MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49

AMSTERDAM

STATISTISCHE AFDELING

Leiding: Prof. Dr D. van Dantzig Chef van de Statistische Consultatie: Prof. Dr J. Hemelrijk

Report S 196(VP7)

Maximum likelihood estimation of ordered probabilities

II

bу

Constance van Eeden

March 1956

4: Introduction

The problem treated in this report concerns the maximum likelihood estimation of partially or completely ordered probabilities.

Consider k independent series of independent trials, each trial resulting in a success or a failure. The i-th series consists of m_i trials with $a_i^{(1)}$ successes and $b_i = m_i - a_i$ failures; m_i is the (unknown) probability of a success for each trial of the i-th series ($i=1,2,\dots,k$) and m_i,m_i ... m_k satisfy the inequalities

(1.1)
$$\alpha_{i,j} (\pi_i - \pi_j) \leq 0$$
 (i.j = 1.2,...k),

where

(1.2)
$$\begin{cases} 1. & \alpha_{i,j} = -\alpha_{i,i}, \\ 2. & \alpha_{i,j} = 0 \end{cases}$$
 for moreovalues (i.j.) with i.e.j,
$$3. & \alpha_{i,j} = 1$$
 for moreovalues (i.j.) with i.e.j,
$$\{m_0 + m_1 = \binom{k}{2}\},$$

and, if i < h < j then

(1.4)
$$\alpha_{i,j} = 1$$
 if $\alpha_{i,h} = \alpha_{h,j} = 1$. (transitivity)

In section 2 and 3 methods will be described by means of which the maximum likelihood estimates of $\pi_1, \pi_2, \ldots, \pi_k$ may be found, i.e. the values of x_1, x_2, \ldots, x_k which maximize

$$(1.5) \qquad L = L(x_1, x_2, \dots, x_K) \stackrel{\text{def}}{=} \sum_{i=1}^{K} \left\{ a_i \log x_i + b_i \log (1-x_i) \right\}$$

in the domain

$$(1.6) \qquad \mathbb{D} : \begin{cases} \alpha_{i,j} (x_i - x_j) \leq 0 \\ 0 \leq x_i \leq 1 \end{cases} \qquad (i,j = 1,2,...,k).$$

(1.7)
$$L_i = L_i(x_i) \stackrel{\text{def}}{=} a_i \log x_i + b_i \log (1-x_i)$$
 (i=1,2,...,k)

and

(1.8)
$$f_i = \frac{a_i}{m} (i = 1, 2, ..., k).$$

¹⁾ Random variables will be distinguished from numbers (e.g. from the value they take in an experiment) by underlining their symbols.

Further the restrictions $\pi_i \leq \pi_i$ satisfying

(1.9) $\alpha_{i,h} \propto_{h,j} = 0 \quad \text{for each h between i and j}$ will be denoted by R_1, R_2, \ldots, R_s . Because of the transitivity relations (1.4) the system R_1, R_2, \ldots, R_s is equivalent to (11). In section 4 some examples will be given.

Remarks:

- 1. It will be clear that ordered probabilities can always be numbered in such a way that they satisfy (1.1).
- 2. Every set of restrictions R, R2,..., R5 represents a convex domain.
- 3. If $m_{\text{o}=0}$ then (1.1) is equivalent to (1.10) $\pi_{\text{o}} \leq \pi_{\text{o}} \leq \dots \leq \pi_{\text{k}}$.

This case has been solved independently by MIRIAM AYER, H.D. BRUNK, G.M. EWING, W.T. REID, EDWARD SILVERMAN [2] and the present author [1].

- 2. The maximum likelihood estimates of $\pi_1, \pi_2, \dots, \pi_k$ In this section the following theorem will be proved.
- Theorem I: L possesses a unique maximum; if R_i implies: π_i , $\mathfrak{A} \Pi_i$, and if $\mathfrak{p}_1', \mathfrak{p}_2', \ldots, \mathfrak{p}_k'$ are the maximum likelihood estimates of $\pi_1, \pi_2, \ldots, \pi_k$ under the restrictions R_1, \ldots, R_k . R_{k+1}, \ldots, R_k then

