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Synopsis

A mechanism 1s proposed which yields large values of the thermopower approaching
xle = 86 uV /degree under favourable circumstances. These appear in metals for which
the well-known anomalies in the electronic properties caused by transition metal
impurilties have been observed. The distribution function in the presence of an electric
field has a current carrying part which is strongly asymmetric with respect to the
Fermi level. This leads to a first order Peltier heat current and hence, by Kelvin’s
relation, to a first order thermopower. The possibilities of the mechanism are
demonstrated for the Yosida model. Any model in which there is a polarisation in some
way of the transition metal ions over distances of the order of the electronic mean free
path will yield high values of the thermopower. The electrical resistivity in the Yosida

model is only slightly modified by the strong energy dependence of the effective
relaxation time.

1. Introductron. Copper, silver, gold and a few other metals tend to
display anomalies in their electron properties at low temperatures. Addition
to ““pure’’ copper of small amounts of diamagnetic impurities gives an initial
increase of the anomalies, e.g. the negative temperature coefficient of the
resistivity and the enormous values of the thermopower 1). It 1s not ditficult
to devise models of magnetically interacting transition wmetals dissolved
In copper etc. which are capable of producing anomahes i1n the transport
properties. A few years ago one of the authors 2) suggested that all these
anomalies in alloys of copper with small amounts of lead, germanium, tin,
nickel and other diamagnetic impurities were caused in some way by traces
of iron or other impurities with unfilled d-shells 2). Recently Gold e.a. 3)
put forward the idea that tin liberates iron from its oxide usually present
even in the purest copper available. They arrived at a good deal of con-
sistency in the observed thermopower and negative temperature coefficients
in the diluted alloys.

*) The computational part of this papepd@sdys *Report K d49.
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Yosida 4), expanding the former ideas of Schmitt °), calculated the
resistivity due to transition metal ions. The interaction between the latter
was described by a sort of Weiss field, acting on the ions. He arrived at a
temperature dependent residual resistivity which had, however, a positivc
temperature coefficient. Dekker 6) and Brailsford and Overhauser 7)
started with exchange coupled ion pairs and found a resistivity which
initially increased with decreasing temperature toreach a saturationvaluenear
absolute zero in a monotonic way or after having passed through a maximum.
The anomalous part should be in proportion to the square the concentration,
which seems to be in disagreement with the experimental results unless
one takes ‘“isolated’’ ions of the Yosida model into account 7). Overhauser?$)
put forward the idea of spin density waves stabilized by the presence of
magnetic impurities. His main result, that the 1on spin specific heat 1s
proportional to the temperature and independent of the concentrations,
can (Marshall ?)) also be described by a distribution of Yosida’s internal
fields. It should be noted that at concentrations below | per cent a single
internal field accounts for the specific heat rather well 19).

Theories for the anomalous behaviour of magnetic ions in the noble
metals are usually compared with the electrical resistivity and specific heat.
The magnitude of the thermopower in these alloys deserves some attention
since 1t 1s larger than the Sommerfeld theory can explain by many orders
of magnitude. -

T'he purpose of this paper is to discuss the question of how certain
features of the scattering by magnetic impurities, which have been neglected
so far, lead to enormous values of the thermopower.This will be demonstrated
with a revised Yosida model. Although this rescarch was started with the
anomalies in thermopower in mind, it was hoped that a minimum and/or
a maximum could be found in the electrical resistivity. Similar modifications
of the Boltzmann equation should also be applied to the theories of Dekker6)
and of Brailsford and Overhauser 7) but, in contrast to Yosida’s model

or an extension thereof, their model is impotent to give giant values of the
thermopower.

2. Dervvation of a modified Boltzmann equation for the Yosida model. The

scattering potential of electrons in a metal caused by a magnetic impurity
at r = 0 is

H = V(r) —2](r)(s.S), (1)

where s and § are the spin operators of electron and magnetic 10n re-
speciively. We follow Yosida 4) except for the influence of the Pauli
exclusion-principle.

