MATHEMATICAL CENTRE

2e Boerhaavestraat 49, AMSTERDAM.
\qquad
STATISTICAI DEPARTMINT

Head ot Departmont: Prow.Drevoran Dantzig Chief ol'stafistical Consuleation: Prof. Dw Juemelriju

> Report S 157(VP3)

A test for the equality of probabilities against a class of specified alternative hypotheses, including trend.

by
Constance van Eeden

1954.
1955. Introduction.

We consider $k(k \geqq 2)$ independent series of independent trials, each trial resulting in a success or a failure. The i.thseries consists of n_{i} trials with $\underline{a}_{i}{ }^{1)}$ successes and b_{i} failures ${ }^{2}$), $\underline{t}_{1}=\sum_{i} \underline{a}_{i}, \underline{t}_{2}=\sum_{i} b_{i}, N=\sum_{i} n_{i}$ and p_{i} is the probability of a success for each trial of the i-thseries.

The observations may be sumarized in the following table。

We want to test the hypothesis:
(1.1) $\quad H_{0}: p_{1}=p_{2}=\ldots=p_{k}$
against an upward or downward trend. This may be done eg, in the following way:

We consider the n_{i} trials of the iothseries as n_{i} bservations of a random variable x_{i}, where x_{i} takes the values o and 1 with
(1.2) $\quad P\left[x_{i}=1\right]=p_{i}, P\left[x_{i}=0\right]=1-p_{i}, i=1.2 \ldots, k$.

Then H_{0} is identical with the hypothesis that $x_{1}, x_{2} \ldots . x_{k}$ pos. sess the same probability distribution and this hypothesis may be tested against the above mentioned alternatives by a ing TERPSTRA's [5] test against trend to the observations of $\mathfrak{x}_{1}, \mathfrak{x}_{2}, \ldots, \mathfrak{x}_{k}$ 。This test is executed as follows:

We apply WILCOXON's two-sample-test to the samples of x_{i} and x_{j}. Then, if we denote WILCOXON's test- statistic for these two samples by $\underline{u}_{i, j}$:

1) Random variables will be denoted by underlined characters; values taken by a random variable are denoted by the same character, not underlined.
2) Unless explicity stated otherwise i and j take the values $1,2, \ldots, k$.
(1.3)

$$
\underline{W}_{i, i} \stackrel{\text { def }}{=} 2\left[\underline{u}_{i, j}-\varepsilon\left(\underline{u}_{i, j} \mid H_{0}\right)\right]=\underline{a}_{i} n_{j}-\underline{a}_{j} n_{i}
$$

and for $\operatorname{TERPSTRA}$'s test statistic I we have
(1.4) $\quad W \stackrel{\text { def }}{=} 2\left[T-\xi\left(I\left|H_{0}\right|\right]=\sum_{i=j} \sum_{i, j}\right.$.

Consequently
(1.5) $\quad \underline{W}=\sum_{i=j} \sum_{j}\left(\underline{a}_{i} n_{i}-\underline{a}_{j} n_{i}\right)$
with (cf. [5]) :
(1.6) $\quad \sigma^{2}\left[\underline{W} \mid t_{1}, H_{0}\right]=\frac{t_{1} t_{2}\left(N^{3}-\Sigma n_{i}^{3}\right)}{3 N(N-1)}$.

In section 6 we shall prove that this test is consistent for the class of alternative hypotheses:

$$
\text { (1.7) } H: \lim _{N \rightarrow \infty} \frac{\sum_{i=j} \sum_{i} n_{i} n_{j}\left(p_{i}-p_{j}\right)}{\sum_{i} n_{i}\left|\sum_{i<j} n_{j}-\sum_{i>j} n_{j}\right|} \neq 0
$$

and, for sufficiently small α, for no other alternatives. Consequently if we apply TERPSTRA's test the class of alternative hypotheses for which the test is consistent depends on the sample-sizes n_{i}. This means, that as soon as at least one of the p_{i} differs from the others, the n_{i} may be chosen such, that the test is consistent, even if the $p_{:}$do not show a trend at all. According to a remark of JoHEMELRIJT this dis... agreable property ought to be avoided by choosing the teststatistic in such a way that the alternative hypotheses, for which the test is consistent, do not depend on the ratios of the numbers of observations taken from the different random variables, except possibly for boundary conditions of a general nature.

Taking this into account, the general form of our problem may be stated as follows. Consider N independent trials, aach trial resulting in a success or a failure. The total number of successes is $\underline{t}_{1}, \underline{t}_{2}=N-\underline{t}_{1}, x_{\lambda}^{4)}$ is the number of successes and p_{λ} the probability of a success for the λ-th trial. We now want a test for the hypothesis
(1.8) $\quad H_{0}: \quad p_{1}=p_{2}=\ldots=p_{N}$ 。
3) If $\lim _{N \rightarrow \infty} \sum_{i} \frac{n_{i}}{N}\left|\sum_{i<j} \frac{n_{i}}{N}-\sum_{i=i} \frac{n_{i}}{N}\right| \neq 0 \quad$ then (1.7) is identical with

$$
\lim _{N \rightarrow \infty} \sum_{i<j} \frac{n_{i} n_{i}}{N^{2}}\left(p_{i}-p_{j}\right) \neq 0 .
$$

4) Unless explicitely stated otherwise λ and μ take the values

$$
1,2, \ldots, N .
$$

which is consistent for the class of alternative hypotheses (1.9) $\quad H: \lim _{N \rightarrow \infty} \sum_{\lambda} g_{\lambda} p_{\lambda} \neq 0$ and if possible for no other alternatives, where $g_{\lambda}(\lambda=1,2 \ldots, N)$ are given numbers.