(2.1)
$$\begin{cases} 1. & p_{i} = p'_{i} \quad (i = 1, 2, ..., k) \quad \text{if} \quad p'_{i_{\lambda}} \leq p'_{\delta_{\lambda}}, \\ 2. & p_{i_{\lambda}} = p'_{\delta_{\lambda}} \quad \text{if} \quad p'_{i_{\lambda}} > p'_{\delta_{\lambda}}. \end{cases}$$

<u>Proof</u>: The uniqueness of the maximum of L will be proved by induction. If s=0 then it is well known that L possesses for any k a unique maximum and

(2.2)
$$p_i = f_i$$
 $(i = 1, 2, ..., k).$

Now suppose that \lfloor possesses a unique maximum for the following two cases

(2.3) $\begin{cases} 1. & \text{k series of trials with } s_{-1} \text{ restrictions} \\ 2. & \text{k-1 series of trials with } s_{-1} \text{ or less restrictions} \end{cases}$

where $k \ge 2$, $s \ge 1$ and consider a case with k series of trials and s restrictions. Then it follows from (2.3.1) that L possesses a unique maximum under the restrictions $R_1, \ldots, R_{\lambda-1}, R_{\lambda+1}, \ldots, R_s$, i.e. there exists exactly one set p_1', p_2', \ldots, p_k' satisfying these restrictions and maximizing L.

Now the following two cases may be distinguished

1. $p_{i_1} \leq p_{i_2}$; then p_1, p_2, \ldots, p_k satisfy the restrictions R_1, R_2, \ldots, R_s . Therefore in this case L possesses a unique maximum under the restrictions R_1, R_2, \ldots, R_s and

(2.4)
$$p_i = p'_i \quad (i = 1, 2, ..., k).$$

2. $p'_{i_{\lambda}} > p'_{i_{\lambda}}$; then (2.1.2) may be proved as follows. If x_1, x_2, \dots, x_k is any set satisfying the restrictions $R_1, \dots, R_{k-1}, R_{k+1}, \dots, R_k$ but different from p'_1, p'_2, \dots, p'_k , then

(2.5)
$$L(p_1, p_2, ..., p_k) > L(x_1, x_2, ..., x_k).$$

Now consider a fixed set x_1, x_2, \dots, x_K with $x_{i_k} < x_{j_k}$ and satisfying the restrictions R_1, R_2, \dots, R_g . Then if

$$\begin{cases} X_{i}(\beta) \stackrel{\text{def}}{=} (1-\beta) \times_{i} + \beta p_{i}^{i} \\ 0 \leq X_{i}(\beta) \leq 1 \end{cases}$$
 (i = 1,2,...,k)

we have

(2.7)
$$X_{i}(0) = X_{i}$$
, $X_{i}(1) = p'_{i}$ (i=1,2,...,k)

and for each β with $o \leq \beta \leq 1$, $X_1(\beta), X_2(\beta), \ldots, X_k(\beta)$ is a set satisfying the restrictions $R_1, \ldots, R_{\lambda-1}, R_{\lambda+1}, \ldots, R_s$ (cf. remark 2 in the foregoing section). Therefore if

(2.8)
$$\beta_0 \stackrel{\text{def}}{=} \frac{x_{i\lambda} - x_{i\lambda}}{x_{i\lambda} - x_{i\lambda} + p'_{i\lambda} - p'_{i\lambda}}$$

then

$$(2.9) \begin{cases} 1. & 0 < \beta_o < 1, \\ 2. & X_{i_\lambda}(\beta_o) = X_{j_\lambda}(\beta_o), \end{cases}$$

i.e. $X_1(\beta_0), X_2(\beta_0), \ldots, X_k(\beta_0)$ is a set satisfying the restrictions R_1, R_2, \ldots, R_n .

