MATHEMATISCH CENTRUM
 2 BOERHAAVESTRAAT 49
 AMSTERDAM
 STATISTISCHE AFDELING

Leiding: Prof. Dr D. van Dantzig
Chef van de Siatistische Consuliatie. Prof. Dr J. Hemelrijk
Report S 188 (VP 5)
Prepublication

Constance van Eeden

1. Introduction

The problem considered in this report concerns k ($k \geqq 2$) independent series of independent trials, each trial resulting in a success or a failure. The i-th series consists of n_{i} trials with $\underline{a}_{i}{ }^{1}$) successes and $\underline{\underline{b}}_{i}=n_{i}-\underline{a}_{i}$ fallures; π_{i} is the (unknown) probability of a success for each trial of the i-th series ($i=1,2, \ldots, k$) and $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ satisfy the inequalities

$$
\begin{equation*}
\pi_{1} \leqq \pi_{2} \leqq \ldots \leqq \pi_{k} . \tag{1.1}
\end{equation*}
$$

In section 2 a method will be described by means of which the maximum likelihood estimates may be found; in section 3 a generalization of the problem will be considered.
2. The maximum likelihood estimates of $\pi_{1}, \pi_{2}, \ldots . \pi_{k}$ 2.1. The likelihood function

The maximum likelihood estimates of $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ are those values of $p_{1}, p_{2} \ldots . p_{k}$ which maximize (2.1.1) $L=L\left(p_{1}, p_{2} \ldots p_{k}\right) \stackrel{\operatorname{def}}{=} \sum_{i=1}^{K}\left\{a_{i} \lg p_{i}+\left(n_{i}-a_{i}\right) \lg q_{i}\right\} \quad\left(q_{i}=1-p_{i}\right)$ in the domain

$$
D:\left\{\begin{array}{l}
p_{1} \leqq p_{2} \leqq \ldots \leqq p_{k} . \tag{2.1.2}\\
0 \leqq p_{i} \leqq 1 \quad(i=1,2, \ldots, k) .
\end{array}\right.
$$

In this section L will, unless explicitely stated otherwise, only be considered in this domain D; the maximum likelihood estimates will be denoted by $v_{1}, v_{2}, \ldots, v_{k}$ and
(2.1.3) $\quad L_{i}=L_{i}\left(p_{i}\right) \stackrel{\text { def }}{=} a_{i} \lg p_{i}+\left(n_{i}-a_{i}\right) \lg q_{i} \quad(i=1,2, \ldots, k)$.
2.2. The estimates for the case that $\frac{a_{i}}{n_{i}} \leqq \frac{a_{i+1}}{n_{i+1}}$ for each
$i_{1}=1,2, \ldots, k-1$
Theorem I: If $\frac{a_{i}}{n_{i}} \leqq \frac{a_{i+1}}{n_{i+1}}$ for each $i=1,2, \ldots, k-1$ then
(2.2.1)
$V_{i}=\frac{a_{i}}{n_{i}} \quad(i=1,2, \ldots, k)$.
Proof: This follows immediately from the fact that the maximum of L in D coincides with the maximum of L in the domain: $0 \leqq p_{i} \leqq 1$ $(i=1,2, \ldots, k) \quad$ if $\frac{a_{i}}{n_{i}} \leqq \frac{a_{i+1}}{n_{i+1}} \quad$ for each $i=1,2 \ldots \ldots k \ldots 1$.

1) Random variables will be distinguished from numbers (e.g. from the value they take in an experiment) by underlining their symbols.

2.3. The estimates for the case that $\frac{a_{i}}{n_{i}}>\frac{a_{i+1}}{n_{i+1}}$ for at least one value of $i=1,2, \ldots, k-1$
 In this section the following theorem will be proved.

Theorem II:
$(2.3 .1)$

$$
v_{i}=v_{i+1} \text { for each } i \text { with } \frac{a_{i}}{n_{i}}>\frac{a_{i+1}}{n_{i+1}}
$$

Further a method will be described by means of which the estimates may be found.
For the proofs we need the following lemma and theorem. Lemma I:
(2.3.2) $\quad L_{i}\left(p_{i}^{\prime}\right)>L_{i}\left(p_{i}\right)$
if (p_{i}, p_{i})is a pair of values satisfying
(2.3.3)
$0 \leqq p_{i}<p_{i}^{\prime} \leqq \frac{a_{i}}{n_{i}}$ or $\frac{a_{i}}{n_{i}} \leqq p_{i}^{\prime}<p_{i} \leqq 1$.