In eq. (1) the first term represents the conventional scattering, the second
one the exchange part of it. It is assumed that the ion feels an effective field H
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1. The energy levels of the on are gwven by mgugtl = mAd,
magn @f& 1Ic quantum number m ranges from S to +5. The
B 1o o1s proport ional to ex Do 1 ; wl , and hence the
%%m% the 1on 1s 1in the state m equals

’ 4 N :
- a ¢
| i ;’ g l.l';;::r;h-_ﬂu\i !-J f é[f ﬂ }
i & e J . % 22
] i ; +F

o e Ef(r} N ](r}(ES&S;; "“”%’““ ;‘5“%5&“ “"}"’ SWS%’N}a (3}

nd term d@%ﬂbﬁ transitions without spin flips which are there-
__ depend on the spin state of electron and 1on. The only
non-Zero matrix @iﬁ%m@- nts of s; and S; are (sg)ee = +& and (S:)mm == m.
The matnx é;%%#‘f ments of the second an d of the first term in eq. (3) must be
bined i order to get the quantum mechanical transition probabilities

for the elastic transitions

by . ‘;'r . o A - Ry '
3 -- g _I? i L

N -
= | Vin +

— £y, (4)

which are different for electrons with + and — spin. The function D takes
care of mwrg} -conservation. The transition probabilities from the terms
1. (3) have some coetficients in common and these are contained in the

-G-W*rator with —+ (—) as
. Hence the

f the quantum numb( rs c;f electmn and 1on 1s conserved.
I‘ he {}ﬁiy non-zero matrix elements have as squared absolute values

= S(S + 1) —
o Mm%)

which result 1s also valid for electrons (S = 1§, m -1
The quantum mechanical transition probability by the third term in
1. (3) 1s

Eﬁ% { Ty W, _%_, y FIE

S

tmmiti@ns the eﬂectmﬁ mwrgy incr@a%% with A since the 101

1)} D(E, — E, —A). (6)

For these

Méfetﬁm Spin changeb fmm + to — and the elec;tmn energy decreases with ﬁ-f:;] :

For thﬁ‘ s- } transition pmbabﬂity P one has to average over m with

to take the Pauli exclusion principle into account.
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This gives
Pk + —k +)= z Ve — mJ el @nfy (1 —[) D(E, — E,), (8a)
Plk— -k —) = Z Ve +mJ el @nfe (1 — fg) D(Ey — Ey), (80)
Pk — >k +) =% [Jpa2{S(S + 1) —

—m(m + 1)jwmfy (1 — f¢) D(Ey — E, — 4), (8¢)
Plk+ —k —) = 3 |Jul2{S(S + 1) —

--—-m(m—;— 1)}wm ﬁj(l “‘“f;)D(Ek’ — £, + 4), (8@

where ;" is th probability that the electron state k with - spin is occupied,
etc. In eq. (8¢c) m + 1 was substituted for m in order to make the spin matrix

element the same as in eq. (84).
Using cq. (8) the scattering terms in the Boltzmann equations for the

-+ and — spin electrons with wavenumber k are
0 +
(;;) — S{PW + ~k+) —P(k + >k 1)} +
scatt |
+{P(k' — -k +) —P(k + — k' —)}, (9a)
.
ot scatt o *
+{P(k' + -k —) —P(k — — k' +)}. (9%)

- For a spherical Fermi surface with E, = %2 |k|2/2m, the influence of an
electric tield F in the x-direction on the distribution function gives the drift

term
F 0
( 8]‘,1) _ el 9y Ra | | (10)
0t / gpigt m on kil
with
fo=1("+4 1)1 and # = (E, — {)/«T. (11)
Eq. (10) suggests the ““Ansatz’’, as usual,
By OF°
+ 0 = n ok 12
fk fvy + KI‘ 877 C?? ( )

—
b

- play the part of a relaxa-
tion time. Because of the special form of the scattering terms, eq. (9),
one expects a strong dependence of ¢, on electron energy 7. By the substi-

tution of eq. (12) and eq. (8) in eq. (9) one finds after some algebraic manipu-
lations:

Except for the coefficient %eF /m, the functions c:

of o |
( 3: ) = ()™ %ﬁ Vier — mJpnl? (ke — k) ¢ D(E,. — E,) R(n, 0) +

+ (T EEEF =m0}l (hyef — Eoey,) -
D(E, — £, + A4) R(n, — 1), (1361)
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yrium distribution terms fg, r?f‘; /e etc. have been incorporated

