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1., Introduction.

There is an extensive literature about the mixing of solid
particles; concepts like "ideal mix-.ng" or "complete mixing"
and "degree of mixing" are often defined in different ways and
reveal some confusion of ideas. A statistical approach seems
to be the most appropriate one for the definition of these con-
cepts, cf. LACEY [5] , BUSLIK [2] , BLUMBERG and MARITZ [,
and HERDAN [4] .

These authors point out that it is hardly evitable to con-
sider the problem statistically, moreover this has the advan-
tage of providing statistical techniques for the investigation
of mixtures. In this and subsequent reports some suggestions
about this subject will be given and a rumber of statistical
methods will be described, which can be applied to problems of
practical imporftance concerning the mi ing of solid particles.

A mathematical treatment of technlcal problems is always
necessarily somewhat schematic. In this report only a very
simple model will be considered; amixture of two components
consisting of particles of two types, A and B , equal in form
and size, andfonly differing (for instance) in colowr and pos-
sibly in weight. In practice this case will rarely occur; it

is however useful for demonstrating the statistical character
of the probhlems at hand and the statistical methods which may
be used, This report is thus exclusively meant as a theoretical
introductﬁon to the statistical approach to the theory of mix-
tures and as an incomplete survey of the literature dealing
with thé subject. It is the intention to discuss more compli-
cated mizxtures 1n a later report.

In the following section a survey of the various defini-
tions éf complete mixihg for this simple model, as stated by
diffeﬁént authors, will be given and a discussion of these de-
finitions is presented; then the concept "degree of mixing "
and its statistical properties will be develop@d.

i

2. fhe concept of "complete mixing". ;

'“/LACEY [5] quotes the following definitions\@f URE:

Definition a: A complete mixture is an entirely hdmogeneous
&,

;mixture, i.e. a mixture of which every sample cont%@ns the same
Y

/'fraction of A -particles. o
/ N\%“%%
It is evident that one cannot adhere strictly to this igfi-

nition, for, taking a sample consisting of one particle, this *_

can only conform to the requirements stated in this definition




if the mixture consists of one component only and then it is no
longer o mixture. Taking larger samples, it 1is still impossibie
to obtain always exactly the same fraction of A particles.

As a matter of fact this definitlon is only useful for mix-
tures of completely mixable fluids and the like and in the Torin
given ebove it is not adaptable to solids (cf .NASKE [7] and
LACEY [5] ).

Definition b: A complete mixture is a mixture with the greatest
possible regularity (cf. e.g. VALENTINE and MAC LEAN [9] ).

This definition leads to a lattice for the particles, just
as the ions in a crystal, as the ideal form of a mixture. Evi-
dently this cannot be obtained with the usual mixing processes
and this definition misses its aim (cf. also LACEY [5] ).

Definition c: A complete mixture is a mixture which might have

been obtained by distributing the particles of its components
at random in the mixture.

This cdefinition (given in a somewhat different form by
LACEY [5] and BLUMBERG and MARITZ [1] ) is based on a sta-
tistical approach and a small refinement makes it suitable for
at least the above mentioned simple mixture of particles A anc
R, both components being exactly alike except e.g. in colour
This correction was given by BUSLIK [2] .

In the first place it should be indicated that a mechanical
mixing process, which is not influenced by the cobur of the par-
ticles, can never lead systematically to a more satisfying re--
sult (if 21l particles have the same weight) than a random dis-
tribution of the A particles in the mixture. For the mixing
machine cannot distinguish the colur of the particles, which
makes a systematic distribution of the A grains in the mixture
by means of the mixing procedure impossible, If such a syste-
matic distribution 1s present at the beginning of the mixing
process - €,g. if the A particles are put in the mixing vessel
before the B particles - the purpose of the mixing is to des-
troy this systematic distribution. If the mixing is pursued
untill the original situation has no influence any more on tThe
result, then there 1s no place in the mixture where we might
expect to find an A particle more often than in any other place.
If the particles of component A have a weight differing from
those of B , then it would perhaps be possible to construct a
mixing machine, which using this difference in weights meets
the requirements of definition a or b as well as possible.