These numbers must satisfy the condition

$$
\begin{equation*}
\sum_{\lambda} g_{\lambda}=0 \tag{1.10}
\end{equation*}
$$

because, if H_{0} is true $\sum_{\lambda} g_{\lambda} p_{\lambda}$ must be equal to zero, in actordance with our wishes as to the consistency (cf.(1.9)). Imposing without any loss of generality, the condition

$$
\begin{equation*}
\sum_{\lambda}\left|g_{\lambda}\right|=1 \tag{1.11}
\end{equation*}
$$

we have
(1.12) $\quad\left|\sum_{\lambda} g_{\lambda} p_{\lambda}\right| \leqq 1$.

In the special case (1.7) the class of admissible hypotheses consists of those values of $p_{1}, p_{2} \ldots . . p_{N}$ which satisfy
(1.13) $\begin{cases}p_{1}=p_{2}=\ldots=p_{n_{1}}, & \\ p_{n_{1}+1}=\ldots=p_{n_{1}+n_{2}}, & n_{i}>0, i=1,2, \ldots k \\ \vdots & k \geq 2, \sum_{i} n_{i}=N \\ p_{n_{1}+\ldots+n_{k-1}+1}=\ldots=p_{n_{1}+\ldots+n_{k}} & \end{cases}$
and thus if we take

$$
\begin{equation*}
g_{\lambda}=\frac{g_{i}^{\prime}}{n_{i}} \tag{1.14}
\end{equation*}
$$

$$
\left\{\begin{array}{c}
n_{1}+\ldots+n_{i-1}<\lambda \leqq n_{1}+\ldots+n_{i} \\
i=1,2 \ldots, k ; \lambda=1,2, \ldots, N
\end{array}\right.
$$

where g_{i}^{\prime} are given numbers and if we put
$p_{\lambda}=p_{i}^{\prime}$

then
$(1.16) \quad \sum_{\lambda} g_{\lambda} p_{\lambda}=\sum_{i} g_{i}^{\prime} p_{i}^{\prime}$.
Condition (1.10) and (1.11) reduce to
$(1.17) \quad \sum_{i} g_{i}^{i}=0$
and

$$
\begin{equation*}
\sum_{i}\left|g_{i}^{\prime}\right|=1 \tag{1.18}
\end{equation*}
$$

respectively
Consequently in the case (1.17) g_{i}^{\prime} is proportional to $n_{i}\left(\sum_{i=j} n_{i}-\sum_{i>j} n_{j}\right)$, which introduces the n_{i} into (1.9). If we take g_{i}^{\prime} proportional to $(k+1-2 i)$ the above mention ned drawback of TERPSTRA's test is avoided and the alternatives,
for which the test to be developed is consistent, are those, for which $\sum_{i}(k+1-2 i) p_{i}^{\prime}=\sum_{i} \sum_{i}\left(p_{i}^{\prime}-p_{j}^{\prime}\right) \neq 0$.

In this paper we shall consider the general case (1.9). We test the hypothesis H_{0} conditionally under the condition $t_{i}=t_{1}$ and we choose, on intuitive grounds as a test--statistic a li-w near combination of the random variables x_{λ} :
(1.19)

$$
\underline{W}=\sum_{\lambda} h_{\lambda} \underline{x}_{\lambda} .
$$

The $h_{\lambda}(\lambda=1,2, \ldots, N)$ will later on be expressed in terms of $g_{1} g_{2}, \ldots, g_{N}$ such that the test is consistent for the class of alternative hypotheses (1.9) and for no other alternatives. In the special case of TERPSTRA's test against trend $h_{\lambda}(\lambda=1,2, \ldots, N)$ is proportional to $\sum_{i<j} n_{j}-\sum_{i>j} n_{j}\left(n_{1}+\ldots+n_{i-1}<\lambda \leq n_{1}+\ldots n_{i} ; i=1,2, \ldots, k\right.$. Without any loss of generality we can suppose

$$
\begin{equation*}
\sum_{\lambda} h_{\lambda}=0 \tag{1.20}
\end{equation*}
$$

which means that \underline{W} is chosen in such a way that $\ell\left[\underline{W} \mid t_{1}, H_{0}\right]=0$ (cf. (2.6)).
2. The mean and variance of W under the hypothesis H_{0}. Under H_{0} and under the condition $t_{1}=t_{1}$ the simultanious distribution of the ${\underset{x}{\lambda}}^{\text {isan }} N$-dimensional hypergeome.. tric distribution, i.e.
(2.1) $P\left[x_{1}=x_{1} \wedge x_{2}=x_{2} \wedge \ldots \wedge x_{M}=x_{N} \mid t_{1}, H_{0}\right]=\frac{\prod_{\lambda}^{1}\binom{1}{x_{\lambda}}}{\binom{N}{t_{1}}}=\binom{N}{t_{1}}^{-1}$,
and
(2.2) $\quad \mathcal{\ell}\left[\underline{x}_{\lambda} \mid t_{1}, H_{0}\right]=\frac{t_{1}}{N}$,
(2.3) $\sigma^{2}\left[\underline{x}_{\lambda} \mid t_{1}, H_{0}\right]=\frac{t_{1} t_{2}}{N^{2}}$,
(2.4) $\operatorname{cov}\left[x_{\lambda}, x_{\mu} \mid t_{1}, H_{0}\right]=-\frac{t_{1} t_{2}}{N^{2}(N-1)} \quad \lambda \neq \mu$.