R(?}} ﬂ)s (é‘fﬁ e U““““l {f%““‘*?”ﬁ@ + 1)“*1

oy conservation expressed by the D-functions has been used.
f the D-functions’ can be taken to
ler than the width of the electron distribution function &f;/on.
may be questionable for inelastic transitions, especially for the calcu-
thermopower. The bars denote averages over m with wy, as
replacing ¥, by an integration over k’,

dE, (14)

S - [[[R'2dR’/AE, sin 6 dd d¢

k

and assuming that the matrix elements of V and J depend on the angle &
between k and R’ only, eq. (13) becomes

L D ESE T —mm 1)

el (e — ¢, cosd)sin &

46} R(—n, —u). (156)

Th‘&
ba s

a1l the terms in eqs. (15a) and (156), such as
1 again. By the substitution of egs. (10) and

(16)

Ir.E

glect common, irrelevant
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factors _
| = {A + (D — E)m? — 2Cm}c, + P(Dc} — Ec;_ ) Q(—n, u), (16a)

|

={A + (D — E) m? + 2Cm} c, + P(Dc,; — Ec;;,) Q(n, 1), (160d)
where O(n, 1) = (en + 1)(en™* + 1)71; Pu) = S(S + 1) —m(m + 1) (17)

A = [|V(ksin 0/2)|2 sin o(1 — cos o) do
(

D = [|](ksin 6/2)|2 sin 0 do
0

14

E == [|]J(ksin §/2)|2sin 6 cos d dJ

U

C xfnRe[V(k sin 6/2) J*(k sin §/2)] sin 6(1’ — cos 0) dd. (18)
0

From the solution ¢~ of the Boltzmann equation, eq. (16), follow the electric

(¢ > 0) and the reversible heat current

+ o0 of9
[ = —e[(c; 4+ ¢ ) —dn, . (19a)
oo on
+ 00 3f0
W = T [nfef + )~ d, (195)
oo 7

where the clectric current is calculated with eqgs. (12) and (14) from

Yele(—e) (fn + f¢), and the heat current from 3,v.(E, — &) (& + /o).
Coetficients with a weak # dependence, common to both expressions have
been neglected.

Contrary to what is usually done the absolute thermopower S is calculated
from the absolute Peltier heat /7. The latter is given by the ratio of the heat

current W 1in eq. (196) to the electric current 7 in eq. (19a). Hence, using
Kelvin’s relation, '

+ oo af()
[rler + ey) =2 dy
S=MT =T W[l = — (x/e) == af;'f. (20)
Sleg ) a-?;’- dy

[t can be seen from eq. (20) that the thermopower does not depend on the
constant factors which have been neglected systematically in the Boltzmann
equations and in eqs. (18) and (19). This constant is needed for the electrical
resistivity, but the missing factor can be obtained simply from the well-
known result if J(r) = 0; moreover the fluctuations of the resistivity as a
function of temperature are more interesting than the resistivity itself.
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Boltzmann equation, ¢q. (16), which can be written in

T gL

A -+ (DD — E) f% 21 20m and P (1) = P~ u),

the elastic scattering terms and the melastic terms with spin fhip- ﬁ(}pﬂ; are
Mmﬁ recognized as the terms with P+ and P f%;}mtlwiy Tdkiﬂg P

0, 1t follows from eq. (22) that ¢ depends on 5, ¢, =¢ hmwve*r
hence the integral W vanishes and the thermmpowm' S bfsm;}mm zero. For
a finite S the elastic terms are also needed. These are "iffé;‘%rf?‘z’lf for 4+ and —
é«w%mmm The two types of terms combined make ¢ % + ¢, asymmetric

vith respect to = 0. The m d\imum &i‘«ymmat ry in¢, ¢ wﬂl occur tor
[ Ry jgﬁ For C = i([ Bl | M‘ld {[) e ) ==

A Tl

A it 1s expected

+ ¢ ) — (el + ¢Z)) = 0.1 {cg + ¢,).

20) grves a thermopower with an absolute value approaching
. gg;\ ﬁdegﬁ‘%& umder favourable conditions. This result should be
compared to that for mormal scattering where the energy dependence of
the "scattering time”” may be expressed by

+ ﬁ??if[ﬁ ?' W’ith gp; ~ 1. (2”

sto S = p'(kfe)(xT /L), with |p'| ~ |p!, which 1s therefore negligible
0°) compared to the value which 1s expected from eq. (20) in the
case that ¢F are strong functions of ».

