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1) Introduction and summary 

Following DOOB [4] 4), we can say that renewal theory in the 

simplest case deals with the following situation: 

A population, consisting of a certain number of individuals is 

given. As soon as an individual dies, it is replaced by another, 

whose life starts at the moment of replacement. In this way the 

total number of living individuals is kept constant. The lifetimes 

of the individuals are supposed to be independent random variables 

with the same distribution function. Hence a population of k 
individuals can be considered as the sum of k independent "one-man11 

populations each of which consists of the offspring of a single 

individual. This justifies in many cases the restriction (made in 

this paper) to populations, consisting of one individual only. For 

convenience we shall assume that the time interval from the moment 

o to the first occurring death is independent of all lifespans and 

has the same distribution. 

The quantities we are usually concerned with, are: 

a) the remaining lifetime of the individual, living at time t , 
b) the age which the individual, living at time t , will reach, 

c) the number of deaths in the interval [ o , t J. 
We are interested in renewal theory, because of its applications 

to waiting time problems. 

Le~ us consider the arrival of busses at a busstop, If we assume 

that the intervals ?i \'\. between the arrival of the n. t.h and (n. + I) .st bus 

and the interval from zero to the arrival of the first bus, are in

dependently distributed with the same distribution function~ (x), 
we have essentially the same situation as described above. If we 

substitute for an individual in renewal theory a bus and for a 

lifespan of such an individual the time interval between the arrival 

of successive busses, results of renewal theory can be interpreted 
at once. The n trans lat ions 11 of the quantities a), b) and c) are 

respectively: 

a 1 ) the time wt , a passenger arriving at time t has to wait till 

the next bus arrives, 

1 ) Numbers in square brackets refer to the list at the end of this 

report. 

~-~~---,, xc~·,,.,Y · ·_ 'f~---_-:.._._._.fa(Y'Y ·· ,: 
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b1) the length of that time interval between two consecutive 

busses, which overlaps the point t J 

c 1 ) the number of busses N~ arriving at the busstop in the time 

interval [ o, t J. 
In this paper we shall prove some theorems, which can be found in 

the literature, (3,5) and (5,5) possibly excepted. Here we only 

consider the case where not all possible values of the arrival 

interval are integral multiples of a positive constant. The 

excluded case was investigated by FELLER [ 7 J. In this introduction 

the random variable X has the same distribution as the arrival 

intervals, i.e. the distribution function F, ( x) • Its moments will 

be denoted by 

E k 
X -

( 
/ 

0 -

xk dr, (x) 

I 
while we take ;u., equal to o , if f!. 1 == co • The proofs given here 

depend on the following wellknown theorem which was proved by 

BLACKWELL [ 1]: 
Theorem 1: Unless all possible values of the arrival interval t 2), 

with distribution function G(x), are integral multiples of some 

fixed constant, the expected number U (t)of bus arrivals in [oJt] 
has the property 

U (-/; J h ) d_;f U ( t + h ) - U C t ) -..,. ¼, ( t -,. c-0 ) 

for every h > o . 

The analogous theorem, for the case where all possible values of x 

are integral multiples of a fixed constant, was proved by ERDOS, 

FELLER and POLLARD [ 5] (c.f. also [ 6], p.244,Th,3). 
For completeness sake we shall proof th.1 in an appendix. Using 

this theorem, partial integration, change of order of integration 

2 ) The random character of a stochastic variable will be denoted 
by underlining its symbol. The same symbol without underlining 
will be used for values taken by the stochastic variable. 
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(Fubini1s theorem) and the LEBESGUE-lemma on dominated convergence 

of integrals 3), we will prove in section 3 the following theorem. 

Theorem 2: The waiting time ~t of a passenger arriving at time t;; 
waiting for the next bus 3 has the distribution function: 

0 

" [ F (t, w l + 
I 

+ 00 I l u. ( t +"-' - X) - u Ct - ) J d F, (() 
w +-

l il"Yl H -1: (w) exists and is given by 

H (w) d.:._f l irn 

t ➔ <!':J 

0 

for w < o 

for '"' ~ o 

{c,r W < 0 

for w ~ O. 