Further $L\{X_{k}(\beta), X_{k}(\beta), \dots, X_{k}(\beta)\}$ is for fixed values of $X_{k}, X_{k}, \dots, X_{k}$ a function of β , say $g(\beta)$, and

$$(2.10) \quad \frac{d^{2}q(\beta)}{d\beta^{2}} = \sum_{i=1}^{K} (p'_{i} - x_{i})^{2} \frac{-m_{i} X_{i}(\beta)^{2} + 2\alpha_{i} X_{i}(\beta) - \alpha_{i}}{X_{i}(\beta)^{2} \left\{1 - X_{i}(\beta)\right\}^{2}} < 0.$$

From (2.5), (2.7) and (2.10) it follows then that $q(\beta)$ is in the interval $0 \le \beta \le 1$ an increasing function of β , i.e.

$$(2.11) \quad L\left\{X_{1}(\beta_{0}), X_{2}(\beta_{0}), \dots, X_{K}(\beta_{0})\right\} > L\left(X_{1}, X_{2}, \dots, X_{K}\right).$$

Thus for each set x_1, x_2, \ldots, x_k with $x_{i_1} < x_{i_k}$ and satisfying the restrictions $\mathcal{R}_1, \mathcal{R}_2, \ldots, \mathcal{R}_k$ a set X_1, X_2, \ldots, X_k exists satisfying

the restrictions R_1, R_2, \ldots, R_n and

(2.12)
$$\begin{cases} 1. X_{i_{\lambda}} = X_{j_{\lambda}}, \\ 2. L(X_{1}, X_{2}, ..., X_{k}) > L(x_{1}, x_{2}, ..., x_{k}), \end{cases}$$

i.e. $L_{(x_1, x_2, ..., x_k)}$ attains its maximum under the restrictions $R_{i_1}, R_{i_2}, ..., R_{i_k}$ for $x_{i_k} = x_{i_k}$. Substituting this in (1.5) the two terms with $i = i_k$ and $i = j_k$ reduce to one term of the form

$$(a_{i_{\lambda}} + a_{j_{\lambda}}) \log X_{i_{\lambda}} + (b_{i_{\lambda}} + b_{j_{\lambda}}) \log (1 - x_{i_{\lambda}}).$$

The uniqueness of the maximum of \lfloor under these restrictions then follows from (2.3.2).

By repeatedly applying theorem I and using the well known solution of the problem for the case that <code>S=o</code> the problem may be solved. This may, however, lead to a rather complicated procedure, which in many cases may be simplified by applying the special theorems mentioned in the following section.

3. Some special theorems

Theorem II: If $\alpha_{i,i}(f_i - f_i) \le 0$ for each pair of values (i,i) then (3.1) $p_i = f_i$ (i = 1, 2, ..., k).

<u>Proof:</u> This follows immediately from the fact that in this case the maximum of L in D coincides with the maximum of L in the domain: $o \le x_i \le 1$ (i = 1, 2, ..., k). The theorem also follows from theorem I.

The following theorem will be immediately clear.

Theorem III: If i,i,..., is a set of values satisfying

(3.2)
$$\alpha_{i,i,} = \alpha_{i,i,2} = \dots = \alpha_{i,i,\nu} = 0 \qquad \text{for each } i \neq i_1, i_2, \dots, i_{\nu}$$
 then the maximum likelihood estimates of $\pi_{i_1}, \pi_{i_2}, \dots, i_{\nu}$ are those values of $x_{i_1}, x_{i_2}, \dots, x_{i_{\nu}}$ which maximize $L_{i_1} + L_{i_2} + \dots + L_{i_{\nu}}$ in the domain

(3.3)
$$D': \begin{cases} \alpha_{i_h, i_{h'}} (x_{i_h} - x_{i_{h'}}) \leq 0, \\ 0 \leq x_{i_h} \leq 1 \end{cases} (h, h' = 1, 2, ..., \nu).$$

For the proof of the theorems IV and V we need the following lemma Lemma I: If x_1, x_2, \dots, x_k is any set in $\mathfrak D$ with

(3.4)
$$\begin{cases} 1. & x_i < x_j, \\ 2. & f_i \ge f_j, \\ 3. & \alpha_{h,i} \ge \alpha_{h,i} \end{cases}$$
 for each $h < j$, for each $h > i$.

for any given pair of values (4.4) then a number x exists satisfying

(3.5)
$$\begin{cases} 1.x_{i,}x_{i},...,x_{k} \text{ is also a set in } D \text{ if } x \text{ is substituted} \\ \text{for } x_{i} \text{ and } x_{i} \end{cases},$$

$$2. L_{i}(x) + L_{i}(x) > L_{i}(x_{i}) + L_{i}(x_{j}).$$

Proof:

The following cases may be distinguished

(3.6)
$$x_i < x_j \le f_i$$
; then take $x = x_j$.