T'he solutions of eq. (16) depend on u = A/«T, hence the resistivity will
in general depend on temperature. Yosida's equations can be obtained from
. (16) 1

by the substitution of Q(0, u) for (5, u) and the neglect of the
n-dependence of c;.

ke of simplicity one single ion has been assumed to be present.
a simple matter to extend the equations to the case where a
fraction n of the ions experiences a field +u and the other fraction, 1 — #,
4 field —pu. This gives the following difference equations for c;r

ngy (n, 1) + (1 — n) g1y, —p) = 1, (20a)

nge (g, 1) + (1 — ) gal, —p) = 1, (250)

vhere the concentration has been omitted as a common factor. Three cases
oW be considered :
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a) Purely ferromagnetic case, n =1 or n = 0. The largest thermo-
power should occur here. The difference equations can be solved in an
elementary way, however, the integrations to get [ and W are very compli
cated.

b) Purely antiferromagnetic case, n = 0.5. For reasons of symmetry

Y

@

the thermopower vanishes; there 1s neither a difference between the elastic
terms nor between the inelastic ones. However, the n-dependence of ¢, may
influence the 7-dependence of the resistivity. The difference equations
cannot be solved 1n an elementary way.
¢) Intermediate cases, 05 < n < 1. Because the thermopower
vanishes when # = 0.5 and because there 1s some preference in the litera.
ture for these cases it seems interesting to study the influence of small devi-
antiferromagnetic case; the thermopowe

ations from the main
anomalously high. Because the thermopower 1s insensitive to a sign reversal
of 4 and because the two factors favouring high values vanish if n = 0.5
a proportionality as (n — 0.5)% 1s expected for S as a first approximation.

3. The computations. Values of I(u) and W(u) for u=0.1x2t, 1 =0 (1) 7,
were calculated with the aid of the electronic computer Electrologica — X1
of the Mathematical Centre. This was done for the following 100 combina
tions of the parameters:

A=1;,C=0J5,0.25 010; n=1, 0.8, 0.52, 0.5; D = 0.2;
E = 0.25, 0.10, 0.05, 0, —0.10; S = 2.5 (except for C = 0.5), 0.5.

To this end the difference equations (25) had to be solved for ¢ and ¢ .
The four boundary conditions required for the solution of this system were
chosen in such a way as to give constant ¢! for n = + oo. The values of
these four constants were found by substitution of »n = | q. (25}
and solving the system thus obtained for ¢f_, and c¢7,.
By taking n; = no + lu, I = O(1) N, in such a way that n < no could be
iterpreted as n = — oo and > ny as n = oo, we arrived at two systems
of N 4+ 1 linear equations in the 2N + 2 unknowns c;, which were solved
by an elimination procedure for tridiagonal matrices.

In order to obtain a table of ¢} with an increment sufficiently small to
calculate the integrals (19) numerically, these computations had to be
carried out for several values of ng. In fact g = — (13 + 0.1 4), 7 = 0O(1)10xu
— land nx > 13 were chosen, thus finding values of ¢} for n = —13(0.1)13.
Finally the integrals (19) were calculated, replacing the limits by -+ 13, by

means of the trapezoidal rule.

4. Results. The electrical resistivity. At hig

A
(u — 0), m

A temperatures,
= 0 for both fields and the resistivity does not depend on C.
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Moreover, for «/1 > A4 the ineclastic character of the scattering disappeais
(cn — co); hence the resistivity must be identical with Yosida’s result and

independent ot n. p,, = A4 + (D — E) S(S + 1),
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. 1. The electrical resistivity as a function of the reduced temperature for a few
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values of the parameters. S = 0.5.

For 1" — oo the resistivity does not depend on # and C.
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Fig. 2. As fig. 1 for § = 2.5.

Low temperatures (u —oco, P —0). For n = 0.5 the equations again simplify to
Yosida’s. The terms with C and = cancel because nm, + (1 —#n) m_, =0

and po(0.5) = 4 + (D — E) S,

T < Alx.
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For the extreme ferromagnetic case n = 1

(4 + (D — E) S2)2 — 4(282

It tollows from these equations p_, > p(0.5) > po(1).