Evidently H (w) is again a distribution function if ;,i- 1 < co • Let ~ 
be a random variable with distribution function Hew), If ,µ 1 < co 

the moments of the distribution function ~t Cw) tend to the 

moments of H (w) for t -'t oo , for which we find: 

Li'!i, E. :'.!'.'t k z E. w It '- ~1\1-'I 

'c'~«l - ~ (it-1-1).,,<t.1 

In section 4 we give a proof of the asymptotic formula 

valid when,,,,,(,{, .z < "'", 

In section 5 we consider the length of the arrival interval 

which overlaps the time t . Its distribution function kt (l) is 

given by 
0 forl<o· 

Lt-{)-
l<trn~ { 

f I ( t-) - u ( t - ) { j - F; (L} ~ + / u (.x) d F: ( t - )(.) fi;,rl * Q 

o-

Lim r<t (L) 
t ➔ oo 

exists and is given by 

3) This lemma can e,g. be formulated in the following way: Iff'!1(x) 
is a sequence off' -measur9ble functions, such that for all 
sufficiently large values of n and almost everywhere on 
E /f,. (le) I~:: r ( X.) where f ( it) is /A -integrable over the 
/A -measurable set E j and if lim fn {)()::: f (~) almost every-
where on E , then !il"l'l ff (x) d;/'~/F ex) d,u . 

n~<Y.l n ,. / -,: 
E £ 
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for l (O 

K ( u W l+ 

j , d F, ( x) 

o-
If ,/4( 1 < 00 , KC l) is again a distribution function. Let L be a 

random variable with distribution function \< l l) • If .,,.u. 1 < 00 the 

moments of Kt ( L) again tend to the moments of K ( t) for t -, oo 

for which we find 

It: k ~ k-tl L irn E 1. t - E. l = 
t --,,~ _.r'l I 

Finally a theorem of SMITH [ 8 ] is derived: 

Theorem 6: If k (t) is any function, which is zero for negative 

argument, and is bounded, L I and non-increasing in ( o, aa) , 

then 
+ (10 

/ k ( t - X ) d u (. is.) -
_j_ 
/4-, f k(x)d.x. 

0 

2. Simple formulae and lemmas 

In what follows we will always assume the intervals between 

successive busses (including the interval from time o to the 

arrival of the first bus) to be independently distributed with 

the same distribution function F; (x) • Because the arrival 

intervals are non-negative we take G ( x) ,,_. o for x < o and in 

addition exclude the case F (o)=-1 i.e. we take f, Co)< I. 
I 

(BLACKWELL [ 2 J gave a generalization of his main theorem in [ 1 ] 

, 

for the case of variables which are not necessarily non-negative). 

We assume that G ( x.) is not a discrete distribution function 

with all jumps in integral multiples of a positive constant. This 

excluded type of distributions was considered by FELLER [ 7]. 
The busses can be numbered without ambiguity in accordance with the 

order in which they arriveJ although F (o) > o is allowed • 
I 4) 

The successive arrivaltimes of the busses will be denoted by 

4) cf. 2) p. 2. 
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~I ~ ~I 

and 
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for 

The distribution functions of ~ 11 for k "' 2., 3) . . . are then given by 
relations 5) the following 

( 2 .1) F d!,_f p [ c ~ ;(} ::: { O X-4--

k (~) - ~k ~ J f 
k-1 .,_ 

while furthermore 

(2.2) F 'x) 
k+l { 

0 

J 
o-

f O I" }l.. ( 0 

( X - '-:} ) d F, ( 'j) 

for x. < o 

for x ~ a 

By means of these functions we can immediately calculate the 

expected number of arrivals in the lnterval 6 ) [ 0 1 t J. Denoting 

the number of arrivals in this interval by ~I ,i; , we have 

k P { N t = k } ;: f ? f ~ t i k J = 
oO 

( 2. 3) 
E Nt :;::: [ 

l(c I k = I 
00 

p f ~ k ~ t } ::: [, F K ( t) == u ( -t) . 