(3.7)
$$\begin{cases} i \leq x_i < x_j \end{cases}$$
; then take $x = x_i$,

(3.7)
$$f_i \leq x_i < x_j$$
; then take $x = x_i$.
(3.8) $x_i < f_i < x_j$; then take $x = f_i$.

It may easily be proved that this number x satisfies (3.5.2). For (3.6) e.g. we have

$$(3.9) \qquad L_{i}(x) = L_{i}(x_{i})$$

and

$$(3.10) X_i < X \leq f_i.$$

From (3.10) follows

$$(3.11) \qquad \qquad \mathsf{L}_{i}(\mathsf{x}) > \mathsf{L}_{i}(\mathsf{x}_{i})$$

and (3.5.2) follows from (3.9) and (3.11).

For the cases (3.7) and (3.8) it may be proved in an analogous way by means of (3.4.2) that x satisfies (3.5.2).

In order to prove that this number \times satisfies (3.5.1) it is sufficient to prove that

(3.12)
$$\begin{cases} 1. & \alpha_{h,i} (x_h - x) \leq 0 \text{ for each } h < i, \\ 2. & \alpha_{i,h} (x - x_h) \leq 0 \text{ for each } h > i, \\ 3. & \alpha_{h,i} (x_h - x) \leq 0 \text{ for each } h < j, \\ 4. & \alpha_{j,h} (x - x_h) \leq 0 \text{ for each } h > j. \end{cases}$$

From the fact that x satisfies

$$(3.13) x_i \leq x \leq x_i$$

and the fact that $\times_1, \times_2, \ldots, \times_K$ is a set in ${\mathfrak D}$ it follows that

(3.14)
$$\begin{cases} 1. & \alpha_{h,i} (x_h - x) \leq \alpha_{h,i} (x_h - x_i) \leq \text{ofor each } h < i, \\ 2. & \alpha_{j,h} (x - x_h) \leq \alpha_{j,h} (x_j - x_h) \leq \text{ofor each } h > j. \end{cases}$$

Further it follows from (3.4.3) and (3.4.4) that

(3.15)
$$\begin{cases} 1. & \alpha_{i,h}(x-x_h) = \alpha_{j,h}(x-x_h) & \text{for each } h > i \text{ with } \alpha_{i,h} = 1, \\ 2. & \alpha_{h,j}(x_h-x) = \alpha_{h,i}(x_h-x) & \text{for each } h < j \text{ with } \alpha_{h,j} = 1, \\ \text{and (3.12) follows from (3.14) and (3.15).} \end{cases}$$

Theorem IV: If for any pair of values (i,j) with i < j

(3.16)
$$\alpha_{i,j}(f_i - f_j) > 0$$

and

(3.17)
$$\begin{cases} 1. & \alpha_{i,h} = \alpha_{h,j} = 0 \\ 2. & \alpha_{h,i} = \alpha_{h,j} \end{cases}$$
 for each h between i and j, for each h < i, for each h > j,

then

(3.18)
$$p_i = p_j$$
.

<u>Proof</u>: Suppose x_1, x_2, \ldots, x_k is a set in $\mathfrak D$ with

$$(3.19)$$
 $x_i < x_j$.

Further we have (cf. (3.16) and (3.17))

(3.20)
$$\begin{cases} 1 \cdot f_i > f_j, \\ 2 \cdot \alpha_{h,i} = \alpha_{h,j} \\ 3 \cdot \alpha_{i,h} = \alpha_{j,h} \end{cases}$$
 for each $h < j$, for each $h > i$.

From lemma I and (3.20) it follows then that a number \times exists such that $\times_1, \dots, \times_{k-1}, \times_1, \times_{k+1}, \dots, \times_{\frac{k}{d}-1}, \times_1, \times_{\frac{k}{d}+1}, \dots, \times_k$ is a set in \mathfrak{D} and

(3.21)
$$L_{i}(x) + L_{j}(x) > L_{i}(x_{i}) + L_{j}(x_{j}).$$

Thus for each set $\times_1, \times_2, \ldots, \times_k$ in $\mathbb D$ with $\times_i < \times_j$ a set $\times_1', \times_2', \ldots, \times_k'$ in $\mathbb D$ exists with

(3.22)
$$\begin{cases} 1. & x'_{i} = x'_{i}, \\ 2, L(x'_{1}, x'_{2}, ..., x'_{k}) > L(x_{1}, x_{2}, ..., x_{k}), \end{cases}$$

i.e. L attains its maximum for $x_i = x_i$ and (3.18) then follows from the uniqueness of this maximum.

