07/0

ARCHIEF

Abstract from the Proceedings of the International Mathematical Congress Amsterdam, Sept. 1954.

A

SEQUENTIAL TEST WITH THREE POSSIBLE DECISIONS FOR THE COMPARISON OF TWO UNKNOWN PROBABILITIES

CONSTANCE VAN EEDEN

We consider two series of independent trials, e.g. two processes, each trial resulting in a success or a failure with probabilities p, 1-p and p', 1-p' respectively for the two processes.

Executing the trials in pairs consisting of one trial for each process, a sequential test with two possible decisions, developed by Wald [1] (p. 106), may be used for the comparison of p and p'.

For groups of trials of both processes a sequential test with two possible decisions has been described in [2]. This test is carried out as follows:

Suppose the group of trials constituting the i^{th} step of the test consists of n_i trials for the first process and m_i trials for the second one. If the number of successes for the two processes are \boldsymbol{a}_i and \boldsymbol{b}_i respectively, then

$$m{x}_i = 2 \left\{ \arcsin \sqrt{rac{m{a}_i}{n_i}} - \arcsin \sqrt{rac{m{b}_i}{m_i}}
ight\}$$

is for large n_i and m_i approximately normally distributed with mean

(1)
$$\mu = \mathcal{E} \mathbf{x}_i = 2 \left\{ \arcsin \sqrt{p} - \arcsin \sqrt{p'} \right\} = 2 \arcsin \left\{ \sqrt{pq'} - \sqrt{p'q} \right\} \quad q' = 1 - p'$$

and variance (2) $\sigma_i^2 = \sigma^2(\mathbf{X}_i) = (n_i + 1)n_i^{-2} + (m_i + 1)m_i^{-2}$ (see e.g. [3]).

The ordinary sequential test with two possible decisions for the mean of a normal distribution with known variance, given by Wald [1] (p. 117), may then be applied to the x_i .

Both abovementioned tests for comparing two unknown probabilities can be generalized to tests with three possible decisions. For the first one this generalization may be based directly on a method described by de Boer [4].

The test for groups of trials can be generalized by applying the test with three possible decisions for the mean μ of a normal distribution with known variance, developed by Sobel and Wald [5] to the abovementioned random variables x_i .

For this test two values ξ and η and four values μ_1, μ_2, μ_3 and μ_4 of μ must be chosen, with (3) $\mu_1 < \xi < \mu_2 < \mu_3 < \eta < \mu_4$ the three possible decisions being

$$(4) \qquad 1. \quad \mu < \xi, \qquad 2. \quad \mu > \eta, \qquad 3. \quad \xi \leq \mu \leq \eta,$$

the intervals (μ_1, μ_2) and (μ_3, μ_4) being indifference regions.

To translate this into terms of p and p', let

$$\sqrt{pq'} - \sqrt{p'q} = \delta$$

then (see (1)) we have $\mu = 2 \arcsin \delta$.

The functional relation between p and p' for a given value of δ^2 is given by those two parts of the ellipse

(6)
$$p^2 + p'^2 - 2pp'(1 - 2\delta^2) - 2\delta^2(p + p') + \delta^4 = 0$$

for which $\delta^2 \leq p + p' \leq 2 - \delta^2$; this set of points (p, p') consists of a part \mathscr{C} for which p > p' and a part \mathscr{C}' for which p < p'.

Choosing two values ε and ζ and four values δ_1 , δ_2 , δ_3 and δ_4 of δ , with

$$\delta_1 < \varepsilon < \delta_2 < 0 < \delta_3 < \zeta < \delta_4,$$

- $(\delta_1,\,\delta_2)$ and $(\delta_3,\,\delta_4)$ constituting the indifference regions, the three decisions
- (4) are equivalent with:

(8) 1.
$$\delta_1 < \varepsilon$$
, 2. $\delta_2 > \zeta$, 3. $\varepsilon \le \delta \le \zeta$

and hence with the following decisions for p and p':

- (9) 1. the point (p, p') lies outside the part \mathscr{C}' of the ellipse (6) corresponding to $\delta = \varepsilon$,
 - 2. the point (p, p') lies outside the part $\mathscr C$ corresponding to $\delta = \zeta$,
 - 3. the point (p, p') lies between or on the parts \mathscr{C}' and \mathscr{C} corresponding to $\delta = \varepsilon$ and $\delta = \zeta$.

The probabilities of errors are determined as described in [5].

Remark. It is not necessary that p and p' are constant throughout the experiment. We only need a constant δ .

REFERENCES

- [1] A. Wald, Sequential analysis, New York 1944.
- [2] Statistical Research Group of the Columbia University, Sequential analysis of statistical data, applications, section 3, New York 1945.
- [3] R. A. Fisher, Proc. Roy. Soc. Edinburgh 42 (1922), 321-341.
- [4] J. DE BOER, Appl. Sci. Res. 3 (1953), 249-259.
- [5] M. Sobel and A. Wald, Ann. Math. Stat. 20 (1949), 502-522.

VAN EEGHENSTRAAT 47.

AMSTERDAM.