1<.:f 

Oill 

::: ~ 
Here we have written for abbreviation 

00 

( 2 .4) 
o.hb 

UCO - I F~ ( t) 
k:1 

5) We use Lebesgue-Stieltjes integrals with the following notations 
for intervals of integration: 

!,,;. bb ; j f ( x) d SI { x) ~ f C x) d 9 (x) :i 

a.+ o.<X '(; C 

~-J f (X) d9 (x) abb J t(x) d<3(x) 
t.+ o. < ;( < b 

h-f f (x) dg (x) ~ j f,l')d9 Cx). 
~ ~sA<b 

If the integral happens to 
distinctions need not (and 

be an ordinary Lebesgue-integral these 
will not) be made. 

6 ) [ J denotes a closed interval, ( ) an open interval. 
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~,; ~2. 1 '· ·, tk~L are independent and have the same distribution 

function. As ~ 1 + ... + ~r:.+L ~ t implies ?S., + ... 1-~ic. ::5- -1: and 

!:. ~ ... , + .;. !: r.. + L :S t we have 

(2.5) F (i:) < F (-1:.) p { ~k..YI+ ... + ii k•l~ t}:::: Fk (t)' Ft (t)' 
K-l- l ' K 

It follows from the assumption F; ( oJ < t that there exists a b ;,, 0 

with F, (6) <:I. l'JowJ ,Sn~ .. J implies min ?5,i ~ 3 , therefore 
I~ i ~ n 

(2.6) 

Thus;1 for fi::ed t > o, Fn. Ct)< I for n > ! and from (2.4) 

( 2. 7) 

CD co 

U Ct) ·::: \ F Ct.) = ) L k ,.__, 

k ~ I 

n 
~ 
L F ct> ~ 

L n r- "' 

proving that U ( t) is finite for every t.. >,:. o. 

n - '° l L f k (t) L F (t)<«)) 
l :=O 

STEIN [ 9 ] pro-;sd inequalities analogous to (2.6) and (2.7) in 

a more general cose. 

U (i) is a ~onot~~ic non-decreasing function of t J as follows 

immediately from the dsfinition (2.4), or the interpretation of 

u ( t) as [ N .. 
-i::. 

I:'.=.E~~11..?~· For any positive integer kJ U ( t) is a solution of the 

integral equation 

k 

(2.1) u ci) == I 
i- "'I 

F Ct) t 
r 

t + I u Ct - ,) d F. ( ,) 
o-

Pro_o~_;_ From ( 2. 2) we have 

ft~ (t-x) dF,(,J ~ 
-1:: + G-0 

j L F ( t - x) d. F k ( x) :::=. 
r 

()- o- r ::! 

c + 

= I ; 
r = I o-

F ( t) 
r r ml 

We d":fine 

(2.8) U ( t, h ) ~F Lt ( t +-h ) - U ( +.) 

( t ) . 
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BLACKWELL [ 1 ] , lemma 3, proved 

(2.9) Ll.(t,h) ~ Uch) t- I. 

This follows from the interpretation of U (t) as E Nt . Ll (t, h) 

is the expectation of the number of busses arriving in the 

interval (t, t + h]. The time available after the first arrival in 

( t, t: +- h J for the other buss es which arrive in that interval, is 

smaller than h, so (2,9) holds. 

Equation ( 2. 9) can be used to find an upper bound for U Ct) . In 

fact for every fixed h 

r:J j 
(2.<0) U(t)=l__ {uct-(k-1)h)-U(t-kh) +ll(t-[~]h)~ 

k :::: I r-t:; 
q.;-J 

~ L u(t--kh,h) +- u Ch)~ 

~-t"'" 1< u (h) ,,_1} + u ch) 
which le ads to l 

(2.1·1) [) (t) ::: 0 Ct) 

Using the fact that U (t) is a monotonic non-decreasing function 

oft J we can derive from (2,7) the inequality 

(2.12) U. (t,h) ~ F, (t t hl. 
1--f;(h) 

I 

I - (h) 

Formula (2.44) could have been derived from (2.12) instead of 

(2.9). The result of the next lemma will be a useful formula and 

is derived by means of partial integration only. 