Consequently
(2.5) $\sigma^{2}\left[\underline{w} \mid t_{1}, H_{0}\right]=\sum_{\lambda} h_{\lambda}^{2} \sigma^{2}\left[\underline{x}_{\lambda} \mid t_{1}, H_{0}\right]+\sum_{\lambda \neq \mu} \sum_{\lambda} h_{\mu} \operatorname{cov}\left[\underline{x}_{\lambda}, \underline{x}_{\mu} \mid t_{1}, H_{0}\right]=$
$=\frac{t_{1} t_{2}}{N(N-1)} \sum_{\lambda} h_{\lambda}^{2}$ (cf. (1.20)),
(2.6) $\tilde{\varepsilon}\left[\underline{W} \mid t_{1}, H_{0}\right]=\sum_{\lambda} h_{\lambda} \cdot \frac{t_{1}}{N}=0$ (cf.(1.20)).
3. The asymptotic distribution of W under the hypothesis H_{0}.

We consider a sequence of groups of trials, the ν-thgroup of which consists of N_{ν} trials of the kind described in section 1 and where

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} N_{\nu}=\infty \tag{3.1}
\end{equation*}
$$

 test-statistic

$$
\text { (3.2) } \quad \underline{w}_{\nu}=\sum_{i} h_{\lambda \nu} \underline{-}_{\lambda}^{\text {5) }}
$$

with

$$
\begin{array}{ll}
\text { (3.3) } & \ell\left[\underline{w}_{\nu} \mid t_{10} H_{0}\right]=0 \\
(3.4) & \sigma^{2}\left[\underline{w}_{\nu} \mid t_{1 \nu}, H_{0}\right]=\frac{t_{1 \nu} t_{2 \nu}}{N(N-1)} \sum_{\lambda} h_{\lambda \nu}^{2}
\end{array}
$$

We shall now prore the following theorem:
If the conditions
(3.5) $\left\{\begin{array}{l}\text { 1. } \frac{t_{1 \nu}}{N}=O(1), \frac{t_{2 \nu}}{N}=O(1) \\ \text { 2. } \operatorname{Max}_{1 \varepsilon \lambda \leqslant N_{\nu}} h_{\lambda \nu}^{2} / \sum_{\lambda} h_{\lambda \nu}^{2}=O(1)\end{array}\right.$
or the conditions

are fulfilled the randon variable

$$
\frac{W_{\nu}}{\sigma\left[\underline{W}_{\nu} \mid t_{1 \nu}, H_{0}\right]}
$$

is under the sequence of conditions ${\underset{\sim}{1 \nu}}=t_{1 \nu}$ and under the hypothesis H_{0}, for ν tending to infinity, asymptotically nomally distributed with mean 0 and variance 1 .
Proof 6) 。
For the proof we use theorems by WALD and WOLFOWIIz [6] , NOETHER [4] and HOEPTDING [3]. To apply these theorems to our problem we consider the N trials as one observation
5) In this and the following section λ and μ take the values $1,2, \ldots, N_{\nu}$ and all Kimits are for $\nu \rightarrow \infty$.
6) To simplify the notation we shall omit the index ν.
of each of the random variables $y_{1}, y_{2}, \ldots, y_{N}$ where the values taken by these variablas form a permutation of the numbers $c_{1}, c_{2}, \ldots, c_{N}$. If we take for these numbers a row consisting of the numbers $h_{1}, h_{2}, \ldots, h_{N}$ and if a second row $d_{1}, d_{2} \ldots, d_{N}$ consists of t_{1} times the number 1 and t_{2} times the numbero, then

$$
\begin{equation*}
L_{N} \stackrel{\text { def }}{=} \sum_{\lambda} d_{\lambda} y_{\lambda}=\underline{W} . \tag{3.7}
\end{equation*}
$$

The above mentioned theorems state that if
(1. all permutations of $c_{1}, c_{2}, \ldots, c_{N}$ have the same proba ∞ bility,
2. the row $\left\{d_{\lambda}\right\}$ satisfies the condition

$$
\begin{aligned}
& \frac{\mu_{r}\left\{d_{\lambda}\right\}}{\left[\mu_{2}\left\{d_{\lambda}\right\}\right]^{\pi / 2}}=O(1) \quad \text { for each integer } \Leftrightarrow 2 \\
& \mu_{r}\left\{d_{\lambda}\right\} \stackrel{d_{e f}}{=} \frac{1}{N} \sum_{\lambda}\left\{d_{\lambda}-\frac{1}{N} \sum_{\mu} d_{\mu}\right\}^{r},
\end{aligned}
$$

3. the row $\left\{c_{\lambda}\right\}$ satisfies the condition

$$
\frac{\max _{=2}\left\{c_{\lambda}-\frac{1}{N} \sum_{\mu} c_{\mu}\right\}^{2}}{\sum_{\lambda}\left\{c_{\lambda}-\frac{1}{N} \sum_{\mu} c_{\mu}\right\}^{2}}=0(1)
$$

then the randoin variable

$$
\frac{L_{N}-\varepsilon\left(L_{N}\right)}{\sigma\left(L_{N}\right)}
$$

is for v tending to infinity asymptotically normally distributed with mean o and variance 1 .

The condition (3.8.1.)is, given the independence of the trials, fulfilled if and only if H_{0} is true and it is easy to see that the conditions (3.8.2.) and (3.8.3) reduce to (3.5.1) and (3.5.2) respectively.

