SEQUENTIAL TEST WITH THREE POSSIBLE DEGISIONS FOR THE COMPARISON OF TWO UNKNOWN PROBABILITIES

Constance van Eeden

We consider two series of independent trials, e.g. two processes, each trial resulting in a success or a failure with probabilities $p, 1-p$ and $p^{\prime}, 1-p^{\prime}$ respectively for the two processes.

Executing the trials in pairs consisting of one trial for each process, a sequential test with two possible decisions, developed by Wald $[\mathbf{l}]$ (p. 106), may be used for the comparison of p and p^{\prime}.

For groups of trials of both processes a sequential test with two possible decisions has been described in [2]. This test is carried out as follows:

Suppose the group of trials constituting the $i^{\text {th }}$ step of the test consists of n_{i} trials for the first process and m_{i} trials for the second one. If the number of successes for the two processes are \boldsymbol{a}_{i} and \boldsymbol{b}_{i} respectively, then

$$
\boldsymbol{x}_{i}=2\left\{\arcsin \sqrt{\frac{\mathbf{a}_{i}}{n_{i}}}-\arcsin \sqrt{\frac{\boldsymbol{b}_{i}}{m_{i}}}\right\}
$$

is for large n_{i} and m_{i} approximately normally distributed with mean

$$
\mu=\mathscr{E} \boldsymbol{X}_{i}=2\left\{\arcsin \sqrt{p}-\arcsin \sqrt{p^{\prime}}\right\}=2 \arcsin \left\{\sqrt{p q^{\prime}}-\sqrt{p^{\prime} q}\right\} \begin{align*}
& q^{\prime}=1-p^{\prime} \tag{1}\\
& q=1-p
\end{align*}
$$

and variance (2) $\sigma_{i}^{2}=\sigma^{2}\left(\boldsymbol{x}_{i}\right)=\left(n_{i}+1\right) n_{i}^{-2}+\left(m_{i}+1\right) m_{i}^{-2}$ (see e.g. [3]).
The ordinary sequential test with two possible decisions for the mean of a normal distribution with known variance, given by Wald [1] (p. 117), may then be applied to the \boldsymbol{x}_{i}.

Both abovementioned tests for comparing two unknown probabilities can be generalized to tests with three possible decisions. For the first one this generalization may be based directly on a method described by de Boer [4].

The test for groups of trials can be generalized by applying the test with three possible decisions for the mean μ of a normal distribution with known variance, developed by Sobel and Wald [5] to the abovementioned random variables \boldsymbol{x}_{i}.

For this test two values ξ and η and four values $\mu_{1}, \mu_{2}, \mu_{3}$ and μ_{4} of μ must be chosen, with (3) $\mu_{1}<\xi<\mu_{2}<\mu_{3}<\eta<\mu_{4}$ the three possible decisions being

$$
\begin{equation*}
\text { 1. } \mu<\xi, \quad \text { 2. } \mu>\eta \text {, } \tag{4}
\end{equation*}
$$

3. $\xi \leqq \mu \leqq \eta$,
the intervals $\left(\mu_{1}, \mu_{2}\right)$ and (μ_{3}, μ_{4}) being indifference regions.

To translate this into terms of p and p^{\prime}, let

$$
\begin{equation*}
\sqrt{p q^{\prime}}-\sqrt{p^{\prime} q}=\delta \tag{5}
\end{equation*}
$$

then (see (l)) we have $\mu=2 \arcsin \delta$.
The functional relation between p and p^{\prime} for a given value of δ^{2} is given by those two parts of the ellipse

$$
\begin{equation*}
p^{2}+p^{\prime 2}-2 p p^{\prime}\left(1-2 \delta^{2}\right)-2 \delta^{2}\left(p+p^{\prime}\right)+\delta^{4}=0 \tag{6}
\end{equation*}
$$

for which $\delta^{2} \leqq p+p^{\prime} \leqq 2-\delta^{2}$; this set of points $\left(p, p^{\prime}\right)$ consists of a part \mathscr{C} for which $p>p^{\prime}$ and a part \mathscr{C}^{\prime} for which $p<p^{\prime}$.

Choosing two values ε and ζ and four values $\delta_{1}, \delta_{2}, \delta_{3}$ and δ_{4} of δ, with

$$
\begin{equation*}
\delta_{1}<\varepsilon<\delta_{2}<0<\delta_{3}<\zeta<\delta_{4} \tag{7}
\end{equation*}
$$

$\left(\delta_{1}, \delta_{2}\right)$ and $\left(\delta_{3}, \delta_{\mathbf{4}}\right)$ constituting the indifference regions, the three decisions (4) are equivalent with:

1. $\delta_{1}<\varepsilon$,
2. $\delta_{2}>\zeta$,
3. $\varepsilon \leqq \delta \leqq \zeta$
and hence with the following decisions for p and p^{\prime} :
(9) 1. the point $\left(p, p^{\prime}\right)$ lies outside the part \mathscr{C}^{\prime} of the ellipse (6) corresponding to $\delta=\varepsilon$,
4. the point $\left(p, p^{\prime}\right)$ lies outside the part \mathscr{C} corresponding to $\delta=\zeta$,
5. the point $\left(p, p^{\prime}\right)$ lies between or on the parts \mathscr{C}^{\prime} and \mathscr{C} corresponding to $\delta=\varepsilon$ and $\delta=\zeta$.
The probabilities of errors are determined as described in [5].
Remark. It is not necessary that p and p^{\prime} are constant throughout the experiment. We only need a constant δ.

References

[1] A. Wald, Sequential analysis, New York 1944.
[2] Statistical Research Group of the Columbia University, Sequential analysis of statistical data, applications, section 3, New York 1945.
[3] R. A. Fisher, Proc. Roy. Soc. Edinburgh 42 (1922), 321—341.
[4] J. de Boer, Appl. Sci. Res. 3 (1953), $249-259$.
[5] M. Sobel and A. Wald, Ann. Math. Stat. 20 (1949), 502-522.
Van Eeghenstratit 47.
Amsterdam.