Lemma 2. 
t t 

(2.13) / U (x) (1- f, {t-,Jj dx a (JU (t-x) { I- f, (x)] d, ~) 

0 0 

t+ 

/ ( t - x) d F, ( x) . 

o-

fE_o~2f~: By integrating ( 2. 7) for k = I we find: 
"C t t X .\-

/ u c x) d x ~ J r, c x J c1 x + J c1 x / u c x - ,I;!) J F, c _tj > ::;;. 
0 o, t + 0 o- t + t 

=[- F
1 

(x)(t-x)J-c+ t / (t-x) Jf; (x)+ j d.~('.1) ju(x-tj)d.x:: 
() - Q - o- :i 
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( introduce z = t- x + ;i in the third term) 
t+ i+ t 

= I ( t ~ )() d ~ ( i) + J d f, ( 'j) J u ( t - z) d. z ::-. 

0 - o- ~ 
:z.+ 

= J • \ t -,) d F, (,) • j • U ( t - ,) dz ! d F, ( ~) = 
o-

t+ t 

from 

: j ( t-x) d F, ( x) + J U ( X) F, ( t - x) d X 
Q- Q 

which (2.13) follows. 
) 

In the next section we need the theorem of Blackwell mentioned 

above. Introducing the moments of F, (x) , i.e. 
OC) 

(2.14) )Ak d_~ E xk == / xkdf, (x) 

o-

the theorem can be given the following form: 

Theorem 1. If F, ( x) is not a discrete distribution function, 

with all jumps in points which are integral multiples of a 

constant, if F, ( x) = ofor x < o and ~ ( o) < I , then 

lim U(t,h):::_h__ 
t ➔ °' ;U-, 

for every h > o • ( If /u., .::: e,o , then t ,m U ( t I h) ~ o for every h > o). 
t..,.<OD 

A proof of this theorem is given in the appendix. 

3. The limiting distribution and moments of the waiting time. 

A passenger arriving at time t at the busstop will take the first 

bus arriving at or after t . If we denote the waiting time of a 

passenger arriving at t by ~ i and the distribution function of 

this waiting time by H-1; (-\ we have for vv ~ o and t ~ o: 

I - Ht (w) = p {~t > vv) = p { j, > t+w} + r p {§It< t £ ~\<~,"i+w]= 

= } - F: ( t + VJ) -t I / /. el F; ( lj) = Id F k ( X ) ) 

therefore, using 7) (2.4) k::tx<t "'>-c+w~l< 

7) By U ( t-) we denote ~i~ Ll Ci - E) and in // dx d !:J we first 
integrate with respect to x, then with respect to Y· 
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( 3 .1) 

= F Ct+w) _ 
I 

I ./ I df', (:JJ cl~ (X) ~ 
K=I x<t y::-t+w-x 

<ci t-, }~ ;t·d fk (x) d ~(~)+ti 
- '""+ o-

(tf.ls,)+ (Hw-:,)+-

/ /c1F1/~)df, C~) = 
w+ o-

~ co ct) 
a:) 

/ fl( ( t-;- w- ':J ) d ( C ~ ) = 
= F C-ttw>- I 1=- (t-J I JF:(t;) + I I I( 

le::/ w+ k::::1 W"' 

.,., 
u Ct->} dF, C!.J). 

::=. f Ct+w)t I {LlCttw-':J)-
I 

w+ 

Applying the Lebesgue lemma (cf. footnote 3))J which is allowed 

because of (2.9) and (2.11L we have, for}'/1 < OQ , according to 

Th.1 

( 3. 2) H def Lin, 
(w) -

t-', °"' 

w' 

= ,; l / { I - F, ( lj) } d y . 

It is easily seen, that H (w) is again a distribution function. 

If /U., = = we cannot use the Lebesgue lemma in this derivation, 
but then 

l Im H-1: (w) "' o 
t:-/'= 

follows immediately for every finite vJ , for in this case: 

HtCw) = P { at least one bus arrives in the interval [t,i+w]}~ 
~ expectation of the number of arrivals in [ t, t + ""] f 

~ L,/(t+w)- l,/(-l.:-1) = U(+:-1,w+1), 

and therefore, from theorem 1 

( 3. 3) /-1 t ( w) ~ Li,,, U(t-1,w+l)=o. 
t ➔""' 

We have thus proved (cf, (3.1L (3.2) and (3,3)): 
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Theorem 2. The waiting time ~t of a passenger arriving at 

time t , waiting for the next bus, has the distribution function 

( 0 "" 

Ht(w):; { / { ] f l f (t+w) + tA (i+1v-~)- U Ct-) d 1 (x} 
I \4+ 

( irn H, C\N) exists and is given by 
' ' t ➔ "" 

{ 
0 

H (. w) ::: W' 

I J {1- F, C X)} d X ·-/lf, C) 

( If /I, ~ co, H (v.,J,,o for every vv ) . 