Proof:
From (2.1.3) follows
$(2.3 .4)$

$$
\frac{d L_{i}}{d p_{i}}=\frac{a_{i}-n_{i} p_{i}}{p_{i} q_{i}}
$$

Therefore
(2.3.5)

$$
\frac{d L_{i}}{d p_{i}}\left\{\begin{array}{lll}
>0 & \text { if } & p_{i}<\frac{a_{i}}{n_{i}} \\
=0 & \text { if } & p_{i}=\frac{a_{i}}{n_{i}} \\
<0 & \text { if } & p_{i}>\frac{a_{i}}{n_{i}}
\end{array}\right.
$$

and lemma I follows from (2.3.5).
Theorem III: If $\frac{a_{i}}{n_{i}}>\frac{a_{i+1}}{n_{i+1}}$ for any i and if $p_{1}, p_{2} \ldots \ldots p_{k}$ is any set in D with
(2.3.6)

$$
p_{i}<p_{i+1}
$$

then a number p exists with
$(2.3 .7) \quad p_{i .} \leqq p \leqq p_{i+1}$
which, substituted into $L\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ for p_{i} and p_{i+1}
increases !.

Proof:

A number p which, substituted for p_{i} and p_{i+1} in L, increases L must satisfy the relation

$$
\begin{equation*}
L_{i}(p)+L_{i+1}(p)>L_{i}\left(p_{i}\right)+L_{i+1}\left(p_{i+1}\right) \tag{2.3.8}
\end{equation*}
$$

Further the following cases may be distinguished

1. $p_{i}<p_{i+1} \leqq \frac{a_{i}}{n_{i}}$; in that case we take $p=p_{i+1}$, satisfying (2.3.7) 。

According to lemma I we then have
$L_{i}(p)>L_{i}\left(p_{i}\right)$
and p being equal to p_{i+1}
$L_{i+1}(p)=L_{i+1}\left(p_{i+1}\right)$.
(2.3.8) then follows from $(2.3 .9)$ and $(2.3 .10)$

ㄴ. $\frac{a_{i}}{n_{i}} \leqq p_{i}<p_{i+1}$; in that case take $p=p_{i}$. In the same way. as in case 1 it may be proved that this number p satisfies (2.3.7) and (2.3.8).
3. $p_{i}<\frac{a_{i}}{n_{i}}<p_{i+1}$; then if we take $p=\frac{a_{i}}{n_{i}}$, p satisfies $(2.3 .7)$ and

$$
p_{i}<p=\frac{a_{i}}{n_{i}} .
$$

From lemma I and $(2.3 .11)$ then follows

$$
\begin{equation*}
L_{i}(p)>L_{i}\left(p_{i}\right) \tag{2.3.12}
\end{equation*}
$$

Further p satisfies

$$
\begin{equation*}
p_{i+1}>p=\frac{a_{i}}{n_{i}}>\frac{a_{i+1}}{n_{i+1}} \tag{2.3.13}
\end{equation*}
$$

and from lemma I and $(2.3 .13)$ follows
$(2.3 .14)$

$$
L_{i+1}(p)>L_{i+1}\left(p_{i+1}\right)
$$

(2.3.8) then follows from $(2.3 .12)$ and $(2.3 .14)$.

Further it will be clear that if $p_{1}, p_{2}, \ldots, p_{k}$ is a set in D and p a number satisfying $(2.3 .7)$ then $p_{1}, \ldots, p_{i-1}, p_{1} p_{1} p_{i+2}, \ldots p_{k}$ is also a set in D. Therefore from theorem III follows

Theorem TV: If $\frac{a_{i}}{n_{i}}>\frac{a_{i+1}}{n_{i+1}}$ for $i=i_{1}$ then the maximum likelihood estimates of $\pi_{1}, \ldots \pi_{i_{1}}, \pi_{i_{1}+2,} \ldots . . \pi_{k}$ are those values of $P_{1}, \cdots, b_{i_{1}} b_{i_{1}+2}+\cdots, p_{k}$ which maximize

$$
\begin{equation*}
\sum_{i \neq i_{i}+1}\left\{a_{i}^{\prime} \lg p_{i}+\left(n_{i}^{\prime}-a_{i}^{\prime}\right) \lg q_{i}\right\} \tag{2.3.15}
\end{equation*}
$$

where
$\left.\begin{array}{l}\left.(2.3 .16) \quad \begin{array}{l}a_{i}^{\prime}=a_{i} \\ n_{i}^{\prime}\end{array}\right\} \quad n_{i}\end{array}\right\} i \neq i_{1}, i \neq i_{1+1} \quad \begin{aligned} & a_{i_{1}}^{\prime}=a_{i_{1}}+a_{i_{1}+1} \\ & n_{i_{i}}^{\prime}=n_{i_{1}}+n_{i_{1}+1},\end{aligned}$
in the domain
(2.3.17) $D^{\prime}:\left\{\begin{array}{l}p_{1} \leqq \ldots \leqq p_{i_{1}} \leqq p_{i_{1}+2} \leqq \ldots \leqq p_{k} \\ 0 \leqq p_{i} \leqq 1 \quad\left(i=1, \ldots, i_{1}, i_{1}+2_{2} \ldots . k\right) .\end{array}\right.$

In this way the problem is reduced to the case of $k-1$ series of trials and may then be solved by means of theorem I or reduced to the case of $k-2$ series of trials by means of theorem IV. This procedure is necessarily finite, k being finite. Therefore it leads to a unique maximum for L.

