MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM
STATISTISCHE AFDELING

Leiding: Prof. Dr D. van Dantzig
Chef van de Statistische Consultatie: Prof. Dr J. Hemelrijk

```
            Report S 206 (VP 8)
A class of slippage tests
```

by
R. Doornbos, H. Kesten and H.J. Prins

Prepublication

1. Summary.

In this report some slippage tests for variates following various specified distributions, viz. the normal, the Poisson, the binomial and the negative binomial distribution, as well as a slippage test for the method of m rankings and a distribution free k-sample slippage test, are discussed. A method for obtaining approximate critical values at a prescribed significance level ε, such that the true significance level corresponding to these values lies between ε and $\varepsilon-\frac{1}{2} \varepsilon^{2}$, is found to be applicable in all cases under consideration. The same approximation was applied before by W.G. COCHRAN (1941), R. DOORNBOS (1956) and R. DOORNBOS and H.J. PRINS (1956) to slippage tests for gamma-variates. In addition decision procedures are given to select the slipped variate when we reject that none of the variates has slipped.

In some cases power functions of the tests and optimum properties of the decision procedures are also considered.

2. Introduction; description of the tests.

All the tests dealt with in this report are of the following type. Suppose we have k random variables 1)

$$
\begin{equation*}
\underline{x}_{1}, \ldots, \underline{x}_{k}, \tag{2.1}
\end{equation*}
$$

which are, under H_{o}, the hypothesis tested, distributed simultaneously with some distribution function $F\left(x_{1}, \ldots, x_{k}\right)$, which may be continuous or not.
Suppose the observed values of $\underline{x}_{1}, \ldots, x_{k}$ are respectively $x_{1} \ldots, x_{k}$. When testing against slippage to the right we determine the right hand tail probabilities

$$
\begin{equation*}
\left.d_{j} \stackrel{\text { def }}{=} P\left[\underline{x}_{j} \geq x_{j}\right],(j=1, \ldots, k) \text {. } 2\right) \tag{2.2}
\end{equation*}
$$

We reject H_{o} and decide that the m-th population has slipped to the right if

$$
\begin{equation*}
\mathrm{a}_{\mathrm{m}}=\min _{j} \mathrm{a}_{j} \leqq \varepsilon / \mathrm{k} . \tag{2.3}
\end{equation*}
$$

Testing against slippage to the right requires computing

$$
\begin{equation*}
e_{j}=P\left[\underline{x}_{j} \leqq x_{j}\right], \quad(j=1, \ldots, k) \tag{2.4}
\end{equation*}
$$

Now H_{0} is rejected and it is concluded that the m-th population has slipped to the left if

$$
(2.5) \quad e_{m}=\min e_{j} \leqq \varepsilon / k
$$

1) Random variables are denoted by underlined symbols.
2) The symbol def denotes an equality, defining the left hand member.

Consider now a set of k real numbers $g_{1} \ldots . . g_{k}$ and the probabilities defined by

$$
\left\{\begin{array}{l}
p_{i} \stackrel{\operatorname{def}}{=} P\left[x_{i} \leqq g_{i}\right], \tag{2.6}\\
p_{i, j}=P\left[x_{i} \leqq g_{i} \text { and } x_{j} \leqq g_{j}\right], \quad(i \neq j), \\
q_{i} \xlongequal{\operatorname{def}} P\left[x_{i}>g_{i}\right], \\
q_{i j}=P\left[x_{i}>g_{i} \text { and } x_{j}>g_{j}\right],(i \neq j),
\end{array}\right.
$$

all computed under H_{0}.
Denoting by P the probability that at least one of the \underline{x}_{i} does not exceed the corresponding value g_{i}, it follows from BONFERRONI's inequality (cf. W. FELLER (1950), chapter 4) that

$$
\begin{equation*}
\sum_{i} p_{i}-\sum_{i<j} p_{i, j} \leqq P \leqq \sum_{i} p_{i} \tag{2.7}
\end{equation*}
$$

For Q, the probability that at least one \underline{x}_{i} exceeds g_{i}, we have

$$
\begin{equation*}
\sum_{i} q_{i}-\sum_{i<j} q_{i, j} \leqq Q \leqq \sum_{i} q_{i} . \tag{2.8}
\end{equation*}
$$

Then in each case separately we proceed to prove the inequality

$$
\begin{equation*}
p_{i, j} \leqq p_{i} p_{j} \tag{2.9}
\end{equation*}
$$

or

$$
\begin{equation*}
q_{i, j} \leq q_{i} q_{j}, \tag{2.10}
\end{equation*}
$$

which is equivalent with (2.9) (cf.R. DOORNBOS and H.J. PRINS (1956)). Of course (2.9) and (2.10) do only hold for a class of distribution functions $F\left(x_{1}, \ldots, x_{k}\right)$. The problem of finding general conditions imposed on $F\left(x_{1}, \ldots, x_{k}\right)$, sufficient for the validity of (2.9) has only partly been solved in this report. Besides in sone cases (2.9) only holds for some sets $g_{1}, \ldots . g_{k}$ for instance for all $g_{i} \geqq 0$.