With the existing types of mixing processes however (stirring,
shaking, turning etc.), a difference in weight can only have a
disadvantageous effect on the degree of mixing by causing se-
gregation. It is therefore a reason for contentment if one
succeeds in constructing a mixing machine which does not dis-
criminate between particles of different weight, 1.e. a mixing
machine which is equally efficient for components with different
weights as it is for components with the same weight. Hence,
for the usual mixing processes, our reasoning also holds for
these kinds of mixtures, and we shall stick to the argument
glven.

There is however one other objection to the use of defi-
nition ¢ as it stands. A random process of mixing -may also
produce very poor results, for instance even a mixture with
all A particles at the bottom and all B particles at the
top is 2 not impossible result. In strict accordance with ce-
finition ¢ therefore, all mixtures should be called "tdeal" or
"complete', and this of course is not the intention. This dif-
ficulty can be avoided by applying the term "complete" to the
mixing process 1tself instead of to its result (i.e. the mix-
ture). This does not, of course, change the fact that a com-
plete mixing process can still produce bad mixtures. Just as a
true die can produce the number six a thousand times in a row,
a complete mixing process can produce a result that does not
deserve the name 'mixture". In both cases however this will
rarely occur. Nevertheless the term "complete" seems a little
too strong as it suggests the impossibility of a poor result.
For this reason we propose to replace this term hy the statis--
tical term "random", which describes the situation more realis-.
tically, and we shall use the term "random mixing process".

This leads to: '

Definition d: A mixing process is called random ifall particles
are distributed independantly in the mixture in such a way, that
for every component of the mixture the probability of finding

a particle of this component in a given place .is the same for
all places in the wmixture.

This definition on which BUSLIK[Z2!, but also LACEY [5] and
BLUMBERG and MARITZ [1], base thcir statistical considerati .,
may servc as the sasis for the development of statistical methods

A random mixiunz process differs from one not satisfying de-
finition d in this respect, that thc latter shows a preference



vy,

e

for some sort of system in the mixture. An example of this iz
a mixing process which has not been applied long enough. The
result will then show resemblance to the initial situation.

Though this mixing method can produce the same mixtures as
a random process, mixtures still resembling the initial situ-
ation will be more exceptional with the latter process than
with the former one.

Furthermore statistical methodsare now avallable far testing whether
amixing process is random against special well defined alteprna-
tive possibities, so that problems of practical importance céan
be investigated. We will return to this subject later on.

Definition d also leads to plausible definitions of the
concept "degree of mixing", and it corresponds to-a certain
degree with definition a: it follows from the definition that
samples with many particles will have approximately the same
structure as the whole mixzture, with onl;” a small probability
of large deviations. These duestions will be treated in the
next sectvions, which are partly based on the references given

at the end of this paper.

3. A definitjon of 'legree of mixing" and the statistical propcr-

ties of tThis coefficient.

One oif the most frequently occurring problems is the esti-
mation of the degree of mixing of a given mixture on account
of a number of samples taken from this mixture. To this end we
introduce a coefficient closely connected with the variance of
the composition of the samples, as has been done by LACEY [5] P
BUSLIK [2] , a.o.

We suppose that the mixture described in the introduction
is composed of N grais of type A and M grains of type B;

% samples are taken containing 7, n -...,my partlcles respec-

tively. The samples taken together ;re supposed to form a small
part of the mixture only. Only one condition is imposed with
respect to the way of taking the samples: the probability of

a particle to belong to a sample should not depend on whether
it is an A or a B -particle. On the other hand the place of 2
particle in the mixture may influence this probability; the
samples nced not be taken at random.

Under these circumstances the samples, even if not taken
at random themselves, have a random composition if the mixing
process 13 a random one.

More orecisely, if



(1) jz"—/i' ’ 7:N+MM (7”2—") ’

N+M

and if the mixing is random, then an arbitrary particle of an
arbitrary sample has probability 7’ to be of type A s and 7 to
be of type B . i
If now4£’,ﬂ..;§£1)respectively are the fractions of A par-
ticles in # samples of %,.....,m, particles respectively, then
we can summarise the results of the sampling in the following
2 x4 table:

Sample number:
1 2
(2) fractionA| x, x, . . . . . . %,
fraction Bli-x 1-x, . . . . . . l-x,

Or, with the numbers of particles instead of the fractions:

Sample number:
1 2 . . . /% total
(3) number of| A| mx mx . . . E > e
particles Bml-x) m(-2). . mp(-x) Z""‘og("l'oa)
total n "o : . My m= 2 "y

2
From the theory of the 2, distribution it now follows that
under the hypothesis of random mixing the statistic

2 4 ( 2 2 2
(#) 2(:’&; ﬂ}(zg‘})/}?:{/}7)(22;5;'2}2@%*%3)

2
has approximately a Z distribution with # degrees of freedonm.