Remarks:

4. This theorem also follows from theorem I. If \mathcal{R}_{λ} represents the restriction $\pi_i \leq \pi_j$ it follows from (3.22) that L attains its maximum under the restrictions $\mathcal{R}_1, \ldots, \mathcal{R}_{\lambda_{-1}}, \mathcal{R}_{\lambda_{+1}}, \ldots, \mathcal{R}_k$ for $x_i \geq x_j$, giving $p_i \geq p_j$; from (2.1) then follows: $p_i = p_j$.

5. If $m_{\text{c=0}}$, i.e. if the probabilities $\pi_1, \pi_2, \dots, \pi_k$ satisfy the inequalities

$$(3.23) \pi_1 \leq \pi_2 \leq \ldots \leq \pi_k,$$

then each pair of values (i,j) with j=i+1 satisfies (3.17). Therefore in this case we have

From theorem IV it follows that if there is a pair of values (i.j) satisfying (3.16) and (3.17) then the problem may be reduced to the case of k-1 series of trials with s-1 (or less) restrictions by substituting $x_i = x_j$ in $L(x_1, x_2, ..., x_k)$ i.e. by pooling the i-th and j-th series of trials.

Theorem V: If (4.4) is a pair of values satisfying

$$(3.25) \qquad \qquad f_i \leq f_i$$

and

(3.26)
$$\begin{cases} 1. & \alpha_{i,j} = 0, \\ 2. & \alpha_{h,i} \leq \alpha_{h,j} \\ 3. & \alpha_{i,h} \geq \alpha_{j,h} \end{cases}$$
 for each h > j,

then

$$(3.27) p_i \leq p_i.$$

<u>Proof</u>: Suppose x_1, x_2, \dots, x_k is a set in D with

$$(3.28) x_{i} > x_{j}.$$

Further we have (cf. (3.25) and (3.26);)

(3.29)
$$\begin{cases} 1. & \text{fi} \leq \text{fi}, \\ 2. & \alpha_{h,i} \leq \alpha_{h,i} \end{cases} \text{ for each hei,} \\ 3. & \alpha_{i,h} \geq \alpha_{i,h} \end{cases} \text{ for each hei,}$$

From lemma I it follows then in the same way as in theorem IV that for each set x_1, x_2, \dots, x_k in $\mathbb D$ with $x_i > x_j$ a set x_1, x_2, \dots, x_k in $\mathbb D$ exists with

(3.30)
$$\begin{cases} 1. & x'_{i} = x'_{i}, \\ 2. & L(x'_{i}, x'_{2}, \dots, x'_{K}) > L(x_{1}, x_{2}, \dots, x_{K}), \end{cases}$$

i.e. L attains its maximum for $\times_{i} \leq \times_{j}$; (3.27) then follows from the uniqueness of the maximum.

By means of theorem V a new restriction may be introduced. This is sometimes useful as may be seen from example 2 of section 4. In the following section some examples will be given. In these examples the theorem II-V will be applied if possible and theorem I will only be used where the theorems II-V cannot be applied.

4. Examples

Example 1:

Suppose k = 4, $m_0 = 0$ $(\pi_1 \le \pi_2 \le \pi_3 \le \pi_4)$ and

$$\begin{cases} i & 1 & 2 & 3 & 4 \\ a_i & 4 & 3 & 10 & 8 \\ n_i & 10 & 5 & 30 & 15 \\ f_i & 0,4 & 0,6 & 0,33 & 0,53 \ . \end{cases}$$

From (4.1) and (3.24) it follows that

$$(4.2) p_{\lambda} = p_{\lambda}$$

and the problem is reduced to the case of k-1=3 series of trials by pooling the second and third series of trials:

From (4.3) and (3.24) it then follows that

$$(4.4)$$
 $p_1 = p_2$

and the problem is reduced to the case of k-2=2 series of trials with

$$\begin{cases}
 i & 1(+2+3) & 4 \\
 a_{i}^{"} & 17 & 8 \\
 n_{i}^{"} & 45 & 15 \\
 f_{i}^{"} & 0,38 & 0,53.
\end{cases}$$

From (4.5), (4.2), (4.4) and theorem I then follows

$$(4.6) p_1 = p_2 = p_3 = 0.38 , p_4 = 0.53.$$

Example 2:

Suppose k = 5, $m_1 = 6$, $m_0 = 4$

$$\begin{pmatrix} i & 1 & 2 & 3 & 4 & 5 \\ a_i & 7 & 13 & 15 & 2 & 12 \\ n_i & 10 & 20 & 30 & 5 & 15 \\ f_i & 0,7 & 0,65 & 0,5 & 0,4 & 0,8 \\ \end{pmatrix}$$

and

$$(4.8) \qquad \alpha_{1,2} = \alpha_{1,2} = \alpha_{2,4} = \alpha_{3,5} = 1.$$

Then the pair of values $\lambda = 2$, i = 4 satisfies (3.16) and (3.17). Therefore we have

$$(4.9)$$
 $p_2 = p_4$

and the problem is reduced to the case of K-1=4 series of trials with $m'_1=4$, $m'_2=2$,

and

$$(4.11) \alpha_{1,2} = \alpha_{1,3} = \alpha_{3,5} = 1.$$

For these 4 series of trials the pair $\lambda = 3$, j = 2 and the pair $\lambda = 2$, j = 5 satisfy (3.25) and (3.26). From theorem V then follows that L attains its maximum for

$$(4.12) \qquad \qquad x_1 \leq x_3 \leq x_2 \leq x_5$$

and from (4.9), (4.10) and (4.12) follows

$$(4.13)$$
 $p_1 = p_3 = 0.55$, $p_2 = p_4 = 0.6$, $p_6 = 0.8$.

Example 3:

Suppose k = 4, $m_0 = m_1 = 3$,

$$\begin{pmatrix}
i & 1 & 2 & 3 & 4 \\
a_i & 7 & 18 & 13 & 10 \\
m_i & 10 & 30 & 20 & 25 \\
f_i & 0,7 & 0,6 & 0,65 & 0,4
\end{pmatrix}$$

and

$$(4.15) \alpha_{1,2} = \alpha_{1,4} = \alpha_{3,4} = 1.$$

For this case the theorems II-V cannot be applied and therefore we use theorem I.

Take $\lambda_{\lambda=1}$ and $\lambda_{\lambda=4}$ (i.e. omit the restriction $\pi_1 \le \pi_4$), then $\beta_1, \beta_2, \beta_3, \beta_4$ are those values of x_1, x_2, x_3, x_4 which maximize L in the domain

$$\begin{cases} x_1 \le x_2, & x_3 \le x_4 \\ 0 \le x_i \le 1 & (i=1,2,3,4). \end{cases}$$

From theorem III and IV then follows

$$(4.17) p'_1 = p'_2 = 0,63 , p'_3 = p'_4 = 0,51$$

and from theorem I and (4.17) (cf. (2.1.2))

$$(4.18)$$
 $p_1 = p_4.$

In this way the problem is reduced to the case of k-1=3 series of trials with

and

$$(4.20) \alpha_{3,1}' = \alpha_{1,2}' = 1.$$

From (4.18), (4.19) and (4.20) follows

(4.21)
$$p_1 = p_3 = p_4 = 0.55$$
, $p_2 = 0.6$.

Example 4:

Suppose k = 8, $m_0 = 13$, $m_1 = 15$

$$(4.22) \begin{cases} i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ a_i & 8 & 22 & 13 & 25 & 20 & 21 & 32 & 2 \\ n_i & 10 & 40 & 20 & 50 & 30 & 50 & 50 & 5 \\ c & 0,8 & 0,55 & 0,65 & 0,5 & 0,67 & 0,42 & 0,64 & 0,4 \end{cases}$$

and

(4.23)
$$\alpha_{1,2} = \alpha_{1,4} = \alpha_{3,4} = \alpha_{4,5} = \alpha_{5,6} = \alpha_{5,8} = \alpha_{1,8} = 1.$$

For this case the theorems II-V cannot be applied and therefore we use theorem I.