The above mentioned theorems may also be applied in the following way:
If a row $\left\{c_{i}^{\prime}\right\}$ consists of t_{1} times the number 1 and t_{2} times the number 0 and a row $\left\{d_{\lambda}^{\prime}\right\}$ consists of the numbers $h_{1}, h_{2} \ldots . . h_{M}$ then

$$
\begin{equation*}
\underline{w}=\sum_{\lambda} d_{\lambda}^{\prime} \underline{x}_{\lambda} \tag{3.9}
\end{equation*}
$$

where the values taken by $x_{\lambda}\left(\lambda=1,2_{1} \ldots, N\right)$ form a permutation of the numbers $c_{1}^{\prime}, c_{2}^{\prime} \ldots, c_{N}^{\prime}$. (cf.section 1)。

Consequentiy $\frac{\underline{W}}{\sigma\left[\underline{w} \mid t_{1}, H_{0}\right]}$ is under the hypethesis H_{0} and under the condition $\underline{t}_{1}=t_{1}$, for ν tending to infinity, asymptotically normally distributed with mean 0 and variance 1 if the row $\left\{d_{\lambda}^{\prime}\right\}$ satisfion (38.2) and the row $\left\{c_{i}^{\prime}\right\}$ the condim tion (3.8.3).

It is easy to see that in this case (3.8.2) reduces to (3.6.1) and (3.8.3) to (3.6.2).
4. The consistency of the test.

In this section we shall investigate the consistency of the test for the hypothesis H_{0} if we take a one-sided critical region consisting of positive value of W. We again consider a sequence, the ν-th term of which consists of N_{ν} trials with

$$
\lim N_{\nu}=\infty \quad(c f \cdot \operatorname{section} 3) .
$$

We suppose that the conditions $(3,5)$ or the conditions (3.6) are fullfilled; then for large ν the conditional critical region under the condition $\underline{t}_{1}=t_{1}{ }^{7}$) consists of those values of W which satisfy

$$
\begin{equation*}
\frac{w}{\sigma\left[\underline{w} \mid t_{1}, H_{0}\right]} \geqq \xi_{\alpha}, \tag{4.1}
\end{equation*}
$$

where α is the level of significance and follows frm

$$
\frac{1}{\sqrt{2 \pi}} \int_{\xi_{\alpha}}^{\infty} e^{-\frac{1}{2} x^{2}} d x=\alpha .
$$

If an alternative hypothesis H is true, $\sigma^{2}\left[\underline{W} \mid \underline{\underline{t}}_{1}, H_{0}\right]$ cenverges in probability, for ν tending to infinity to

$$
\begin{array}{r}
\lim \frac{\sum_{\lambda} p_{\lambda} \sum_{\lambda} q_{\lambda}}{N(N-1)} \sum_{\lambda} h_{\lambda}^{2} \quad\left(=\lim \sigma_{a}^{2}\right. \text { for shot) } \tag{4.2}\\
(\text { cf. }(2.5) .
\end{array}
$$

We define

$$
\begin{align*}
& \mu \stackrel{\operatorname{def}}{=} \ell[\underline{w} \mid H]=\sum_{\lambda} h_{\lambda} p_{\lambda} \tag{4.3}\\
& \sigma^{2} \stackrel{\operatorname{def}}{=} \sigma^{2}[\underline{w} \mid H]=\sum_{\lambda} h_{\lambda}^{2} p_{\lambda} q_{\lambda} . \tag{4.4}
\end{align*}
$$

We can suppose without any loss of generality

$$
\begin{equation*}
\sum_{\lambda}\left|h_{\lambda}\right|=1 \tag{4.5}
\end{equation*}
$$

7) We again omit the index ν.
then
(4.6) $\quad \lim |\mu|=\lim \left|\sum_{\lambda} h_{\lambda} p_{\lambda}\right| \equiv 1$,
and from (3.5.2) or (3.6.1) follows
$\lim \sum_{\lambda} h_{\lambda}^{2}=0$.
Consequently
(4.8)
$\lim \sigma_{0}^{2}=0$
(cf. (4.2))
(4.9)
$\lim \sigma^{2}=0$
(cf. (4.4))
If now
(4.10) $\quad \lim \sum_{\lambda} h_{\lambda} p_{\lambda}>0$
then the probability of not-rejecting H_{0} converges in probebility for $\nu \rightarrow \infty$ to:
(4.11) $\quad \lim P\left[\frac{W}{\sigma_{0}}<\xi_{\alpha}\right]=\lim P\left[\underline{w}-\mu<\xi_{\alpha} \sigma_{0}-\mu\right]$.

From (4.8) and (4.10) follows that $\xi_{\alpha} \sigma_{a}-\mu$ is negative for supficiently large ν; consequently
(4.12) $\lim P\left[\frac{\underline{W}}{\sigma_{0}}<\xi_{\alpha}\right] \leqq \lim P\left[|\underline{w}-\mu|>\mu-\xi_{\alpha} \sigma_{0}\right] \leqq$ $\leqq \lim \frac{\sigma^{2}}{\left(\mu-\xi_{\alpha} \sigma_{0}\right)^{2}}=0$ (cf. (4.9)).
If
(4.13) $\quad \lim \sum_{\lambda} h_{\lambda} p_{\lambda}<0$
we see in the same way that the probability of rejecting H_{0} converges in probability for $\nu \rightarrow \infty$ to 0 . If finally
(4.14)
$\lim \sum_{\lambda} h_{\lambda} p_{\lambda}=0$
the probability of rejecting H_{0} converges in probability for yon to
-(4.15) $\quad \lim P\left[w \geqq \xi_{\alpha} \sigma_{0}\right]$
Consequently if
$\lim \frac{\sigma_{0}^{2}}{\sigma^{2}}>0$
and
$\xi_{\alpha}^{2}>\lim \frac{\sigma^{2}}{\sigma_{\theta}^{2}}$
then

$$
\begin{equation*}
\lim P\left[\underline{W} \geqslant \xi_{\alpha} \sigma_{0}\right] \equiv \lim \frac{\sigma^{2}}{\xi_{\alpha}^{2} \sigma_{0}^{2}}<1 \tag{4.18}
\end{equation*}
$$