Let us no 1 ·T define for all k :t- o 
00 

V ( -1-.) cl tf E ,., ' I<, I I<, 11 , ' - = Y• = v-.1 dr-.,,w,, 
Is - 1: -

o-

def j w < d~·I Cvv) 

o-

An easy calcul~tion shows 

We now prove 

for 

f 
TOi 

r 
TO!" 

w ~a 

Theorem 3. If ,/,/., < = the moments of the distribution function 

H.1.. Cw) tend to the moments of ~I (w) for t ➔ co , i .e, 
" 

t i tn C' k L i r,, v~ ( -& ) 1\~ /<.{\<+I \"1 :; ;: 
L... 

- -t 
-;: --t '°?C:...7' t ➔ o,i (k;-1 )j-(1 

If fl, = ca' 
• I. i,.,., E it 

L :'m }' ( t) for k ;;,- CJ 
~t .::: ft "' <'O every 

-= ➔ P., t ->C-? 

Proof: From ( 3. '1) we find (ifµ Kc ao ) : 

(3,4) 
"·' (XJ co ) j 1\ C t) = j 'vv' " d F, ( t +,,,) + / w " d ,,, { j ( tA. c -1, + w - ") - U C -1; -) d. F, C ") = 

Q+ o+ w+ 
ea 

I ca " _ 

:::. (x-t) d~ 

t+ 

(,), {w'j( U(t+w.,J.Ll(t-J)d~(x)J + 
w+ o+ 
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ca oo 

::: / ( X - t) k d ~ C l() ~ k / w k~, 

t + 0 

r I ( tJ (• •w-,)- U(<·J) d~/•JJ dw. 
w+ 

If /A <~, we find by means of (2.9), (2.11) and the Lebesgue 
k-1-1 

lemma: 

«) 

\.: I 
X k ~, 

J F ( x) 
~ ..... , 

::: 

~I 
k(1<...-1) 

( (k.+1),/), 

o+ 

Therefore, we have for k? a and .,Pk+r < "": 

( 3. 5) 
lini ))k (i)::. (i,.,., E ~: .::: 'Vk: :: fitc+I 

t--1-c>o t-tc::o (k+l),J-11 

If AA = '° , then 
/ • ~+I 

(3.6) 
l im Y k: ( t.) =:: CZ) , 

t ➔ «> 

We distinguish between the two cases /f), = oo and .,,,u, < oo 

If/-","'"" , then (3.6) follows immediately from (3.3), as 
oO co 

YK(t):: I wk d.Hi: (w) ~ I wkdH-1;.Cv.;)~ Ak [1- Ht. (A)j 
o- A 

for every non-negative A 
If µ, < .:o , we get for every po s it iv e A , us i ng ( 2 . 9 ), ( 2 . 11 ) 

and the Lebesgue lemma: 
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lim v (t)? lirn 
k 

l:'dw { j(v. (i +~-x)- fA(t-)}d~ (x)) O 

w+ A+ 

["'' j (u (t+w-x)- U(t-JdF, c,iJ,+ + 
w+ 

A k"' 

= ~ jc1 F, ( x) + 
(1<.+1)jl 

A+ 

00 A+ I X /< +-/ d f, ( X) ,l 

and this becomes arbitrarily large j_f A ➔ a.,. 