The statistic

£ 2/ .
5 - Z iy ) Ty )< fx)

= "
__________________ Gé=ﬁ§°§%;/")
1) An underlined symbol incdicates a random variable, i.e. a
variable possessing a probability distribution; the same sym-
bol, not underlined, is used to denote values assumed by such
a random variable.



is, under the same hypothesis, also distributed approximately
according to a Xz'distribution, with £ _u degrees of freedom.
In this formula x" represents the fraction of A grains in all
+ samples taken together.

This makes it possible, when the m_ are known and the X . are
observed, to test the randomness of the mixing process used.

When § is known )f should be used, otherwise 4

In both cases the large values of X a=1,2) constitute
the critical region, i.e. lead to rejection of the hypothesis
of randomness. The tests are one-sided (to the right) as is
nearly always the case with the X}n@thod.

To introduce a mixing coefficient we try to find a variable
which will assume a value approximately equal to 1 if the
mixing 1is rand~in. LACEY [5] proposes as such the coefficient
V~2 for the case that ‘E is known) and one might analogously
take VQ{ l/I for unknown j .These coefficients are chosen
on the foilgw1ng grounds. A mixture is worse according a8 the
valge oi’Kza 0L=k2) is higher; 1t is therefore natural to put

in the denominator. Furthermore by taking the root we

get a linear measure and finally, in the case of random mixing,
the mtlematical expectation of Xﬁ equals—g and that of _12
equals n(%dz%ﬁ-o, which is apprgiimately equal to %-lfor large

n ., It is, however, easy to prove that this coefficient
proposed by LACEY has, in both cases, a mathematical expecta-
tion larger than1If the mixing is random; this is a consequence
by the presence of<li‘in the denominator. If one %akes the value
1 to indicate randomness of the mixing process, this leads
on the average to a flattered view as regards the quality of
the mixing processes under investigation. This effect is of
some importance for small values of -£ but not for large ones.

Its extent can be investigated by using the above mentlo
ned :X approximations for the distribution of X and X
These approximations are quite good even for small values of %
1f the m, are sufficiently large and this will usually be the
case with samples from mixtures of small particles.

It can be proved, that the mathematical expectation of X"
with VY degrees of freedom is given by -

2) BLUMBERG and MARITZ [ﬂ] give the same kind of test for
known ? bvut thewv remnlicate things needlessy applying the
transformation =z ~2’édwbv x.



(6) g Z[—I - F((w/)/z)/l/?. I (v/2),

where [ represents the complete Gammafunction. By means of this
formula the expectation 8¥h¢12 has been calculated and the re--
sults are given in Table I.Rather large deviations from 1

occur for v /0.

However, substituting v-3/2 for v we find much smaller de-
viations. (The value %2 has been found experimentdly). For v.eo
the difference betw-.en v andv-3/vanishes and both expecta-
tions have the value 1 as thelr limit.

Table I

The mathematical expectation of two mixing-
cocfficients in the case of aselect mixing.

» EVT | Vo
2 1,77 0,886
3 1,38 0,977
Il 1,25 0,991
5 1,19 0,995
6 1,15 0,997
7 1,13 0,998
8 1,11 0,999
9 1,09 0,999
10 1,08 0,999

In connection with this result the coefficients

(1) 11, - rZa 3/2)7?7 and M, - V&- 5/2)__2

respectively might be introduced for } known and unknown res--
pectively. In both cases the tests described above for the hy-
pothesis of random mixing remain unchanged.

4, Mixturcs of more than two components.

If a mixture consists of more than two components, all »ar-
ticles becing of the same shape and size, differing for insten-
ce only in calour, it 1s possible to test for each of the com-
ponents scparately whether its particles are distributed at
random over the mixture, by treating this component as typer4
of the foregoing sections and all the others together as one
component of type B .

The above mentioned theory can then be applied without any
changes . However it is zlso possible to test for all compo-

nents simultaneously whether the mixing is random or not.