The condition (4.16) is satisfied, if
$\lim \frac{\sum_{\lambda} p_{\lambda}}{N}, \lim \frac{\sum_{\lambda} q_{\lambda}}{N}>0$
but this is not necessary the case if (4.16) is fulfilled. The class of alternative hypotheses with $\lim \frac{\sigma_{0}^{2}}{\sigma^{2}}=0$ and $\lim \sum_{\lambda} h_{\lambda} p_{\lambda}=0$ is of a rather unusual character, but it may be worthily of furthe investigation, because probably for at least a part of this class the test is also consistent.
5. Summary.

Substituting g_{λ} for h_{λ} in the above formulae, we get the following results. If we use the test-statistic

$$
\begin{equation*}
\underline{W}=\sum_{\lambda} g_{\lambda} x_{\lambda} . \tag{5.1}
\end{equation*}
$$

where $g_{\lambda}(\lambda=1,2, \ldots, N)$ are given numbers, satisfying
$\sum_{\lambda} g_{\lambda}=0$
then

$$
\begin{align*}
& \ell\left[\underline{w} \mid t_{1}, H_{0}\right]=0 \tag{5.3}\\
& \sigma^{2}\left[\underline{W} \mid t_{1}, H_{0}\right]=\frac{t_{1} t_{2}}{N(N-1)} \sum_{i} g_{2}^{2} \tag{5.4}
\end{align*}
$$

If

$$
\begin{equation*}
\sum_{\lambda}\left|g_{\lambda}\right|=1 \tag{5.5}
\end{equation*}
$$

and if the conditions
(5.6) $\left\{\begin{array}{l}1 . \frac{t_{1}}{N}=O(1) \text { and } \frac{t_{2}}{N}=O(1) \text { for } N \rightarrow \infty, \\ \text { 2. } \frac{\operatorname{maxix}^{\prime \prime N} g_{\lambda}^{2}}{\sum_{\lambda} g_{\lambda}^{2}}=0(1) \quad \text { for } \quad N \rightarrow \infty\end{array}\right.$ (cf. (3.5))
or the conditions:
(5.7) $\left\{\begin{array}{l}1 \cdot N^{z / 2-1} \frac{\sum_{\lambda} g_{\lambda}^{n}}{\left[\sum_{\lambda}^{2} g_{\lambda}^{2}\right]^{1 / 2}}=0(1) \text { for } \nu \rightarrow \infty \text { and each integer } r>2 \\ \text { 2. } \lim t_{1}=\infty, \lim t_{2}=\infty\end{array}\right.$ are satisfied and
(5.8) $\lim \frac{\sigma_{0}^{2}}{\sigma^{2}}=\lim \frac{\sum_{\lambda} p_{\lambda} \sum_{\lambda} q_{\lambda} \sum_{\lambda} g_{\lambda}^{2}}{N(N-1) \sum_{\lambda} g_{\lambda}^{2} p_{\lambda} q_{\lambda}}>0$
and

$$
\begin{equation*}
\xi_{\alpha}^{2}>\lim \frac{\sigma_{0}^{2}}{\sigma^{2}} \quad(\text { cf. }(4.17)) \tag{5.9}
\end{equation*}
$$

then the test is consisfent for the class of alternative hypotheses

$$
\begin{equation*}
\lim \sum_{\lambda} g_{\lambda} p_{\lambda} \neq 0 \tag{5.10}
\end{equation*}
$$

and for no other alternatives, and the conditional distribution of $\frac{\underline{W}}{\sigma\left[\underline{W} \mid t_{1}, H_{0}\right]}$ is under the hypothesis H_{a} for $\nu \rightarrow \infty$ asymptotically normal.

6. Examples.

1. Suppose we want to test the hypothesis H_{0} agninst the alternative hypotheses of trend, where a trend is defined by $\sum_{\lambda<\mu} \sum_{\mu}\left(p_{\lambda}-p_{\mu}\right) \neq 0$.

From $\sum_{\lambda<\mu} \sum_{\lambda}\left(p_{\lambda}-p_{\mu}\right)=\sum_{\lambda}(N+1-2 \lambda) p_{\lambda}$ follows that g_{λ} is
proportional to $N+1-2 \lambda(\lambda=1,2, \ldots, N)$ and therefore condition (5.2) is satisfied. If we take

$$
\begin{equation*}
g_{\lambda}=2 \frac{N+1-2 \lambda}{N^{2}} \quad \lambda=1,2, \ldots, N \tag{6.1}
\end{equation*}
$$

then the conditions (5.5), $(5.6 .2)$ and $(5.7 .1)$ are all fullfilled. The test-statistic is

$$
\begin{equation*}
\underline{W}=\sum_{\lambda}(N+1-2 \lambda){\underset{x}{\lambda}}=\sum_{\lambda<\mu} \sum_{\lambda}\left(\underline{x}_{\lambda}-\underline{x}_{\mu}\right) \tag{6.2}
\end{equation*}
$$

with

$$
\begin{align*}
& \underline{\varepsilon}\left[\underline{w} \mid t_{1}, H_{0}\right]=0, \tag{6.3}\\
& \sigma^{2}\left[\underline{w} \mid t_{1}, H_{0}\right]=\frac{t_{1} t_{2}}{N(N-1)} \sum_{\lambda}(N+1-2 \lambda)^{2}=\frac{1}{3} t_{1} t_{2}(N+1),
\end{align*}
$$