This completes the proof of Theorem 3. 
If the last bus arriving before t came at time t- ?ft to 

the busstop 2 we may ask for 

p { ?( t > l/ and \,./ t > 'W} · 

Analogous to (3.2) we find 

11'+ \J 

} ~ /- 14 1 j { t - F, C ,')} d 1 · 
Cl 

4. Asymptotic formula for v( Ct)= [ l\l t 

Theorem 4: If /,( 2 < a:;,, 

Uct) :::Et-lt = t + ..:.'.'.-u~ - r + oc,) ct-, 00 >. 
/<-I' :,_ /U I 

Proof: For u <= we obtain from lemma 1 the follo1,11ing relation: 
/ I t 

/A, { 1-t U (t-)}- t =,,,.U, LA (-t-) - j Uc~) { ;- f; (-t -x)} d.x + 
Cl 

oO 

+ J ( X --1:} d Fl ( X) • 

But /f,,f, { l + U ( t - )] - t 
t+ 

=E":.Y-1;:,Yl(t) 3 because we have from 

(3.4): 

( t) = 
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• J7,-t)df,(,)-j"'j~ l.4(t+w•,JJf,(,),!w + 

t+ O w,;-

00 <:I() 

-1- u ( -/; -) J { I - F, ( w ) } d w ::; I ( JC - t. ) d F, C I( ) + 

0 t+ 
t ~ -I u ( X} { I - Fl ( t - 'I.) } d )(. -1- lA ( t - ) I { I - F, ( w)} d w :: 

0 
0 

= /-(. 1 {I+ L,/ (i--)} -i 1 
for 

t 

ju ( l() 

Cl:) «) 

d l( = 1 u ( t _ x , r I d F, c ~ ) 1 d x = 

0 0 

0 -1- O 

oO ~ 

= j f u ( t ,, w _ j ) d F, c , ) d "·' . 

0 w+ 

For /" 1 < c;>q we have thus from ( 3. 5) : 

li1TJ f_µ, (1+ L-! (t•) - t}::: (.,,..., -v, Ci) :x ~ 
t--;c,o t ➔ - trt, 

or 

(4.1) 

TJ:\CKLIND [ 10 J and r 11 J proved, that 

ul (i-) ::~/ o(tt- 5 )if /'lo< 00 and / ~ J <: ZJ 

(t ➔ q,:)J. 

while SMITH [ 8 J gave the following formula for v Cl. r- {fit.\: 

i; + 0 ( t) if /-'2. < «>. 
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5. Some other results 

Analogous to the derivation of the distribution of ~t, we can 
find the distribution of the arrival intc-rvrcl containing the point 

t and the limit of this r...::stributionfor t ~ .:::>. We denote by tt the 
length of the time interval between the last bus arriving before 

t and the first bus arriving at or after t and define 

k.c!>c1..!..fP{l s:l} 
i:: -t ~ . 

Then we have for 

(5,1) 

t>L>-.o: 
ca [t-t)-

= / - F ( ?, ~) + .L I ( I _ F, ( t - )\ ) } d Fk l II J + 

kz I et. 

(-t-i)-

"' I - F ( t - ) + u ( t--) { I - FI {l) } + J vi ( )() d F, ( t ~ X ) • 

o-
Using (5.1) one can prove the analogues of Theorems 2 and 3. 

Theorem 5: The length lt of the arrival interval overlapping 

t has the distribution function 

{ 

Q (-¼~()-

f (t.)-U(t-){J-F1 (l)j+ / U(x)df,(t~x) 
I 0• 8) 
exists and is given by 

(5.3) /( C l)d,;/ Lim Kt (l}.:: ( 
0 

l¥ 
t ➔ oo _I /xdf,(;c) 

~, a-
( If /A < a:.~ lim k .. t O :::: o for every L ) 

I 'f; ➔ ct:> • 

(5.4) Et/ ::: J l" [u ct->- u (tt~o-)} dF, CL>. 
o-

for- l < o 

far L :,. O • 

tor I >,, o. -

If )A 1 < co , then K ( l ) is again a distribution function and 
\\ 

Lim E ~ t :::,. 
'/;"?a:, 

, (5.3) is an easy consequence of (3.7). 
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If /A I == c:IO 

Lim E !./ = Q:.,. 

'!: ➔ c,;, 

The following theorem, here given only for the special case of 
stochastic variables, whose distribution function F,c~)satisfies 
the restrictions made in section 2, is due to SMITH (see [ 8] , 
page 16, Theorem 1): 

Theorem 6: If k Ct) is any function which is zero for negative 

argument and is bounded, L 1 

then 

, and non-inc re as ing in ( o, ~) 

(ti 

(5.5) 
+ Cl:) / 

/ k(t-x) dLl ()()::: ~
1 0 

k(I() d.l<. 