Assuming that (2.9) and (2.10) are true we get immediately from (2.7) and (2.8) respectively

$$
\begin{equation*}
\sum_{i} p_{i}-\sum_{i<j} p_{i} p_{j} \leqq P \leqq \sum_{i} p_{i} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i} q_{i}-\sum_{i<j} q_{i} q_{j} \leqq Q \leqq \sum_{i} q_{i} \tag{2.12}
\end{equation*}
$$

respectively. Denoting $\sum_{i} p_{i}$ by p (p needs not be $\leqq 1$) we have

$$
p^{2}=\left(\sum_{i} p_{i}\right)^{2}=2 \sum_{i<j} p_{i} p_{j}+\sum_{i} p_{i}^{2} \geqq 2 \sum_{i<j} p_{i} p_{j} s
$$

where the equality sign only holds if all p_{i} vanish, or

$$
\sum_{i<j} p_{i} p_{j} \leqq \frac{1}{2} p^{2}
$$

- Thus

$$
\begin{equation*}
p-\frac{1}{2} p^{2} \leqq p \leqq p \tag{2.13}
\end{equation*}
$$

- and

$$
\begin{equation*}
q-\frac{1}{2} q^{2} \leqq \Omega \leqq q, \tag{2.14}
\end{equation*}
$$

when $\sum_{i} q_{i}=q$.
Now, when testing H_{0} against "slippage to the left" of one of the k variables the critical region is of the form $\left\{x_{1} \leqq g_{1 \varepsilon}, \ldots\right.$ or $\left.x_{k} \leqq g_{k \varepsilon}\right\}$ 。
The values $\mathrm{g}_{i \varepsilon}$ are determined so as to make all p_{i} equal to ε / k, where ε is the prescribed level of significance. In the discontinuous case this will in general not be possible; there $g_{j \varepsilon}$ is the largest value which can be attained by x_{i} with a positive probability, satisfying (2.15)

$$
\varepsilon_{i}^{\prime}=P\left[\underline{X}_{i} \leqq g_{i, \varepsilon}\right] \leqq \varepsilon / k
$$

So from (2.13) it follows that the probability P_{ε} of rejecting H_{o} unjustly satisfies

$$
\begin{equation*}
\varepsilon-\frac{1}{2} \varepsilon^{2} \leqq P_{\varepsilon} \leqq \varepsilon, \tag{2.16}
\end{equation*}
$$

or

$$
\begin{equation*}
\varepsilon^{\prime}-\frac{1}{2}\left(\varepsilon^{\prime}\right)^{2} \leqq P_{\varepsilon} \leqq \varepsilon^{\prime} \quad\left(\varepsilon^{\prime}=\sum_{i} \varepsilon_{i}^{\prime}\right) \tag{2.17}
\end{equation*}
$$

respectively, accordingly as the continuous or the discontinuous case is considered.

Testing "slippage to the right" we get similar bounds for Q, the probability of rejecting H_{o} when H_{o} is true.
3. The slippage test for normal distributions.

We consider k normal distributions with unknown means $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ and common unknown variance σ^{2}. From these distributions we have samples of $n_{1}, n_{2}, \ldots, n_{k}$ independent observations respectively.

We want to test the hypothesis

$$
\begin{equation*}
H_{0}: \mu_{1}=\ldots=\mu_{k}=\mu_{0} \text {, say, } \tag{3.1}
\end{equation*}
$$

against the altematives

$$
\left\{\begin{array}{c}
H_{1}: \mu_{1}=\ldots=\mu_{i-1}=\mu_{i+1}=\ldots=\mu_{k}=\mu_{1} \tag{3.2}\\
\mu_{i}=\mu_{+} \Delta(\Delta>0),
\end{array}\right.
$$

for one value of is which is, however, not known, or

$$
\left\{\begin{array}{c}
H_{2}: \mu_{1}=: .-\mu_{i-1}=\mu_{i+1}=\ldots=\mu_{k}=\mu \tag{3.3}\\
\mu_{i}=\mu-\Delta(\Delta>0),
\end{array}\right.
$$

for one unknown value of 1 . From the observations
(3.4)

$$
\left\{\begin{array}{l}
\underline{y}_{11}, \ldots, \underline{y}_{1 n_{1}} \\
\underline{y}_{21} \ldots, \underline{y}_{2 n_{2}} \\
\underline{y}_{k 1}, \ldots, \underline{y}_{k n_{k}},
\end{array}\right.
$$

the variables

$$
\begin{equation*}
\underline{b}_{i}=\frac{\sqrt{n}_{i}\left(\underline{y}_{i}-\underline{y}\right)}{\sqrt{\sum_{j} n_{j}\left(\underline{y}_{j}-\underline{y}\right)^{2}+\sum_{j, 1}\left(\underline{y}_{j l}-\underline{y}_{j}\right)^{2}}}, \quad(i=1, \ldots, k) . \tag{3.5}
\end{equation*}
$$

are formed, where

$$
\left\{\begin{array}{l}
\underline{y}_{i}=\frac{1}{n_{i}} \sum_{1} \underline{y}_{i l}, \tag{3.6}\\
\underline{y}=\frac{1}{\sum_{j} n_{j}} \sum_{j, 1} \underline{y}_{j l}=\frac{1}{\sum_{j} n_{j}} \sum_{j} n_{j} y_{j} .
\end{array}\right.
$$