Theorem II then follows from this uniqueness and the foregoing theorems.

2.4. Example

The procedure described in section 2.3 may be illustrated by means of the following example.

Suppose $k=4$ and
$(2.4 .1)\left\{\begin{array}{ccccc}i & 1 & 2 & 3 & 4 \\ a_{i} & 4 & 3 & 10 & 8 \\ n_{i} & 10 & 5 & 30 & 15 \\ \frac{a_{i}}{n_{i}} & 0,4 & 0,6 & 0,33 & 0,53 .\end{array}\right.$

From (2.4.1) and theorem II follows
$(2.4 .2)$
$v_{2}=v_{3}$.

The problem is then reduced to the case of $k-1=3$ series of trials with (cf. theorem IV):
$(2.4 .3)\left\{\begin{array}{cccc}i & 1 & 2 & 4 \\ a_{i} & 4 & 13 & 8 \\ n_{i}^{\prime} & 10 & 35 & 15 \\ \frac{a_{i}^{1}}{n_{i}} & 0,4 & 0,37 & 0,53 .\end{array}\right.$
From (2.4.3) and theorem II follows
(2.4.4)

$$
v_{1}=v_{2} .
$$

which reducci the orcblem to the case $k-2=2$ series of trials with
$(2.4 .5)\left\{\begin{array}{ccc}i & 1 & 4 \\ a_{i}^{\prime \prime} & 17 & 8 \\ n_{i}^{\prime \prime} & 45 & 15 \\ \frac{a_{i}^{\prime \prime}}{n_{i}^{\prime \prime}} & 0.30 & 0.53 .\end{array}\right.$
Then from theorem I and (2.4.5) follows
$V_{1}=0.38, \quad V_{4}=0,53$
and from $(2.4 .2),(2.4 .4)$ and (2.4.6)
(2.4.7)

$$
v_{1}=v_{2}=v_{3}=0,38 \quad, v_{4}=0,53 .
$$

3. A generalization of the problem

The problem treated in the foregoing sections may be gensralized as follows:

Suppose the probabilities $\pi_{1}, \pi_{2} \ldots, \pi_{k}$ satisfy the inequalities

$$
\begin{equation*}
\alpha_{i, j}\left(\pi_{i}-\pi_{j}\right) \leqq 0 \quad(i, j=1,2, \ldots, k), \tag{3.1}
\end{equation*}
$$

where
(3.2) $\begin{cases}\alpha_{i, j}=-\alpha_{j, i}, \\ \alpha_{i, j}=0 & \text { for m, pairs of values }(i, j) \text { with } i<j, \\ \alpha_{i, j}=1 & \text { for } m, \text { pairs of values }(i, j) \text { with } i<j,\end{cases}$

$$
\begin{equation*}
m_{0}+m_{1}=\binom{k}{2} \tag{3.3}
\end{equation*}
$$

and, if $i<l<j$ then
(3.4) $\quad \alpha_{i, j}=1$ if $\quad \alpha_{i, \ell}=\alpha_{\ell, j}=1$.

If $m_{1}=$ othen no restriction is imposed on $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ and it is well known that in this case the maximum likelihood estimate of π_{i} is : $\frac{a_{i}}{m_{i}}(i=1,2, \ldots k)$. Further, if $m_{0}=0$ then (3.1) is identical with: $\pi_{1} \leqq \pi_{2} \leqq \ldots \leqq \pi_{k}$ and this case has been considered in the foregoing sections. Therefore we suppose

$$
\left\{\begin{array}{l}
m_{1} \geqq 1 \tag{3.5}\\
m_{0} \geqq 1
\end{array}\right.
$$

Then from (3.3) and (3.5) it follows that

$$
\begin{equation*}
k \geq 3 \tag{3.6}
\end{equation*}
$$

In this report only the case $k=3$ will be considered; the maximum likelihood estimates will be denoted by v_{1}, v_{2}, v_{3} and the domain

$$
\left\{\begin{array}{l}
\alpha_{i, j}\left(p_{i}-p_{j}\right) \leqq 0 \tag{3.7}\\
0 \leqq p_{i} \leqq 1
\end{array}\right.
$$

will be denoted by D_{1}.
The following cases may be distinguished (cf. (3.3) and (3.5)).

$$
\begin{cases}1 . & m_{1}=1, m_{0}=2 \tag{3.8}\\ 2 . & m_{1}=2, m_{0}=1\end{cases}
$$