If we take $i_{\lambda} = 4$ and $j_{\lambda} = 5$ then it follows from theorem III that p_1', p_2', \ldots, p_n' are found by maximizing $\sum_{i=1}^{n} L_i$ under the restrictions: $x_i \leq x_2, x_i \leq x_4, x_3 \leq x_4$ and $\sum_{i=5}^{n} L_i$ under the restrictions: $x_5 \leq x_6, x_5 \leq x_8, x_7 \leq x_8$.

In order to find p_1' , p_2' , p_3' , p_4' we apply theorem I; this results in (cf. example 3)

$$(4.24)$$
 $p'_1 = p'_2 = p'_3 = p'_4 = 0.57.$

In an analogous way we find by means of theorem I

$$(4:25) p'_5 = p'_6 = 0.51, p'_7 = p'_2 = 0.62.$$

From (4.24), (4.25) and theorem I then follows (cf. (2.1.2))

$$(4.26)$$
 $p_4 = p_5$

and the problem is reduced to the case of k-1=7 series of trials

and

(4.28)
$$\alpha'_{1,2} = \alpha'_{1,4} = \alpha'_{3,4} = \alpha'_{4,6} = \alpha'_{4,8} = \alpha'_{4,8} = 1.$$

For these 7 series of trials we again apply theorem I; taking $\lambda_{\lambda=1}$ and $\lambda_{\lambda=4}$ one finds by means of the theorems II-V

(4.29)
$$p'_1 = p'_2 = 0.6$$
, $p'_3 = p'_4 = p'_6 = 0.53$, $p'_7 = p'_8 = 0.62$.

From (4.29) and theorem I then follows

$$(4.30)$$
 $p_1 = p_4$

and the problem is reduced to the case of k-2=6 series of trials with $m_0''=7$, $m_0''=8$

and

(4.32)
$$\alpha_{3,1}^{"} = \alpha_{1,2}^{"} = \alpha_{1,6}^{"} = \alpha_{1,8}^{"} = \alpha_{7,8}^{"} = 1.$$

From (4.31), (4.32) and theorem IV then follows

$$(4.33)$$
 $p_3 = p_1$

and the problem is reduced to the case of k-3=5 series of trials with $m_0''=6$, $m_0'''=4$

$$(4.34) \begin{cases} i & 1(+3+4+5) & 2 & 6 & 7 & 8 \\ oi & 66 & 22 & 21 & 32 & 2 \\ mi & 110 & 40 & 50 & 50 & 5 \\ fi & 0,6 & 0,55 & 0,42 & 0,64 & 0,4 \end{cases}$$

and

(4.35)
$$\alpha_{1,2}^{"} = \alpha_{1,6}^{"} = \alpha_{1,8}^{"} = \alpha_{7,8}^{"} = 1.$$

From theorem V it follows then that \bot attains its maximum for $x_1 \le x_7$. Introducing this new restriction it follows from theorem IV that

and the problem is reduced to the case of k-4=4 series of trials with $m^{""} = m^{""} = 3$

With
$$m_0 = m_1 = 3$$

$$i = 1(+3+4+5) = 2 = 6 = 7(+8)$$

$$a_i^{(4)} = 66 = 22 = 21 = 34$$

$$m_i^{(4)} = 110 = 50 = 40 = 55$$

$$\begin{cases} i = 10 & 0.55 & 0.42 & 0.62 \end{cases}$$

and

(4.38)
$$\alpha_{1,2}^{101} = \alpha_{1,6}^{101} = \alpha_{1,7}^{101} = 1.$$

From theorem V then follows that L attains its maximum for $x_1 \le x_2 \le x_3$; thus we have

(4.39)
$$p_1 = p_3 = p_4 = p_5 = p_6 = 0.54$$
; $p_2 = 0.55$; $p_7 = p_6 = 0.62$.

References:

- Miriam Ayer, H.D. Brunk, G.M. Ewing, W.T.Reid, Edward Silverman, An empirical distribution function for sampling with incomplete information, Ann.Math.Stat.26(1955), 641-647.
- 2 Constance van Eeden, Maximum likelihood estimation of ordered probabilities, Report S 188

 (VP 5) of the Statistical Department of the Mathematical Centre, Amsterdam, 1956.