Denoting the components by(g,. RN Cﬁ_ we get, analogously
te (3), a nx?Z table.
Sample number:
1 2 4 | tokal
' Z
G‘ X, Xy, - : ' : T xR d,%"n&_:_gu
number of
particles
C . 2 Z s
2 m, X4, M, xh - - . . . fn{'%{ = J—{b"
total m, L . . . 'YL% n
If the fractions of C,....,Cpin the mixture are

.0y (£3,-1) then
. 4 42 .
(8) L2272 m, 1)/

2 L=t J‘,:I

2
has approximately a % distribution withvgﬁﬂnJ)degrees of

freedom and

5

V2 % x.2 / = * - £
(9) )( :VZ_Z'n_ (z‘}} __D_C_L)/_D_C_L (9&_ =m Z %}z‘J«)

—¢ t=l J:l OL (3

2
a X distribution with({J)(g_Q degrees of freedom. Large
values of N (a=3,4 ) again are critical. The mixing-coe?-

ficients

(10) M, YAR) /2T ama VIR ) R

can be introduced in analogy of the above mentioned mixing

coefficients M and M, .

5. Other statistical methods.

The }fz coefficlents dealt with in the preceding sections
measure to a certain extent the character of the mixture, but
they do not give a detailed impression of the mixture. If for
instance the value of Xz , found for a certain set of samples,
indicates deviaticns frem randomness it does not give any indi-

cations of the source of these deviations; 1t may be that some
of the samples differ strongly Trom the rest or all of them mav
be more different from one another than would be expected in t..
case of randomness. More detail may be found in a simple



graphical method, which will be described in this section. This
method, which has been proposed by BUSLIK [2] for samples of
equal size, will be glven here for sammples of different sizes
too. For this method f is supposed to be known. Let the num-
ber of particles in the samples be W% (J:“.“)£) and let the
m?xing be random, then the fractions 5} of A particles for
large values of = are approximately normally distributed with
mean } anc variance V?EEE; (?:Lz} The exact distribution is,
for every(}, a binomial one, which is asymptotically normal for
vifawm . The gquantities

(11) g{},:(;&_y‘/vw (j=1®),

called the reduced observations, are independently distributed
and approximately N(OJ) (i.e. normal with mean O and variance
1).

Let F(X) be the cumulative distribution funetion of the
N(o,1) distribution and E%(i) the experimental cumulative dis-
tribution function of the % L, 1l.e. let

(12) Fy (%) = c;/%

if there are @ values among the

—

x “..,2% which are = x

then F(X) and fp(¥) can be plotted together in a graph. Cf.
fig. 1.

This kind of graph shows more detail than just one number
can do., In the case outlined in fig. 1, it is clear, for in-
stance, that there were too many samples with too small valuesb
of X , 1l.e. too many samples with not enough particles of
type A .

This method 1is closely connected with a test, called the
KOLMOGOROV--SMIRNOV test, for the hypothesis of random mixing.

The test statistic of this test is ) '

(13) d = M |F(Z)- Fp (%),

the largest distance in vertical direction between f?(z)and F(
This random variable d hasyin the case of random mixing, a kno-
probabillty distribution, extensively tabulated for large-ﬁ(by
means of an approximation)
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by SMIRNOV fB] , while for £<35 some points of the exact dis-
tribution have been tabulated by MASSEY [6] .

Bl

Fig. 1. An experimental and the theoretical cumulative'distriu

bution function of X for 4.2 . The points on the X scale
represent the reduced observations E;,...)E%.

The latter writer also gives a clear summary of the method
and discusses the power of the test. Denoting by ¢athe criti--
cal value of d for the level of significance « , we can plot
two lines on both sides of inj , one situated &, higher and
the other &, lower than F(%). This has been done in Fig.1. for

#:0.05 and #-12 ., Except for a probability o - Fp (%) will
be situated completely within this region. If this is not the
case {as in fig.1.), then one can reject the hypothesis of ran-
dom mixing, with respect to a level of significance o4

The statistic ¢ can also be transformed into a mixing co-

efficient. As d 1itself takes values between O and 1, low values
indicating a high degree of mixing and high values a low one,

I-¢ might be used as a mixing coefficient. The values found in

3
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practice will then, however, only seldom be close to O or 1.
Instead of /_d we could also use for instance the tailproba.
bility belonging to the value of & found. Approximate wvalues of
this tailprobability are tabulated, for not too small values of
4 , inthe table of SMIRNOV [8] . This tailprobability only
assumes values between O and 1, small values denoting bad mixing
and larger ones good mixing. The mathematical expectation of
this tailprobability is equal to % in the case of random mixing.
By taking twice the value of the tallprobability we get a mathe-
matical expectation equal To 1.