In case (3.8.1) we may suppose, without any loss of generality

$$
\begin{equation*}
\alpha_{1,2}=\alpha_{1,3}=0, \quad \alpha_{2,3}=1 \tag{3.9}
\end{equation*}
$$

It will be clear that in this case

$$
\begin{equation*}
v_{1}=\frac{a_{1}}{n_{1}} \tag{3.10}
\end{equation*}
$$

and that the estimates of π_{2} and π_{3} may be found by means of the procedure described in section 2 。

In the case (3.8.2) we may suppose without any loss of generality
(3.11) $\quad \alpha_{1,2}=\alpha_{1,3}=1, \quad \alpha_{2,3}=0$
and
(3.12)

$$
\frac{a_{2}}{n_{2}} \leqq \frac{a_{3}}{n_{3}}
$$

Theorem V : If $k=3$ and (3.11) and (3.12) are satisfied and if
p_{1}, p_{2}, p_{3} is a set in D_{1} with
(3.13)

$$
p_{2}>p_{3}
$$

then a number pexists with
(3.14) $\quad\left\{\begin{array}{l}1 . p_{2} \geqq p \geqq p_{3} \\ 2 . L_{2}(p)+L_{3}(p)>L_{2}\left(p_{3}\right)+L_{3}\left(p_{3}\right) .\end{array}\right.$

Proof: The proof is analogous to the proof of theorem IV. Here the following cases may be distinguished

1. $p_{2}>p_{3} \geqq \frac{a_{2}}{n_{2}}$; then take $p=p_{3}$.
2. $\frac{a_{2}}{N_{2}} \geqq p_{2}>p_{3}$; then take $p=p_{2}$,
3. $p_{2}>\frac{a_{2}}{n_{2}}>p_{3}$; then take $p=\frac{a_{2}}{n_{2}}$.

Further it will be clear that if p_{1}, p_{2}, p_{3} is a set in D_{1} with $p_{2}>p_{2}$ then, for each number p satisfying (3.14.1), $p_{1}, p_{1} p$ is also a set in D_{1}. Therefore it follows from theorem V that Theorem VI: If $k=3$ and (3.11) and (3.12) are satisfied then the maximum likelihood estimates of $\pi_{1}, \pi_{2}, \pi_{3}$ are the values of p_{1}, p_{2}, p_{3} which maximize L in the domain

$$
\begin{equation*}
p_{1} \leqq p_{2} \leqq p_{3} \tag{3.15}
\end{equation*}
$$

In this way the problem may, for $k=3$, be reduced to the case treated in section 2.
This may be illustrated by means of the following example.

$$
\text { Suppose } k=3 \text {, }
$$

$(3.16)\left\{\begin{array}{llll}i & 1 & 2 & 3 \\ a_{i} & 13 & 12 & 6 \\ n_{i} & 20 & 25 & 15 \\ \frac{a_{i}}{n_{i}} & 0,65 & 0,48 & 0.4\end{array}\right.$
and

$$
\begin{equation*}
\alpha_{1,3}=\alpha_{2,3}=1 \quad, \quad \alpha_{1,2}=0 \tag{3.17}
\end{equation*}
$$

If we define
(3.18) $\left\{\begin{array}{l}\pi_{1}^{\prime} \stackrel{\text { def }}{=} 1-\pi_{3}, \\ \pi_{2}^{\prime} \stackrel{\text { def }}{=} \\ 1-\pi_{1}, \\ \pi_{3}^{\prime} \stackrel{\text { def }}{=} \\ 1\end{array}-\pi_{2}\right.$,
then the problem is reduced to the case of 3 series of trials with
$(3.19)\left\{\begin{array}{cccc}i & 1 & 2 & 3 \\ a_{i}^{\prime} & 9 & 7 & 13 \\ n_{i}^{\prime} & 15 & 20 & 2.5 \\ \frac{a_{i}^{\prime}}{n_{i}^{\prime}} & 0.6 & 0.35 & 0,52\end{array}\right.$
and

$$
\begin{equation*}
\alpha_{1,2,}^{\prime}=\alpha_{1,3}^{\prime}=1, \quad \alpha_{2,3}^{\prime}=0 . \tag{3.20}
\end{equation*}
$$

For these three series of tridis (3.11) and (3.12) are satisfied and therefore the estimates of $\pi_{1}^{\prime}, \pi_{2}^{\prime}, \pi_{3}^{\prime}$ (denoted by $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}$) may be found by means of theorem VI. This leads to

$$
\begin{equation*}
v_{1}^{\prime}=v_{2}^{\prime}=0,46, v_{3}^{\prime}=0,52 \tag{3.21}
\end{equation*}
$$

and from (3.18) and (3.21) follows
(3.22)

$$
v_{1}=V_{3}=0,54, \quad V_{2}=0,48
$$

The investigation of cases with $k>3$ is in progress.