and the test is consitent for the class of alternative hypothec-ses

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{\lambda<\mu} \sum_{\lambda}\left(p_{\lambda}-p_{\mu}\right) \neq 0 \tag{6.5}
\end{equation*}
$$

and for no other alternative hypotheses if (5.8) and (5.9) are satisfied.
2. Suppose the class of admissible hypotheses consists of those values of $p_{1}, p_{2}, \ldots, p_{N}$ which satisfy (1.13). From section 5 it follows then that if we take as a test-statistic

$$
\begin{equation*}
\underline{W}=\sum_{i} g_{i}^{\prime} \frac{o_{i}}{n_{i}} . \tag{6.6}
\end{equation*}
$$

where $g_{i}^{\prime}(i=1,2, \ldots, k)$ are given numbers, satisfying

$$
\begin{equation*}
\sum_{i} g_{i}^{\prime}=0 \tag{6.7}
\end{equation*}
$$

then

$$
\begin{equation*}
\varepsilon\left[\underline{w} \mid t_{1}, H_{0}\right]=0, \tag{6.8}
\end{equation*}
$$

$$
\begin{equation*}
\sigma^{2}\left[\underline{W} \mid t_{1}, H_{0}\right]=\frac{t_{1} t_{2}}{N(N-1)} \sum_{i} \frac{g_{i}^{\prime 2}}{n_{i}} \tag{6.9}
\end{equation*}
$$

The test is then consistent for the class of alternative hypotheses
(6.10) $\quad \lim _{N \rightarrow \infty} \sum_{i} g_{i}^{\prime} p_{i}^{\prime} \neq 0 \quad$ (cf. (1.16))
and for no other alternatives, if

$$
\begin{equation*}
\sum_{i}\left|g_{i}^{\prime}\right|=1 \tag{6.11}
\end{equation*}
$$

(cf. (5.5)),
the conditions
(6.12) $\left\{\begin{array}{l}\text { 1. } \frac{t_{1}}{N}=O(1) \quad \text { and } \frac{t_{2}}{N}=O(1) \text { for } N \rightarrow \infty \\ \text { 2. } \frac{\max _{3 i K} \times \frac{g_{i}^{2}}{m i n^{2}}}{\sum_{i} \frac{g_{i}^{2}}{n i}}=0(1) \quad \text { for } N \rightarrow \infty\end{array} \quad\right.$ (cf. (5.6))
or the conditions
$(6.13)\left\{\begin{array}{l}1 \cdot N^{r / 2-1} \frac{\sum_{i} \frac{g_{i}^{n}}{n_{i}^{n-1}}}{\left[\sum_{i} \frac{g_{i}^{2}}{n_{i}}\right]^{r / 2}}=O(1) \text { for } N \rightarrow \infty \\ \text { 2. } \lim t_{1}=\infty \quad \text { and } \lim t_{2}=\infty\end{array}\right.$

$$
\begin{equation*}
\lim \frac{\sigma_{0}^{2}}{\sigma^{2}}=\lim \frac{\sum_{i} n_{i} p_{i}^{\prime} \sum_{i} n_{i} q_{i}^{\prime} \sum_{i} \frac{g_{i}^{\prime 2}}{n_{i}}}{N(N-1) \sum_{i} \frac{g_{i}^{2}}{n_{i}} p_{i} q_{i}}>0 \quad \text { (cf. (5.8) } \tag{6.14}
\end{equation*}
$$

$$
\begin{equation*}
\xi_{\alpha \alpha}^{2}>\lim \frac{\sigma^{2}}{\sigma_{0}^{2}} \tag{6.15}
\end{equation*}
$$

are fullfilled. Consequently if g_{i}^{\prime} is independent of $n_{1}, n_{2}, \ldots, n_{k}$ the test is consistent for a class of alternative hypotheses which does not depend on the sample sizes E.g. if we take

$$
\begin{equation*}
g_{i}^{\prime}=2 \frac{k+1-2 i}{k^{2}} \quad i=1,2, \ldots, k \tag{6.16}
\end{equation*}
$$

then the conditions (6.7) and (6.11) are satisfied. If k is fi.nite condition (6.12.2) is fullfililed if

$$
\left\{\begin{array}{l}
\lim _{N \rightarrow \infty} n_{i}=\infty \tag{6.17}\\
\lim _{N \rightarrow \infty} n_{i} \leqq \infty
\end{array}\right.
$$

$$
\begin{aligned}
& \text { for } i \neq \frac{k+1}{2} \\
& \text { for } i=\frac{k+1}{2}
\end{aligned}
$$

and (6.13.1) is fullfilled if

$$
\begin{cases}\lim _{N \rightarrow \infty} \frac{n_{i}}{N}>0 & \text { for } i \neq \frac{k+1}{2} \tag{6.18}\\ \lim _{N \rightarrow \infty} \frac{n_{i}}{N} \geqq 0 & \text { for } i=\frac{k+1}{2}\end{cases}
$$