More important than the definition of such a coefficient
however is the knowledge of its probability distribution under
certain hypotheses and the possibility of testing whether or
not two values found for different mixtures indicate a syste-
matic difference between these mixtures. In a later report we
will see that the method just discussed and also the }?Zmethods
dealt with in the previous sections do indeed procure tests of
this kind.

A drawback of the above dicussed method of KOLMOGOROV-SMIR -
NOV is that it can only be applied 1if \g is known.

6. Samples of equal size.

If all samples are of equal size, 1l.e, if

(14) MMy ==y (= m ﬂﬁf%

the formulas (4) and (5) can be simplified to

> Y )
(41) )(,:}?m;“(g._f)
d= ¢
and
2 £ o £
(5') { -5 z'm mZ (x;-2) 2 A2 ).

As a rule one will try to comply with (14). (If (1%) is only
approximately fulfilled, one might take the mean of m. for m and
still use (4') and (5'). BLUMBERG and MARITZ [1] have shown that
this inaccuracy has no large influence on the result. This can
also be understood in a way slightly different from theirs, a:s
follows. Let

(15) m= iglzt . and m' s m o~ m .
J:’ 4 (f é
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In the case of random mixing, we have:
2
g(%}_{d’ "”}E) = 'n‘}\})z >

and thercfore

g(—’é} _?)2 = j‘?/"}

and
< 2

E2m(x, 3= mS g o,
where

//nd: = (’WLPH})‘/’: 'rn'l(l, m"md-jq—m"z'n}z),
Therefore

gz"m(_x_d-?)z&'{}vlq- mﬁzfyzfyjz_
Denoting
(16) 0’2{713.}':&“2714; R

it follows, that
(17) g 3(— 7Z-l'rn Z(}_a_?) = ’7?{“— 7:,4"';0”2{71}7} .

This cxpected value will excede that d‘;k;}nly sl}ghtly
if UZ{W}}/WfZ is small. The same hlds for :fz and
the influence on the higher moments may ¢ examined along si-
milar lines.

The test of KOLMOGOROV--SMIRNOV is a‘so more simple for audl

values of =. ; (11) then reduces to
(111) %, = (e -3)/ Vi )m

and we can use x, 1itself instead of %, , the denominator now
being the same for every ¢ . The x, are now approximately nor-
mally distributed with mean § and variance VgiT;:and we can
now compere f,(x) with F(x) instead of.f%(ij with F(%) F(x)
representing the cimulative distribution function of the nor-
mal distribution with mean tf and varisice V?E%7C;i

7. Samples of unknown size .

The supposition, made up to now, that Yhe amounts m.are
known, 1s, especially for fine grained powlers rather unrealistic
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Often onc will have a vague idea about the order of magnitude

of m, , without being able to determine these values exactly.
If the ratio of the m, is known more or less exactly, for

instance from the ratio of the weights or of the volumes of the

samples, and if

(18) %,:nz.‘.....:nlk:'nl:nz: ..... "y
with = known, then we can put

(']9) ’7‘!—.:0/'71.,/ (/:/,,’ﬁ)

and then an upper confidence limit for a , under the hypothe-
sis of random mixing, with a given confidence coefficient 1 .<,
wmay be determined.

If j is known, one can proceed as follows.

Take, from a teble of the Af distrlbution with # degrees
of freedom, the critical vealue '%d corresponding with level of
significance oL (for instance <¢-o0,05 ). In the case of random

mixing we thus have
2 2
P[vl:EXo(]:
By means of (14) and (19) this expression gives
LT ey 372 ] 1o
a . .- = = - .
?YZ J:l 0" —_0‘)' j)

If the obscrved values of x ,..... P are %, ......, % it
follows that

(20) = g %' 5~ n (x })2 (= a AAg)

with level of significance o« (or equivalently: with confidence
coefficknt (_«),
2 2
Ir } is unknown, we use 7{2 instead of h: . We then find
2
the X% , corresponding to the level of significance « , of a }?
distribution Wlth‘% ; degrees of freedom and the final resulu iss

(21) a = x*(1.x¥) X:/&g m:j__l (I.J _ ac.”)2 (= a, /.)0_8).’