--
If /A, ::: a., , the right hand side of this equation is to be taken 
as zero. 

Proof: This theorem can also be proved by means of partial 
integration9) using theorem 1: 

' 00 
..,._ 

If j k (x) d x exists, then k < + co> :::: o and so j d K Cx) = o. 
0 

Therefore, 
i- co 'I- ClO 

+ 00 +- c;a I J k(t:-x)d.U(d: J U(t-11.)d.klic) = -U(t)(:k(x)+ _cc,U(t.-l')d.k'l.id = 

- co + at) 

= -/ {UC~J-1.../Ctr~itl} dKtx). 

- "'° In addition we have: 
00 

j : l • l d • ; [, k t "] • 
0 

Q-

c:oQ 

dkex} ::.j xdk<x), 

o-

bee ause k c x) = o ( x • 1 ) for (which follows from kc., ,I, 0 

and k c x > G L, ) . 

(5.5) now follows from Theorem 1 (2,9), (2.11) and the Lebesgue 
lemma. Smith used the last theorem (which he proved, starting 

·· 9 ) PDrti2l integration is easily justified if k (x) is 
continuous from the right. If k (x) is not continuous from 
the right., then we change k <x-) into k*(x) = Lim k (x + o 
in our proof, for r: ,1, ~ co 
tirii j+klt-><) dlA ex)= Li..,, /.,...,k*(t-x)dU(iJand / kCl()dx= JkttCx)d.x. 
t-+co i:: ➔ co -oo o o -co 

' 
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from a special Tauberian theorem) to prove a.o. (3.2), (4,1) and 

Theorem 1. 
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Appendix 

Proof of Theorem 1 

Lemma 3, If F, (~J is not a discrete distribution function 

with all jumps in points, which are integral multiples of a 

constant, there exists for every f;,. o 

a real number ~ and a positive 
k I / d F n .( x J .> o 

and every positive integer 

integer k such that 

. . . ; l - I . 

i1~1 D.4ji;.<;:X~ct+<J+r)£ 

Proof: (cf. the proof of lemma 4 of BLACKWELL [ 1 ] ) . 

Denote by V the set of all points v such that for every open 

interval I containing V pr~ E. I} > 0 '10) 

Because of our assumptions on F, ( x.) there exist points .,,.,., , v,_ !; v 

and non-negative integers k, and k2. such that O < I k, v, - k:1, 111 l < E. • 

The lemma is proved if we can find a non-negative integer m and 

a real number~ J such that 
c. < m . n1 ; !7. C k I V 1 , k. 2. V z ) < a. + £ 

<::\. -i• (l - I ) E < n; . Ir) 0. )( ( k Iv, ' k z V <, ) ' 

for then we can take k :::: m. ma. x C k 1 , k 1. ) . Therefore the numbers 

satisfy the requirements of the lemma. 

We will now give an elementary proof of the following theorem, 

which is a translation of the proof, which ErdBS 3 Feller and 

Pollard [ 5 ] gave for the case which we excluded. BLACKWELL gave 

in [ 1 J an elementary proof of this theorem: 

Theorem 1. If F, ( x) is not a discrete distribution function, 

with all jumps in pointsJ which are integral multiples of a 

cons t ant ., i f F, ( ,-) ::. o for t <- o and FI c O ) ..:::. 1 3 the n 

l iH7 1.,1 C £-1 h) "" _2-. 
r, 

"10) 'l1hen 

I 
p { ~N E I} > 0 

which cont a ins n, v, 

as well, for every open interval 

, where v, , ... ; v" €- 11 
I< 

and ?- nj ::. N . 
.J "' 



" 
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for every h > o 

every h > o). 

Proof: From (2.7) 

( A .1) 

Therefore, with 

(A.2) 
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• ( If ),I, ::;. = , then 

and (2.8) follows 
t.;-

/ {uU+h-;<)~UCt-x)} 
o-

Li,.,., vi Ct,n) = o for 
t ➔ «> 

we have: 

where li m t 11: ( t, h ) .::: o 
i: ➔ Cb 

for every positive integer k 

From (2.9) and (2.13) follows 

{A.3) l im 
t- ➔....,. 