The test-statistic is

$$
\begin{equation*}
\underline{W}=\sum_{i<i} \sum_{i}\left(\frac{a_{i}}{n_{i}}-\frac{o_{j}}{n_{j}}\right)=\sum_{i<j} \sum_{j} \frac{\underline{w}_{i, i}}{m_{i} n_{j}} \quad(\text { ef. (1.3)), } \tag{6.19}
\end{equation*}
$$

with
$\sum\left[\underline{W} \mid t_{1}, H_{0}\right]=0$

$$
\begin{equation*}
\sigma^{2}\left[\underline{w} \mid t_{1}, H_{0}\right]=\frac{t_{1} t_{2}}{N(N-1)} \sum_{i} \frac{(k+1-2 i)^{2}}{n_{i}} . \tag{6.20}
\end{equation*}
$$

and the test is consistent for the class of alternative hypotherra

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{k^{2}} \sum_{i<j} \sum_{j}\left(p_{i}-p_{j}\right) \neq 0 \tag{6.22}
\end{equation*}
$$

and for no other alternatives if (6.14) and (6.15) are fullfilled. For TERPSTRA's test-statistic we have

$$
\begin{equation*}
g_{i}^{\prime}=\frac{n_{i}\left(\sum_{i=1} n_{i}-\sum_{i=i} n_{j}\right)}{\sum_{i} n_{i}\left|\sum_{i<j} n_{j}-\sum_{i=1} n_{j}\right|} \tag{6.23}
\end{equation*}
$$

$$
(\operatorname{cf.}(1.3) \text { and }(1.4)) .
$$

Condition (6.12 .2) reduces to
(6.24) $\frac{\max _{\geq i \leq k}\left(\sum_{i=i} n_{i}-\sum_{i=1} n_{j}\right)^{2}}{N^{3}-\sum_{i} n_{i}^{3}}=0(1) \quad$ for $N \rightarrow \infty$
and $(6.13 .1)$ reduces to
(6.25) $N^{r / 2-1} \frac{\sum_{i} n_{i}\left(\sum_{i=1} n_{i}-\sum_{i=1} n_{i}\right)^{n}}{\left[N^{3}-\sum_{i} n_{i}^{3}\right]^{r / 2}}=0(1)$
for $N \rightarrow \infty$ and each integer $r>2$.

From (6.9) it follows, that
(6.26) $\sigma^{2}\left[\underline{w} \mid t_{1}, H_{0}\right]=\frac{t_{1} t_{2}}{N(N-1)} \sum_{i} n_{i}\left(\sum_{i<j} n_{i}-\sum_{i=i} n_{i}\right)^{2}=\frac{t_{1} t_{2}\left(N^{3}-\sum_{i} n_{i}^{3}\right)}{3 N(N-1)}$
with

$$
\begin{equation*}
\left.\underline{W}=\sum_{i<j} \sum_{j}\left(\underline{a}_{i} m_{j}-\underline{a}_{j} m_{i}\right) \quad \text { (cf. (1.6) }\right) \tag{6.27}
\end{equation*}
$$

The test is consistent for the class of alternative hypotheses
(6.28) $\quad \lim _{N \rightarrow \infty} \frac{\sum_{i=1} \sum_{i} n_{i} n_{i}\left(p_{i}-p_{i}\right)}{\sum_{i} \mid \sum} \neq 0$
$\sum_{i} n_{i}\left|\sum_{i=1} n_{j}-\sum_{i>i} n_{i}\right|$
and for no other alternatives if (6.1f) and (6.15) are fulfilled. If

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sum_{i} \frac{n_{i}}{N}\left|\sum_{i<j} \frac{n_{j}}{N}-\sum_{i>i} \frac{n_{j}}{N}\right| \neq 0 \tag{6.29}
\end{equation*}
$$

then (6.28) is identical with
(6.30) $\quad \lim _{N \rightarrow \infty} \sum_{i=1} \sum_{i} \frac{n_{i} n_{i}}{N^{2}}\left(p_{i}-p_{j}\right) \neq 0$
and as

$$
\begin{equation*}
p_{i}-p_{i}=P\left[x_{i}>x_{j}\right]-P\left[x_{i}<x_{i}\right] \tag{6.31}
\end{equation*}
$$

(6.30) is identical with
(6.32) $\lim _{N \rightarrow \infty} \sum_{i<j} \sum_{n_{i} n_{i}}^{N^{2}}\left\{P\left[\underline{x}_{i}>{\underset{x}{j}}\right]-P\left[x_{i}<{\underset{x}{j}}\right]\right\} \neq 0$.
7. Remarks.

1. The test of example 1 and TERPSRRA's test may also be de.rived in the following way:

Consider two random variables x and y where, in two amples of size t, and t_{2} respectively, x and y have taken the value i
\underline{a}_{i} and \underline{b}_{i} times respectively. If $\underline{\underline{u}}$ is the test-statistic of WIICOXON's test applied to these two samples then

$$
\begin{equation*}
2 \underline{U}=\underline{W}+t_{1} t_{2} . \tag{7.1}
\end{equation*}
$$

Hemelrijk [1] and [2]has proved that the hypothese H_{0} under the condition $t_{1}=t_{1}$ is identical with the hypot'esis that \propto and y possess the same probability distribution. Consequently

$$
\begin{align*}
& \varepsilon\left[\underline{w} \mid t_{1}, H_{0}\right]=2 \xi\left[\underline{u} \mid t_{1}, H_{0}\right]-t_{1} t_{2}=0 \tag{7.2}\\
& \sigma^{2}\left[\underline{w} \mid t_{1}, H_{0}\right]=4 \sigma^{2}\left[\underline{U} \mid t_{1}, H_{0}\right]=4 \cdot \frac{t_{1} t_{2}\left(N^{3}-\sum_{i} n_{i}^{3}\right)}{12 N(N-1)} \tag{7.3}
\end{align*}
$$

or, if all n_{i} are equal to 1 (example 1):

$$
\begin{equation*}
\sigma^{2}\left[\underline{W} \mid t_{1}, H_{0}\right]=4 \cdot \frac{t_{1} t_{2}(N+1)}{12} . \tag{7.4}
\end{equation*}
$$

