - k^{2}\omega^{2})}} + i C sn^{-1}\omega.$$

$$(1)$$

where
$$K_1 = \sqrt{(1-\omega_1^2)(1-k^2\omega_1^2)}$$
 and $\omega_1 = 0.1876 + 0.6269 i$

$$K_2 = \sqrt{(1-\omega_2^2)(1-k^2\omega_2^2)}$$

$$\omega_2 = 0.5751 + 0.4553 i$$

$$k = 0.8$$

C had to be chosen so that $I(1) = 7\pi$ i.

The calculation of the integrals can be performed in two ways:

$$2K_{1} \omega_{1} \int_{0}^{\omega} \frac{d\omega}{(\omega^{2} - \omega_{1}^{2}) \sqrt{(1 - \omega^{2})(1 - k^{2} \omega^{2})}} = -2K_{1} \omega_{1}^{-1} \int_{0}^{\sin^{2} \omega} \frac{d\omega}{1 - \frac{1}{\omega_{1}^{2}} \sin^{2} \omega} =$$

$$= -2K_{1} \omega_{1}^{-1} \left[\sin^{-1} \omega + \frac{1}{\omega_{1}^{2}} \int_{0}^{\sin^{-1} \omega} \frac{\sin^{2} \omega d\omega}{1 - \frac{1}{\omega_{1}^{2}} \sin^{2} \omega} \right] =$$

$$= -2K_{1} \omega_{1}^{-1} \sin^{-1} \omega + 2 \int_{0}^{\sin^{-1} \omega} (\sin^{-1} \omega_{1}) d\omega$$

$$= -2K_{1} \omega_{1}^{-1} \sin^{-1} \omega + 2 \sin^{-1} \omega \cdot Z(a) + \log \frac{\theta(u-a)}{\theta(u+a)}$$

$$(2)$$

(see L.M.Milne-Thomson: Jacobian Elliptic Function Tables)

where a is given by
$$\frac{1}{\omega_1^2} = k^2 \operatorname{sn}^2 a$$
 (3)

For
$$I(\omega)$$
 we get: $I(\omega) = \log \frac{\Theta(u-a)}{\Theta(u+a)} \cdot \frac{\Theta(u+\bar{a})}{\Theta(u-\bar{a})} \cdot \frac{\Theta(u-\bar{c})}{\Theta(u-\bar{c})} + \frac{\Theta(u-\bar{c})}{\Theta(u-\bar{c})} \frac{\Theta(u-\bar{c})}{\Theta(u-\bar{c$

$$\operatorname{sn}^{-1} \int \left\{ -2K_1 \omega_1^{-1} + 2 \ \overline{K_1} \overline{\omega_1}^{-1} - 2 \ K_2 \omega_2^{-1} + 2 \ \overline{K_2} \overline{\omega_2}^{-1} + 2 \ Z(a) - 2 \ Z(\overline{a}) + 2 \ Z(c) - 2 \ Z(\overline{c}) + 1 \ C \right\}, \quad \lim_{n \to \infty} c \text{ is defined by } \frac{1}{\omega_2^2} = k^2 \sin^2 c. \quad (3a)$$

Due to the periodicity of Θ (u), the logarithm is zero for $\omega = 1$. C was computed from

$$7\pi i = sn^{-1} 1 \left\{ -2 K_1 \omega_1^{-1} + 2 \overline{K}_1 \overline{\omega}_1^{-1} - 2 K_2 \omega_2^{-1} + 2 \overline{K}_2 \overline{\omega}_2^{-1} + 2 Z(a) - 2 Z(\overline{a}) + 2 Z(c) - 2 Z(\overline{c}) + 1 C \right\}.$$

Next $Z(\omega)$ was computed as function of $u=sn^-\omega$, and the points u where $I(\omega)$ equals $2\pi i$, $4\pi i$, $6\pi i$ were interpolated. Afterwards the values of ω in these points were found.