The \underline{b}_{i} take the place of the variables \underline{x}_{i} in (2.1). In the following section we shall prove the inequality corresponding to (2.9) if g_{i} and g_{j} have the same sign and it will be proved that

$$
\begin{equation*}
\underline{u}_{i}=\frac{1}{2}\left(1+\sqrt{\frac{\sum n_{j}}{\sum n_{j}-n_{i}}} \underline{b}_{i}\right) \tag{3.7}
\end{equation*}
$$

has a B-distribution with parameters $\frac{N+k-2}{2}$ and $\frac{N+k-2}{2}$, where N is defined by

$$
\begin{equation*}
N=\sum n_{j}-k ; \tag{3.8}
\end{equation*}
$$

or, equivalently, that

$$
\begin{align*}
& \text { ently, that } \tag{3.9}\\
& \underline{t}_{i}=\sqrt{N+k E} \frac{\sqrt{\frac{\sum n_{j}}{\sum n_{j}-n_{i}} \underline{b}_{i}}}{\left.\sqrt{\left(1-\frac{\sum_{j} n_{j}}{\sum_{j}-n_{i}} \underline{b}_{i}^{2}\right.}\right)},
\end{align*}
$$

has a Student's t-distribution with N+k-2 degrees of freedom, for $j=1, \ldots, k$.

Thus the procedure described in section 2 can be applied and the d_{j} and e_{j} values as defined by (2.2) and (2.4) may be obtained for instance by means of (3.7) and the methods described in section 6 of R. DOORNBOS and H.J. PRINS (1956).

In the present case the determination of the minimum d and e values is much simpler however because these minimum values correspond to respectively the largest and the smallest of the u_{i} and thus of the $\sqrt{\frac{\sum n_{j}}{\sum n_{j}-n_{i}}} b_{i}$ and conscquently only one incomplete B-integral has to be computed. The critical values \mathfrak{c}_{1} for the \underline{b}_{i} are determined from
(3.10) $\quad g_{i, \varepsilon}=\sqrt{\frac{\sum n_{j}-n_{i}}{\sum n_{j}}}\left(2 u_{\varepsilon / k^{-1}}\right)$,
where $u \varepsilon / k$ is defined by

$$
\begin{equation*}
P\left[\underline{u}_{i} \leqq u_{\varepsilon / k}\right]=\varepsilon / k . \tag{3.11}
\end{equation*}
$$

Because of the symmetry of the distribution of \underline{u}_{i} with respect to the point $\frac{1}{2}$, the critical values $G_{i, \varepsilon}$ for the test against slippage to the right are

$$
\begin{equation*}
G_{i, \varepsilon}=\sqrt{\frac{\sum n_{j}-n_{i}}{\sum n_{j}}}\left(2 u_{1-\varepsilon / k}-1\right)=-g_{i, \varepsilon} . \tag{3.12}
\end{equation*}
$$

In the most simple case, i.e. $n_{1}=\ldots=n_{k}=1$, our test-statistic reduces to the one suggested already by E.S. PEARSON and C. CHANDRA SEKAR (1936) but for a constant factor. Using previous work of W.R. THOMPSON (1935), who derived in this special case the distribution of \underline{t}_{i} as defined by (3.9), PEARSON and CHANDRA SEKAR were able to derive certain percentage points of max \underline{b}_{i} and min \underline{b}_{i} without deriving the exact distribution. They used the same approximation as is done here, but only up to $g_{1 \varepsilon}=\ldots=g_{k \varepsilon}=g_{\varepsilon} \leqq-\sqrt{\frac{k-2}{2 k}}$ (or $G_{\varepsilon} \geqq \sqrt{\frac{k-2}{2 k}}$), because, if all n_{i} are equal, in that region the probability that two of the variables, $e . g$. \underline{b}_{i} and \underline{b}_{j}, both do not exceed g_{ε} or exceed G_{ε} is equal to zero. Thus the level of significance is then exactly equal to ε.