For the case that all n_{i} are equal to 1 the exact distribution of u under the hypothesis H_{0} is known for small valug of \dot{H}_{1} and t_{2}; therefore in this case an exact test is possible.
2. If $n_{i}=\varkappa$ for each i TERPSTRA's test is identical with the test given by (6.19). Consequently
a. if $n_{i}=n$ for eadh i Terpstra's test is conalstent for a class of alternative hypotheses which does not de.. pend on the samplemsizes,
b. if $n_{i}=\eta$ for each in the test given by (6.19) is identical with Wilcoxon's two sample test applied to the samples of \cong and y (cf. remark 1).
3. In the preceding sections we proved that if we take as a test-statistic

$$
\begin{equation*}
\underline{W}=\sum_{i<j} \sum_{i} \frac{\underline{w}_{i, j}}{n_{i} n_{j}} \tag{7.5}
\end{equation*}
$$

instead of TERPSTRA's test-statistic $\sum_{i<j} \sum_{i, j}$ the test is consistent for the class of alternative hypotheses

$$
\lim _{N \rightarrow \infty} \frac{1}{k^{2}} \sum_{i<i} \sum_{j}\left(p_{i}^{0}-p_{j}^{\prime}\right) \neq 0
$$

which is independent of the sample-sizes.
If now ${\underset{\sim}{2}}_{i}$ possesses a continuous or a discrete distribution function and if \varkappa_{i} observations of x_{i} are given ($i=1,2, \ldots, k$)it may be proved that if we take (7.5) as a test-statis. tic to test the hypothesis H_{0} that ${\underset{x}{1}, x_{2}, \ldots, x_{k} \text { possess the same }}$ distributionfunction instead of TERPSTRA's test-statistic the test is consistent for the class of alternative hypotheses

$$
\lim _{N \rightarrow \infty} \frac{1}{k^{2}} \sum_{i<j} \sum_{i}\left\{P\left[\underline{x}_{i}>x_{i}\right]-P\left[{\underset{c}{i}}^{x_{j}}\right]\right\} \neq 0
$$

which again does not depend on the m_{i}.
4. The test described in the preceding sections may be generalised e.g. in the following way:

Consider N random variables $x_{1}, x_{2}, \ldots, x_{N}$ where x_{2} takes the values $1, \lambda_{1}, \ldots, \ell$ with probabilities $p_{\lambda_{1}}, p_{\lambda_{2}}, \ldots, p_{\lambda} \ell$ respectively $\left(\lambda=1,2, \ldots, N ; \sum_{i=1}^{\ell} p_{\lambda_{i}=1}\right.$ for each $\left.\lambda\right)$. Given one observation of each of these random variables we want to test the hypotheses H_{0} that ${\underset{1}{1}}^{x_{2}}, \ldots \mathfrak{x}_{N}$ possess the same probability distribution, which is identical with

$$
p_{1 i}=p_{2 i}=\ldots=p_{N i} \quad \text { for each } i(i=1,2, \ldots, l)
$$

against the alternative hypotheses

$$
\sum_{\lambda} \sum_{i} g_{\lambda i} p_{\lambda i} \neq 0
$$

where $g_{\lambda i}(\lambda=1,2, \ldots, N ; i=1,2, \ldots, l)$ are given numbers. If H_{0} is true

$$
\sum_{\lambda} \sum_{i} g_{\lambda i} p_{\lambda i}=\sum_{i} p_{i} \sum_{\lambda} q_{\lambda i}
$$

and this must be equal to zero. Consequently the numbers $g_{\lambda i}$ must satisfy the conditions

$$
\sum_{\lambda} g_{\lambda i}=0 \quad \text { for each } i \quad(i=1,2, \ldots, l)
$$

If $l=2$

$$
\begin{aligned}
\sum_{\lambda} \sum_{i} g_{\lambda_{i}} p_{\lambda_{i}}=\sum_{\lambda}\left(g_{\lambda_{1}} p_{\lambda_{1}}+g_{\lambda_{2}} p_{\lambda_{2}}\right) & =\sum_{\lambda}\left(g_{\lambda_{1}}-g_{\lambda_{2}}\right) p_{\lambda_{1}}+\sum_{\lambda} g_{\lambda_{2}}= \\
& =\sum_{\lambda}\left(g_{\lambda_{1}}-g_{\lambda_{2}}\right) p_{\lambda_{1}}=\sum_{\lambda} g_{\lambda} p_{\lambda}
\end{aligned}
$$

where

$$
\begin{gathered}
g_{\lambda}=g_{\lambda_{1}}-g_{\lambda_{2}}, \lambda=1,2_{1} \ldots, N: \sum_{\lambda} g_{\lambda}=0 \\
p_{\lambda}=p_{\lambda_{1}}, \lambda=1,2, \ldots, N .
\end{gathered}
$$

and

References.
[1] Hemelrijk, J., Wote on Wilcoxon's two sample test when ties are present, Ann. Math.stat 23 (1952), p. 133-135.
[2] Hemelrifk, J., Exemple d'application des méthodes non.. paramétriques et un nouveau test pour I'égalité de plusieurs probabilités, Report $S 938$ of the Mathematical Centre, Amsterdam (1954).
[3] Hoeffding, W., A combinatorial ceneral limit theorem, Ann. Math. Stat. 22 (1951), p. 558-566.

MATHEMATICAL CENTRE,

 2e Boerhaavestraat 49, Amster dam-0.Statistical Department

Report S 157(VP 3)