2. The second way of finding the ω -values is by computing the integrals in (1) numerically. This can easily be done after the substitution $v = \sqrt{1-\omega}$. The coefficient C was obtained from the condition $I(1) = 7\pi i$, and the values of ω where I equals $2\pi i$, $4\pi i$, $6\pi i$ were obtained by interpolating in the table made of $I(\omega)$ as function of ω .

The answers of both ways were the same: C = 3.2258

$$F(\omega_3) = 2\pi i$$
 $\omega_3 = 0.3850$
 $F(\omega_4) = 4\pi i$ $\omega_4 = 0.7342$
 $F(\omega_5) = 6\pi i$ $\omega_5 = 0.9692$.

From $\omega = 1$ to $\omega = \frac{1}{K}$ the imaginary part of $I(\omega)$ remains constant and the real part increases from 0 to 11.79.

This was found by numerical integration. It was checked by doing it twice. It was possible to check it in a similar manner as above, but the transcendental equations (3) became much more complicated.

From $\omega = 1.25$ to $\omega = \infty$ the real part of $I(\omega)$ remains constant but the imaginary part decreases from 7π 1 to 4π 1. Now the point ω_6 had to be computed where Im $F(\omega) = 6\pi$ 1. This again was done by numerical integration. $\omega_6 = 1.3223$.

To check our computations the integrals were computed from $\omega = \frac{1}{K}$ to $\omega = \infty$ and the imaginary part was -3 % i, so Im I(∞) = 4 % i as it should be.

II. With the values ω_1 , ω_2 , ω_3 , ω_4 , ω_5 , ω_6 two polynomials h^2 and f^2 were constructed as follows:

$$h^{2} = \omega^{2}(\omega^{2} - \omega_{3}^{2})^{2} (\omega^{2} - \omega_{4}^{2})^{2} (\omega^{2} - \omega_{5}^{2})^{2}.$$

$$f^{2} = (\omega^{2} - \omega_{5}^{2})^{2} (\omega^{2} - \omega_{1}^{2})(\omega^{2} - \overline{\omega}_{1}^{2})(\omega^{2} - \overline{\omega}_{2}^{2})(\omega^{2} - \overline{\omega}_{2}^{2}).$$

Further more F(w) was constructed:

$$F(\omega) = 10 \log_{10} \left(n \frac{h^2}{f^2} + 1 \right)$$
; n was computed from the condition $F(^1/k) = 30$.

$$n = 238.83.$$

 $F(\omega)$ was computed and is given in table I.

Next $\frac{g^2}{r^2}$ was defined by:

$$\frac{g^2}{f^2} = n \frac{h^2}{f^2} + 1.$$

Now the roots of the polynomial g² had to be found. They were found by the method of dividing out real quadratic forms (See Milne: Numerical Analysis, p. 53).

The roots are:

Next 을 was defined as follows:

g has those zeros of g², that lay in the upper halfplane;

f has those zeros of f^2 , that lay in the lower halfplane plus single zeros at ω_6 and $-\omega_6$.

Now arg g/f was computed. This is given in table II.

		TABLE I		
			W ²	F(W)
				4.3399
			1.2	9.9090
	0.1624		1.3	15.3362
				20.5807
			1.5	26.0808
			1.6	32.7452
				44.3785
			1.8	45.5385
			1.9	37.6832
			2.0	34.6510
	0.0368		2.1	32.9933
	0.0030		2.2	31.9673
	0.0839		2.3	31.2917
	0.2387		2.4	30.8319
	0.4001		2.5	30.5138
0.75	0.4976		2.6	30.2934
	0.4798		2.7	30.1432
0.85	0.3290		2.8	30.0438
	0.1017		2.9	29.9827
	0.0113		3.0	29.9507
	0.5003		3.1	29.9411
			3.2	29.9488
			4.0	30.3239
			5.0	31.0106

Extrim: of F(w):

2	
0.04	0.5254
0.32	0.5165
0.77	0.5061
	29.94

	arg s/f	
	- 90°	
0.1	220	
0.2		
	1089	
		62