The exact distribution for $n_{1}=\ldots=n_{k}=1$ has been computed numerically by F.E. GRUBBS (1950), who gave tables of exact percentage points up to $k=25$ for $\varepsilon=0.10,0.05,0.025$ and 0.01 .
E. PAULSON (1952) proposed the same test statistic (but for a constant factor) for slippage to the right and the same approximation as suggested here in the special case $n_{1}=\ldots=n_{k}=n_{n}$, but he gives no bounds for the corresponding level of significance. PAULSON proved that in this case the use of $\max \underline{b}_{i}$ as test-statistic has the following optimum property. Let D_{o} denote the decision that the k means are equal and let $D_{j}(j=1, \ldots, k)$ denote the decision that D_{0} is incorrect and that $\mu_{j}=\max \left(\mu_{1}, \ldots, \mu_{k}\right)$. Now the procedure:
(3.13)

$$
\left\{\begin{array}{l}
\text { if } \underline{b}_{m}>\lambda_{\varepsilon}, \text { select } D_{m}, \\
\text { if } \underline{b}_{m} \leqq \lambda_{\varepsilon}, \text { select } D_{o},
\end{array}\right.
$$

Where m is the index of the maximum b-value maximizes the probability of making a correct decision, subject to the following restrictions.
(a) when all means are equal, D_{o} should be selected with probability $1-\varepsilon$,
(b) the decision procedure must be invariant if a constant is added to the observations,
(c) the decision procedure must be invariant when all the observations are multiplied by a positive constant, and
(d) the decision procedure must be symmetric in the sense that the probability of making a correct decision when the i-th mean has日lipped to the right by an amount Δ must be the same for $i=1,2, \ldots, k$.
The constant λ_{ε} in (3.13) is detemined by requirement (a). Our critical value G_{ε} is an approxination of λ_{ε}.

The case of slippage to the left, although not mentioned explicitem ly by PAULSON is completely analogous and the same optimum property holds there.
4. Proof of the results stated in 3 .

In this section we shall prove the inequality

$$
\begin{equation*}
P\left[\underline{b}_{i} \leqq g_{i} \text { and } \underline{b}_{j} \leqq g_{j}\right] \leqq P\left[\underline{b}_{i} \leqq g_{i}\right] \cdot P\left[\underline{b}_{j} \leqq g_{j}\right] \text {, provided } g_{i} g_{j} \geqq 0 \text {, } \tag{4.1}
\end{equation*}
$$

where \underline{b}_{i} and \underline{b}_{j} are defined by (3.5), for all pairs $i, j(i \neq j ; i, j=1, \ldots, k)$. Obviously there is no loss of generality in taking $i=1$ and $j=2$.

First we shall derive the simultaneous distribution of \underline{b}_{1} and \underline{b}_{2}. We transform the variables $\underline{y}_{1}, \ldots, \underline{\underline{y}}_{k}$, as defined by (3.6) into $\underline{a}_{1}, \ldots, \underline{Z}_{k-2}$, $\underline{y}^{\prime} \underline{S}_{1}$, where
$(4.2) \quad\left\{\begin{array}{l}\underline{a}_{j}=\frac{\sqrt{n_{j}\left(\underline{y}_{j}-\underline{y}\right)}}{\sqrt{\sum n_{i}\left(\underline{y}_{i}-\underline{y}\right)^{2}}}, \quad(j=1, \ldots, k), \\ \underline{s}_{j}{ }^{2}=\sum_{i}\left(\underline{y}_{i}-\underline{y}\right)^{2} .\end{array}\right.$
There is no one-to-one correspondence between the points (y_{1}, \ldots, y_{k}) and ($\left.a_{1}, \ldots, a_{k-2}, s_{1}, y\right)$, for, if $\sqrt{n_{k-1}}\left(y_{k-1}-y\right)$ is replaced by $\sqrt{n_{k}}\left(y_{k}-y\right)$ and reversely, we obtain the same set of values $\left(a_{1}, \ldots, a_{k-2}, 3_{1}, y\right)$. Therefore we divide the y-space into two parts R_{1} and R_{2} such that in $R_{1} \sqrt{n_{k-1}}\left(y_{k-1}-y\right)>\sqrt{n_{k}}\left(y_{k}-y\right)$ and in R_{2} $\sqrt{n_{k-1}}\left(y_{k-1}-y\right) \leqq \sqrt{n_{k}}\left(y_{k}-y\right)$, then in both parts the correspondence is unique in both senses (cf. H. CRAMER (1946), section 22.2). In both sub-spaces we shall compute the Jacobian denoted respectively by J_{1} and J_{2}. From (4.2) follows that
(4.3) $\left\{\begin{array}{l}\sum_{1}^{k} \sqrt{n_{j}} a_{j}=0, \\ \sum_{1}^{k} a_{j}^{2}=1,\end{array}\right.$
so after some onculation it is found that
(4.4) $a_{k-1}=\frac{-\sqrt{n_{k-1}} \sum_{1}^{k-2} \sqrt{n_{i} a_{i} \pm \sqrt{n_{k}}} \sqrt{\left(1-\sum_{1}^{k-2} a_{i}^{2}\right)\left(n_{k-1}+n_{k}\right)-\left(\sum_{1}^{k-2} \sqrt{n_{i}} a_{i}\right)^{2}}}{n_{k-1}+n_{k}}$
(4.5) $a_{k}=\frac{-\sqrt{n_{k}} \sum_{1}^{k-2} \sqrt{n_{i}} a_{i} \mp \sqrt{n_{k-1}} \sqrt{\left(1-\sum_{1}^{k-2} a_{i}^{2}\right)\left(n_{k-1}+n_{k}\right)-\left(\sum_{1}^{k-2} \sqrt{n_{i}} a_{i}\right)^{2}}}{n_{k-1}+n_{k}}$