Though the qu are not known exactly, one can nevertheless judge

in many cases whether the upper limit a;m? (or aim3 respec-
ti“elﬁ, which have been found, is reasonable or not. If thesc
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upper limits are too small, the hypothesis of random mixing
must be rejected.

If the ratios 7ﬁ of the numbers of particles in the samples
are also unknown, but all samples have about the same size, the
formulas‘of section 6 can be used and an upper limit for the
mean o may be determined. The formulas (20) and (21) then

become

(20") <§?>( /Z(x, (:m,/my)

and

(21') m = x (1= x) /2_ (x x) (:%fnzAag)

Upper limits like these may, if f is known, also be determined
graphically with the help of the method of KOLMOGOROV-SMIRNOV
as described in section 5. To that purpose m. -am.' (or m -m

2

. ¢
respectively) is substituted in (11) or (11') respectively, and

the graph of\iﬁ@iﬁ drawn for some value o, (or .  respectively
ofa (or m respectively ). Multiplying e,(or m,respectively)

by a fector C amounts to multiplying the values '£} by Ve

The largest value of ¢ for which E%(Q)is still completely above
the lower bound for F(X), corresponding to a level of signifi.-

cance o can then easily be determined. The upper limit for

e (orm respectively) is then ca, (or ¢wm, respectively).
Lower ‘econfidence limits could be determined analogously,

but. these are of less interest and will not te described here.

8. The size and the place of the samples.

The sizes (wm) of the samples used have a large influence
on the results. Some investigators (for instance LACEY [5] )
consider this a serilcus disacdvantage for the methods described,
but from a practical viewpoint this should be considered inac-
curate. In practice usuelly samples up to a certain size are
used from & certain mixture and these samples should have a rec:
sonably constent comrosition, while for still smaller samples
the composition does not matter very much.

A remark of this kind mey be found in DANCKWERTS [SJ,HQ
emphasises the impossibility to examine whether a mixture should
be labelled "good" or "bad" before the requirements necessary for

a "good"

mixture are_determinedc One of the items to be deter-
mined is the size of the samples, which is considered of prac-
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tical importance. A second item in this comnection are the places
where the samples are taken

The theory described leaves this point still open. The choice
of these places depends on the alternative hypotheses against

which one wishes to test the hypothesis of random mixing. If one
wishes to examine the homogenelty of the whole mixture, it is
best to Take the samples systematically from all parts of the
mixture. If on the other hand one has the idea that the mixing
is not random in certain places in the mixture, one will take
the Samples exa0tly in thase places, Por still more specified
alternative hypotheces, for instance a trend of the amount of
the component A in a special direction in the mixture, or if
special parts of the mixture may contain less of component A
than other parts, it is better to use methods especially desigred
to detect defects of a specified kind; such methods will be
describec later.

As an example of a special alternative, for which the methods - ~
desdribed here may be used, we will deal with a strongly sim-
plified model of clotting. We suppose that the particles of
component A adhere to each other but not to those of component
B , while the particles of component B also adhere to each
other. Purthermore we suppose that the lwmps of A and B all
have 2bout the same size and contain an average of ~« grains
( = unknown). If the mixing of these lumps is random, such that
only the clotting will lead to a2 deviation from complete ran-
domness, then the methods described in section 7 will give an
upper limit for the number of lumps in the samples; for instead
of the number of particles the number of lumps will now appear
in the formulas. If the number of particles in a sample is known
it is possible to compute at once from this upper limit for the
number of lumps per sample a lower limit for ~ , the amount of
particles per lump. In the case of samples of equal size for
instance, formula (20') determines the upper limit wm, for the
number of lumps, while m,, the number of particles per sample,; .
is known.

We then have, with a level of significance «,

(22) v

liv

m/m,

A similar method has been used by BUSLIK [2] to give an es-

~, 2/, z
timate of « . He finds (23)@:={/Qor,l/@_:respectively, This es--
timate follows from the preceding theory in the same way as (29.
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