Hence tfor all allowed values *) of D, E, C, S and #n, the resistivity at
I = 0 1s lower than at high temperatures. Yosida found that this change
takes place 1n a monotonic way. The possibility could not be excluded that
by taking the n-dependence of the “relaxation-time’ ¢;* into account, the
resistivity would pass through a maximum at intermediate temperatures.
However the computations (some results are shown in tigs. 1, 2) give only
a slight modification of the Yosida result. It should be noted that 909%,
change 1n the resistivity takes place in a temperature range of about a
factor 20.

The thermopower. Some of the computer results for S in units of
kle = 86.3 uV/degree are shown in fig. 3 and fig. 4. As the computation
has been carried out for only a limited number of u-values the interpolation
1s rather 1naccurate especially at the lower temperatures where the thermo-
power falls extremely rapidly. At temperatures above the maximum, S goes
to zero as 72, a result which is most probably valid beyond the details of
our model. The maximum in S occurs for 7 = 14/«, approximately.

Neglecting extreme cases a maximum value of 0.1 x/e or about 10
uV/degree seems quite normal for cases where the change in resistivity
1s not too large, say 10 or 209;.

As expected, S is largest for » = 1 and vanishes for » = 0.5. The results
for intermediate values of #, for which #» = 0.80 and » = 0.52 have been
chosen, are approximately proportional to (n — 0.5)2. For § = 0.5 this
holds remarkably well; for S = 2.5 the thermopower at » = 0.52 deviates
by no more than a factor two from the value calculated with the above
proportionality; at » = 0.8 the deviation is substantially smaller.

The above values of the thermopower increase in a monotonic way with
increase of E between the extreme values £ = —0.10 and E = 0.15, which
are shown in figs. 3 and 4. For S = 0.5 the E dependence is quite weak.

An interesting result is that the thermopower is negative for positive C
for all allowed values of the parameters. The thermopower is an odd function
of C whereas the resistivity, the integral I, depends on the absolute value
of C. These sign-reversal properties follow from the Boltzmann equation **).

5. Discussion. By taking the energy dependence of the relaxation-time
into account results for the electrical resistivity were obtained which are

*y D>FLE: A + (D — E)ym2 + 2Cm > 0 for —S < m < S.
#%) o—p(2 P(y) is even in w; e#/2 Qn, u) = Q'(n, w) = Q'(—n, —u); eyt + ¢~ is independent
of the sign of u.
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not essentially ditferent from the results in Yosida’s simplified treatment 4).
The resulting monotonic decrease of the resistivity with decreasine 7. as
shown 1n figs. 1 and 2, has been observed in Cul\/BI}n and Ag&iibfggaflz);z
at higher concentrations. Neither the maximum in the r&sisﬁvity of thése
alloys at lower concentrations, nor the monotonic increase with decreasing
T of such alloys as CuFe, CuCo etc. 12) resulted from our modified e(]uati()ng,
It scems most unlikely that a distribution of internal fields could modify
qualitatively the resistive behaviour in figs. 1 and 2. In this respect the
influence of the tinite life-time of the electrons due to inelastic collisions
merits further research.
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kig. 3, 4. The thermopower 1n units of /e as a function of the reduced temperature.
FFor n = 0.5 the thermopower vanishes exactly. fig. 3 corresponds with fig. 1; fig. 4
with fig. 2.

The calculated thermopower 1s of the order of the experimental values 1n
cases where it i1s abnormally high and has, moreover, the correct sign if one
assumes that the exchange integral, J, for electrons and 1ons 1s positive.
Experimental data on thermopower are scarce. Fairly pure Cu, Ag and Au
with possibly Fe as dominant impurity gave a thermopower of about
—6uV/degree at 1°K. However our model cannot give the right resistive
behaviour for this type of alloy.

The ion pair theories 6)7) seem to be able to predict all ty pesof temperature
dependence which have been observed for the resistive behaviour in magnetic
dilute alloys but do not predict — at least not in the way in which these
models have been worked out — anomalously high thermopower. In addition
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these theories predict a quadratic concentration dependence of the anomaly,
which has not been observed experimentally. Brailsford and Over-
hauser ?) consider isolated ions to account tor a weaker concentration
dependence. In this situation it 1s attractive to suppose that the ion pairs
cause the anomalous 7 dependence of the resistivity and the “isolated”
1ons the giant thermopowers.