The signs occurring in the expressions(4.4) and (4.5) are determined by the requirement that in $\mathrm{R}_{1} q_{k} \mathrm{a}_{\mathrm{k}} \ldots$, whereas in $\mathrm{R}_{2} a_{k} \leqq a_{k-1}$. The Jacobian J becomes
(4.6) $\mathrm{J}=$

$$
\left|\begin{array}{cccccc}
\frac{s_{1}}{\sqrt{n_{1}}} & 0 & \cdots & 0 & \frac{a_{1}}{\sqrt{n_{1}}} & 1 \\
0 & \frac{s_{1}}{n_{2}} & \cdots & 0 & \frac{a_{2}}{\sqrt{n_{2}}} & 1 \\
\vdots & 0 & \cdots & \frac{s_{1}}{\sqrt{n_{k-2}}} & \frac{a_{k-2}}{\sqrt{n_{k-2}}} & 1 \\
0 & \frac{s_{1}}{\sqrt{n_{k-1}}} \cdot \frac{\partial a_{k-1}}{\partial a_{1}} & \frac{s_{1}}{\sqrt{n_{k-1}}} \cdot \frac{\partial a_{k-1}}{\partial a_{2}} & \cdots & \frac{s_{1}}{\sqrt{n_{k-1}}} \cdot \frac{\partial a_{k-1}}{\partial a_{k-2}} & \frac{a_{k-1}}{\sqrt{n_{k-1}}} \\
\frac{s_{1}}{\sqrt{n_{k}}} \cdot \frac{\partial a_{k}}{\partial a_{1}} & \cdot \frac{s_{1}}{\sqrt{n_{k}}} \cdot \frac{\partial a_{k}}{\partial a_{2}} & \cdots & \frac{s_{1}}{\sqrt{n_{k}}} \cdot \frac{\partial a_{k}}{\partial a_{k-2}} & \frac{a_{k}}{\sqrt{n_{k}}} & 1
\end{array}\right| .
$$

$\frac{\partial a_{k-1}}{\partial a_{k}} \frac{}{\partial a_{i}}$ can be derived from (4.4) and further it is easily seen that $\frac{\partial a_{k}}{\partial a_{i}}=-\frac{1}{\sqrt{n_{k}}}\left(\sqrt{n_{i}}+\sqrt{n_{k-1}} \frac{\partial a_{k-1}}{\partial a_{i}}\right)$. Substituting these expressions into (4.6) it is found after some calculation that
(4.7)

$$
J=\frac{ \pm \sum_{1}^{k} n_{i} s_{1}^{k-2}}{\left.\sqrt{\prod_{1}^{k} n_{i}} \sqrt{\left(1-\sum_{1}^{k-2} a_{i}^{2}\right)\left(n_{k-1}+n_{k}\right)-\left(\sum_{1}^{k-2}\right.} \sqrt{n_{i} a_{i}}\right)^{2}},
$$

both in R_{1} and R_{2}.
The joint distribution of $\underline{y}_{1}, \ldots, \underline{y}_{k}$, under H_{o}, is, both in R_{1} and

$$
\begin{align*}
& \text { (4.8) } R_{2} \text {, given by their density function } \\
& \mathrm{f}_{1}\left(\mathrm{y}_{1}, \ldots, y_{k}\right)=\frac{\frac{k}{1} \sqrt{n_{i}}}{\left(2 \pi \sigma^{2}\right)^{k / 2}} e^{-\frac{1}{2 \sigma^{2}} \sum_{1}^{k} n_{i}\left(y_{i}-\mu\right)^{2}} \\
& =\frac{\prod_{1}^{k} \sqrt{n_{i}}}{\left(2 \pi \sigma^{2}\right)^{k / 2}} e^{-\frac{1}{2 \sigma^{2}}\left\{\sum_{1}^{k} n_{i}\left(y_{i}-y\right)^{2}+\sum_{1}^{k} n_{i}(y-\mu)^{2}\right\} .} \tag{4.8}
\end{align*}
$$

