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SEQUENTIAL TEST WITH THREE POSSIBLE DECISIONS FOR 
THE COMPARISON OF TWO UNKNOWN PROBABILITIES 

CONSTANCE VAN EEDEN 

\Ve consider two series of independent trials, e.g. two processes, each 
trial resulting in a success or a failure with probabilities p, 1-p and p', I --p' 
respectively for the two processes. 

Executing the trials in pairs consisting of one trial for each process, 
a sequential test with two possible decisions, developed by Wald [I] (p. 106), 
may be used for the comparison of p and p'. 

For groups of trials of both processes a sequential test with two possible 
decisions has been described in [2]. This test is carried out as follows: 

Suppose the group of trials constituting the ith step of the test consists 
of n; trials for the first process and m; trials for the second one. If the number 
of successes for the two processes are B; and b; respectively, then 

xi = 2 { arc sin V 8 i -,-- arc sin Vb; } 
ni mi 

is for large ni' and m; approximately normally distributed with mean 

(1) µ = iffX;= 2{arcsin vp-arcsin Vp'} =2arcsin{ vpq'-Vp'q} !':~=:· 
and variance (2) a:= a2(xi) = (ni + l)n-;-2 + (m; + I)m-;-2 (see e.g. [3]). 

The ordinary sequential test with two possible decisions for the mean of 
a normal distribution with known variance, given by Wald [l] (p. 117), may 
then be applied to the X;. 

Both abovementioned tests for comparing two unknown probabilities can 
be generalized to tests with three possible decisions. For the first one this 
generalization may be based directly on a method described by de Boer [4]. 

The test for groups of trials can be generalized by applying the test with 
three possible decisions for the mean µ of a normal distribution with known 
variance, developed by Sobel and Wald [5] to the abovementioned random 
variables X;. 

For this test two values ~ and 'Y/ and four values µi, µ 2, µ 3 and µ4 of µ 
must be chosen, with (3) µ1 < ~ < µ2 < µ 3 < 'Y) < /l4 

the three possible decisions being 

(4) 1. /l < ;_ 2. µ > 17, 3. ~ ~µ ~ 'Y), 

the intervals (/li, µ 2) and (p3, /t4 ) being indifference regions. 



(5) 

To translate this into terms of p and p', let 

vpq' - vp'q = o 

then (see (1)) we have µ = 2 arcsin o. 
The functional relation between p and p' for a given value of o2 is given 

by those two parts of the ellipse 

(6) p2 + p'2 - 2 PP'(I -2o2) - 2o2(p + P') + o4 = 0 

for which o2 ~ p + p' ~ 2 - o2; this set of points (P, p') consists of a part CC 
for which p > p' and a part CC' for which p < P'. 

Choosing two values e and C and four values Oi, 02, o3 and o4 of o, with 

(7) 01 < e < 02 < o < 03 < C < 04 , 

(Oi, o2) and (03, o4 ) constituting the indifference regions, the three decisions 
(4) are equivalent with: 

(8) 3. e ~ o ~ C 
and hence with the following decisions for p and p': 

(9) 1. the point (p, p') lies outside the part CC' of the ellipse (6) correspond-
ing to o = e, 

2. the point (P, P') lies outside the part re corresponding to o = C, 
3. the point (P, p') lies between or on the parts CC' and re corresponding 

to o = e and o = C. 
The probabilities of errors are determined as described in [5]. 

REMARK. It is not necessary that p and p' are constant throughout the 
experiment. We only need a constant o. 
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