] i ittt

F _-¥ — -— Vs j}, gy Y I o yulmr

o
. o o . y il SO . G?ﬁh ——— oo— AN m— — Y S ""“"——-—-mm“_m“ H
. —r — { B i -~k

CH+Cq / ri=(15 {3;’!; / N A ; ~i"\\

1 ' N
120 oo e e e L RE e s, ' e e MRS ZEEY ] - g s’ d » N N ~

—

.
-
o - 5 ™ -~
—— ¢ gl . . . - R T 1 s P #{,_._ . h ey — . h“
——
bt 7 % ‘“'--.h-_ﬁ

M‘*-..__
.
Mo,

e e AT A R A W S 3l

s A bl e et Mol S, TP AT bty Vi Sudbin S AN g weeve S e —l
-

T MY apmps vEmpEn el S WS Mt GRPPT TRV ik

90

Fig. 5. The “‘relaxation times’’ 0?‘;‘ and ¢, Fig. 6. The sum of the relaxation times
as a function of » 1n the ferromagnetic c:' + ¢, for the parameter values as In
case n» = | for a few values of the reduced fig. 5. For » = 0.5 one has C;‘ = ¢, .

temperature, «71/4, for the parameter
values A=1, D=02, C=0.1, £ =0.15
and S = 2.5.

However, modifications similar to those introduced into Yosida's
model in § 2 must also be applied to the ion pair calculations. These give
undoubtedly a resistivity-temperature relation different from the one in
the simplified treatments. As for the thermopower, the .8 interaction
between the members of an ion pair results in energy states which do not
depend on the direction of the total magnetization, hence the pair scatters
the electrons in such a way that there is on the average no difference between
electrons with + and — spin. 1f one makes the energy of the pair dependent
on the direction of the magnetic moment the scattering will become
different for + and — spin electrons. This occurs in exactly the same
manner as in the Yosida model, by interference between the normal and
exchange parts of the elastic scattering. A first order thermopower ap-
proaching the value /e will again be the result. This removal of the spin
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v be brought about by configurations of interacting pairs with
ted 1ons. The scarcity of the experimental data and the large

mber of such configurations make 1t mmopportune to consider these
possibilities 1n a more quant itative detail at present.

{ppendix *). Fig. 5 shows the relaxation timese;” and ¢ ;‘“ for the parameter
) == 0.2, £ = 0.15, C = 0.1 m}d S = 2.5 for the ferro-
nagnetic case, # = Mthaugh only values close to n = 0 contribute to
he integrals I and M , the values of ¢} 1n this region are determined by a
1 larger interval, especially for the higher p-values. It was for this
reason that variational principles were not used. These are based on a pow
devel i}pﬁa mm of ¢," around n = 0. As figs. 5 and 6 show such a procedure
not be ex to yield rehable results. Without elastic %attermg
(P% == one has in t h e ferromagnetic case ¢, == ¢_, so thatif e.g. ¢, 1sa
nonoton m@ﬂiy increasing function of 5, ¢ 18 mo nm onically decreasing.
If the elastic scattering too 1s taken into account (P* 3£ 0) one 1s inclined
to expect —~ by adding 1inverse relaxation times — that the sign of the above
i?"--zm%&tfy f(’}r f:r”?‘*' and ¢, would remain the same. However, 1t 1s shown in
fig. S Ehai both ¢, and ¢ are increasing with y ﬁ)’%‘ ail but the highest values
mﬁ wl /A~ 1S points to the necessity of Crﬁt.:'mdwing the elastic and 1nelastic
-mm- as an entirety. In {1 1g 6 the functions ¢, - ¢, are ahawn aLs@o for
he antiferromagnetic case n = 0.5 for w ='-ICh ¢, = ¢ = §(c; + ¢ ).
ﬁmc tions have the same, - mde pendent, mym ptotic value fc}r n o= |
nd 1 = 0.5 when 7' - oco. We note that for # = 1 the "mean relaxation

" - ¢ 1s not everywhere a monotonic itmcmon of the temperature.

The phys

ical part of this work was done by the first author at the
_ > de hvaxque de I'Université de Lausanne in 1959/1960. It got
ﬁg’wj form mn cooperation with the Mathematical Centre, Amsterdam.
Ia 15 part of the mgﬁemﬁh program of the ““Stichting voor Fundamenteel
Omderzoek der Materie (F.O.M.)” and was partly supported by the “Neder-
wdse Organisatie voor Zuiver-Wetenschappelyk Onderzoek (Z.W.0.)”
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