Consequently the density function of $\underline{a}_{1}, \ldots, \underline{a}_{k-2}, \underline{S}_{1}, \underline{y}$ is given by
(4.9) $f_{2}\left(a_{1}, \ldots, a_{k-2}, s_{1}, y\right)=\left\{\left|J_{1}\right|+\left|J_{2}\right|\right\} f_{1}=$

$$
=\frac{2 \sum n_{i} s_{1}^{k-2}}{\left(2 \pi \sigma^{2}\right)^{k / 2}} \frac{e^{-\frac{s_{1}^{2}}{2 \sigma^{2}}-\frac{\sum_{2}}{2 \sigma_{i}^{2}}(y-\mu)^{2}}}{\sqrt{\left(1-\sum_{1}^{K-2} a_{i}^{2}\right)\left(n_{k-1}+n_{k}\right)-\left(\sum_{1}^{K-2} \sqrt{n}_{i} a_{i}\right)^{2}}}
$$

if $\left(1-\sum_{1}^{k-2} a_{i}{ }^{2}\right)\left(n_{k-1}+n_{k}\right)-\left(\sum_{1}^{k-2} \sqrt{n_{i}} a_{i}\right)^{2} \geqq 0$ and zero otherwise. Where in the following it is obvious in what domain a density function is defined it will not always be stated explicitely.

Thus we see that \underline{s}_{1} and $\underset{y}{ }$ are mutually independent and independent of $\underline{a}_{1}, \ldots, \underline{a}_{k-2}$. The distribution functions of \underline{s}_{1} and \underline{y} are well known, so from (4.9) we get immediately the density function of a_{1}, \ldots, a_{k-2}.
(4.10)

$$
f_{3}\left(a_{1}, \ldots, a_{k-2}\right)=\frac{\sqrt{\sum_{n_{i}}} \Gamma\left(\frac{k-1}{2}\right)}{\pi(k-1) / 2 \sqrt{\left(n_{k-1}+n_{k}\right)\left(1-\sum_{1}^{k-2} a_{i}^{2}\right)-\left(\sum_{1}^{k-2} \sqrt{n_{i}} a_{i}\right)^{2}}} .
$$

Next we introduce the variables
(4.11)

$$
a^{\prime} 2, \ldots, a^{\prime} k \text {, }
$$

defined by
(4.12)

$$
\underline{a}_{j}^{\prime}=\frac{\sqrt{n_{j}}\left(\underline{y}_{j}-\underline{y}^{\prime}\right)}{\underline{s}_{1}^{i}}, \quad(j=2, \ldots, k),
$$

where
(4.13)

$$
\left\{\begin{array}{l}
\underline{y}^{i}=\frac{1}{\sum_{2}^{k} n_{i}} \sum_{2}^{k} n_{i} \underline{y}_{i}, \\
\underline{s}_{1}^{\prime}=\sqrt{\sum_{2}^{k} n_{i}\left(\underline{z}_{i}-i\right)^{2}} .
\end{array}\right.
$$

Straightforward computation shows that $a^{\prime} j$ can be written as follows
(4.14)

$$
a_{j}^{i}=\frac{a_{j}+\frac{\sqrt{n_{j}}}{\sum n_{i}-n_{1}} \sqrt{n_{1}} a_{1}}{\sqrt{1-\frac{\sum n_{i}}{\sum n_{i}-n_{1}}} a_{1}^{2}} \cdot(j=2, \ldots, k) .
$$

The density function of $\underline{a}_{1}, a^{\prime} 2, \ldots, a^{\prime} k-2$ is found to be

$$
\begin{align*}
& f_{4}\left(a_{1}, a^{\prime} 2^{\prime} \ldots, a_{k-2}^{\prime}\right) \tag{4.15}\\
& =\frac{\sqrt{\sum_{1}^{k} n_{i}} \Gamma\left(\frac{k-1}{2}\right)}{\pi^{(k-1) / 2}}
\end{align*}
$$

So \underline{a}_{1} is independent of $\underline{a}^{\prime} 2^{\prime} \ldots . a^{\prime} k-2$ simultaneously and consequently also of $\underline{a}^{\prime} 2$ alone. From (4.15) it is found that the density

- function of \underline{a}_{1} reads
(4.16) $f\left(a_{1}\right)=\sqrt{\frac{\sum n_{i}}{\sum n_{i}-n_{1}} \frac{\Gamma\left(\frac{k-1}{2}\right)}{\Gamma\left(\frac{k-2}{2}\right)} \frac{1}{\sqrt{\pi}}\left(1-\frac{\sum n_{i}}{\sum n_{i}-n_{1}} a_{1}{ }^{2}\right)^{\frac{k-4}{2}}, ~}$

$$
\left(-\sqrt{\frac{\sum n_{i}-n_{1}}{\sum n_{i}}} \leqq a_{1} \leqq \sqrt{\frac{\sum n_{i}-n_{1}}{\sum n_{i}}}\right)
$$