(A.4) l i rn 
st ➔ Cl@ 

if we define 

As U ( i, h ) 

(A.5) 

t 
U (t-x, h> { 1-F, lx)j ch h > j = 

Cl 

I) 

t 

.I * {1-~lxJ}di h, u (t~i,h) ::: 

Ll.1-(t,h) d_;f U (t)- U Ct~h). 

is bounded according to (2.9), 

l i /-ti $ u.p u C t 1 h) ,:; u CC QO , 

,f; ~ Q1J 

Let th be a sequence of real numbers, for which 

(A.6) (in, (A ( in ' h) :e I.A • 
n -,. 00 

b+ 
If I JG._ ( l() > 0 , then we can prove: 

Cl.+ 

(A. 7) l i tv-i 

I'\ ➔ -

Suppose that for an ~ > 0 
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/ U (t 11 - xJ h) J.C.,_ (x) 

b +-

::S (vi-'l) j d,Gk C1.-):, 

a.+ .:..-i-

!hen from (2,9) and (A,2) we have for every t > o and 

sufficiently large n with appropriate choice of c: 
~+ b+ 

LA (t.,, hJ ::S / Ll ( t YI - X' h) d a I<; ( i ) t ( u - ~ ) I d Ci k ( x) +-
a,+ ' ' 0. '!;,. 

C + · h 

+ I l,l Ct,, - (, h) d Git (X) f- [ j+, u CI.,)}; JCik (i,:) + E;.(t/JJ h).f 
~~ c+ 

b + tr,,-

~ c v1 -;- n / c: Ci 1:. c "; _ 1 j d. Ci I< l x) + [ 1 + LA c h 1} / <! G "-t~h£/• •. h)~ 

o- c+ 
h+ 

~ vi+ 2€ -'1 j dG" Cll)J 

which contradicts (A,5), for sufficiently small £ • Therefore 

( A • 7) is true . 

For an 

(A.8) 

arbitrary t 
A I { I -

0 

;,, 0 we can choose A such that 11 ) 

and according to lemma 3 we can choose a real number a. and a 

positive integer k 3 such that 

.L . I d_Cik (ic) ),, C) 

k O..+JE < .x'< a.+ CJ+!) t 

for J = o, I, ... ) L ::: [ ~ J ) 
so that from (A.7) for sufficiently large n every interval 

o... +Jc< x ':£ a. +(j + 1) E. C j"' oi I;."} l) contains an x; such that 

(A.9) 

If o. + J E < /< ~ a + C j + 1 ) l 

(A.10) \Ll (tri- x, h)- U (t,.,- xj, h)\~ 

+ JU (tn + h - x) ~ U Ctn+ h ~ :<j) \ ~ 

, then / x - x j I < c 

1u (t'h-,)-vt(tn- Xj) I+-

.... 
+ U (tn+~-x,£)+ U (i..,+h-x, t). 

11 ) If /4 1 :: = we choose an arbitrary large 1'1 and 
A 

that r:/ f 1 - f, ()()} dx ~M, The other necessary changes 

proof if_,µ,"' oo are cleor. 

and 

A such 

in the 
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From (A. 3) we find <t+•H 

h ~ lim / U(t._+o.-1.,h)f1-1-F,(x} 1 d11.:::. ri ➔ c:,, 0 J 
( (i+i)E 

= ~~~ L. I U(t.,+O.•K,h){t-f,Cid] dx. 
)"-0 ja 

Thus., with (A.3), (A.4), (A.8), (A.9) and (A.10) 
( L-1-1) E. 

h>- (.u _ E.)CU~O~ lim / {u(t -x,€)+-U(-t -x,e)+UCt..,+h-x,E)+tili'c-t.,+h-x,t)}, 
,.. /-·, n ➔ QO r, 11 

0 

As this is valid for arbitrary f > o 

In the same way we can show 

h u ~ :;;-
,,-. I 

Um inf u (t,h) >;,~I:, so that 
'It ➔ oO h 

as was to be proved. 

for every h > o, 
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