Because $\underline{a}^{\prime}{ }_{2} \ldots{ }^{\prime}{ }_{k-2}$ are the same functions of $y_{2} \ldots . y_{k}$ as $\underline{a}_{1}, \ldots, \underline{a}_{k-2}$ are of $\underline{y}_{1}, \ldots, \underline{y}_{k}$, the density function of $\underline{a}_{2}^{\prime}$ has the same form with k replaced by $k-1, \sum n_{i}$ bis $\sum n_{i}-n_{1}$ and $\sum n_{i}-n_{1}$ by $\sum_{n_{1}}-n_{1}-n_{2}$. Because a_{1} and a_{2}^{4} are independent their joint distribution and consequently the joint distribution of \underline{a}_{1} and \underline{a}_{2} follows easily, using the transformation (4.14) with $j=2$. It is found to be (4.17) $g\left(a_{1}, a_{2}\right)=\sqrt{\frac{\sum n_{1}}{\sum n_{1}-n_{1}-n_{2}}} \frac{k-3}{2 \pi}$.

$$
\cdot\left\{1-\frac{\sum n_{1}-n_{2}}{\sum n_{1}-n_{1}-n_{2}} a_{1}^{2}-\frac{2 \sqrt{n_{1} n_{2}}}{\sum n_{1}-n_{1}-n_{2}} a_{1} a_{2}-\frac{\sum n_{1}-n_{1}}{\sum n_{1}-n_{1}-n_{2}} a_{2}^{2}\right\} \frac{k-5}{2}
$$

The function $g\left(a_{1}, a_{2}\right)$ is valid in the domain where the expression between braces is positive.

Returning now to the b_{1} it is seen from (3.5) that
(4.18)

$$
\underline{b}_{i}=\frac{\underline{a}_{i}}{\sqrt{1+\frac{s^{2}}{\underline{s}_{1}^{2}}}},
$$

where

$$
\begin{equation*}
\underline{s}^{2}=\sum_{j, I}\left(\underline{y}_{j 1}-\underline{y}_{j}\right)^{2} \tag{4.19}
\end{equation*}
$$

As is well known \underline{s}^{2} is distributed independently of $\underline{y}_{1}, \ldots, \frac{y}{2} k$ and consequently of $\underline{a}_{1}, \ldots, \underline{a}_{k-2}$ and $\underline{S}_{1}{ }^{2}$ simultaneously. Further $\underline{s}^{2} / \sigma^{2}$ has a Y^{2} distribution with $N\left(=\sum n_{1}-k\right)$ degrees of freedom and s_{1}^{2} / σ^{2} a χ^{2} distribution with $k-1$ degrees of freedom, while $\underline{s}_{1}{ }^{2}$ is also independent of $a_{-1} \ldots, \underline{a}_{k-2}$ (cf. (4.9)). So

$$
\begin{equation*}
E=\frac{k-1}{N} \frac{s^{2}}{S_{1}^{2}}=\frac{k-1}{N} \cdot \underline{G}, \text { say, } \tag{4.20}
\end{equation*}
$$

has FISHER's F-distribution with N and $k-1$ degrees of freedom, while E and consequently also \underline{G} are independent of $\underline{G}_{1}, \ldots, \underline{a}_{k-2}$ simultaneously.

- The density function of G is known to be
, (4.21) $f_{5}(G)=\frac{\Gamma\left(\frac{N+K-1}{2}\right)}{\Gamma\left(\frac{N}{2}\right) \Gamma\left(\frac{K-1}{2}\right)} \frac{G^{\frac{N-2}{2}}}{(1+G) \frac{N+K-1}{2}}$.

So the joint density function of $\underline{a}_{1}, \underline{a}_{2}$ and G is
(4.22) $\quad f_{6}\left(a_{1}, a_{2}, G\right)=\sqrt{\frac{\sum n_{1}}{\sum n_{i}-n_{1}-n_{2}} \frac{\Gamma\left(\frac{N+K-1}{2}\right)}{\Gamma\left(\frac{N}{2}\right) \Gamma\left(\frac{K-3}{2}\right)} \frac{1}{\pi} \frac{G \frac{N-2}{2}}{(1+G) \frac{N+K-1}{2}}}$

$$
\left\{1-\frac{\sum n_{i}-n_{2}}{\sum n_{i}-n_{1}-n_{2}} a_{1}^{2}-\frac{2 \sqrt{n_{1} n_{2}}}{\sum n_{i}-n_{1}-n_{2}} a_{1} a_{2}-\frac{\sum n_{i}-n_{1}}{\sum n_{i}-n_{1}-n_{2}} a_{2}^{2}\right\}^{\frac{k-5}{2}}
$$

We have
(4.23)

$$
\left\{\begin{array}{l}
a_{1}=\sqrt{1+G} b_{1} \\
a_{2}=\sqrt{1+G} b_{2}
\end{array}\right.
$$

The joint distribution of $\underline{b}_{1}, \underline{b}_{2}$ and \underline{G} becomes
(4.24) $f_{7}\left(b_{1}, b_{2}, G\right)=\sqrt{\frac{\sum n_{1}}{\sum n_{1}-n_{1}-n_{2}}} \frac{\Gamma\left(\frac{N+K-1}{2}\right)}{\Gamma\left(\frac{N}{2}\right) \Gamma\left(\frac{K-3}{2}\right)} \frac{1}{\pi} \frac{G^{\frac{N-2}{2}}}{(1+G)^{\frac{N+K-3}{C}}}$

$$
\left\{1-(1+G)\left[\frac{\sum n_{1}-n_{2}}{\sum n_{i}-n_{1}-n_{2}} b_{1}^{2}+\frac{2 \sqrt{n_{1} n_{2}}}{\sum n_{i}-n_{1}-n_{2}} b_{1} b_{2}+\frac{\sum n_{i}-n_{1}}{\sum n_{i}-n_{1}-n_{2}} b_{2}\right]\right\}^{2}
$$

The joint density function of \underline{b}_{1} and \underline{b}_{2} is equal to
(4.25)

$$
h\left(b_{1}, b_{2}\right)=\int_{0}^{\infty} f_{7}\left(b_{1}, b_{2}, G\right) d G .
$$

This integral has the form
(4.26)

$$
I=c_{1} \int_{0}^{\frac{1}{c}-1} \frac{\{1-c(1+G)\}^{a} \cdot G^{b}}{(1+G)^{a+b+2}} d G
$$

In (4.26) we make the substitution

$$
\begin{equation*}
1+G=\frac{1}{(1-c) v+c} \tag{4.27}
\end{equation*}
$$

which gives for (4.26)

$$
\begin{aligned}
\text { (4.28) } \quad I & =c_{1}(1-c)^{a+b+1} \int_{0}^{1} v^{a}(1-v)^{b} d v= \\
& =c_{1}(1-c)^{a+b+1} \frac{\Gamma(a+1) \Gamma(b+1)}{\Gamma(a+b+2)} .
\end{aligned}
$$

Applying this to (4.25), where

$$
\left\{\begin{array}{l}
c=\frac{\sum n_{i}-n_{2}}{\sum n_{i}-n_{1}-n_{2}} b_{1}{ }^{2}+\frac{2 \sqrt{n_{1} n_{2}}}{\sum n_{i}-n_{1}-n_{2}} b_{1} b_{2}+\frac{\sum n_{i}-n_{1}}{\sum n_{i}-n_{1}-n_{2}} b_{2}^{2}, \tag{4.29}\\
a=\frac{k-5}{2}, \\
b=\frac{N-2}{2}, \\
c_{1}=\sqrt{\frac{\sum n_{i}}{\sum n_{i}-n_{1}-n_{2}}} \frac{\Gamma\left(\frac{N+k-1}{2}\right)}{\pi \Gamma\left(\frac{N}{2}\right) \Gamma\left(\frac{k-3}{2}\right)},
\end{array}\right.
$$

we find
(4.30) $n\left(b_{1}, b_{2}\right)=\sqrt{\frac{\sum n_{i}}{\sum n_{i}-n_{1}-n_{2}}} \frac{N+k-3}{2 \pi}\left\{1-\frac{\sum n_{i}-n_{2}}{\sum n_{i}-n_{1}-n_{2}} b_{1}^{2}+\right.$

$$
\left.-\frac{2 \sqrt{n_{1} n_{2}}}{\sum n_{i}-n_{1}-n_{2}} b_{1} b_{2}-\frac{\sum n_{i}-n_{1}}{\sum n_{i}-n_{1}-n_{2}} b_{2}^{2}\right\}^{\frac{N+k-5}{2}}
$$

if the expression between braces is positive and $h\left(b_{1}, b_{2}\right)$ is zero otherwise.

If we apply the transformation

$$
\begin{equation*}
\underline{b}_{i}^{i}=\frac{\underline{b}_{2}+\frac{\sqrt{n_{2}}}{\sum n_{i}-n_{1}} \sqrt{n_{1}} \underline{b}_{1}}{\sqrt{1-\frac{\sum n_{i}}{\sum n_{i}-n_{1}} \underline{b}_{1}^{2}}}, \tag{4.31}
\end{equation*}
$$

analogous to (4.14), it appears that \underline{b}_{2}^{1} and \underline{b}_{1} are independently distributed and that the density function of \underline{b}_{1} is given by
(4.32) $p\left(b_{1}\right)=\sqrt{\frac{\sum n_{i}}{\sum n_{i}-n_{1}}} \frac{\Gamma\left(\frac{N+k-1}{2}\right)}{\Gamma\left(\frac{N+k-2}{2}\right)} \frac{1}{\sqrt{\pi}}\left\{1-\frac{\sum n_{i}}{\sum n_{i}-n_{1}} b_{1}^{2}\right\}^{\frac{N+k-4}{2}}$
and that b_{2}^{\prime} has a distribution of the same form with k replaced by $k-1$, $\sum n_{i}$ by $\sum n_{i}-n_{1}$ and $\sum n_{i}-n_{1}$ by $\sum n_{i}-n_{1}-n_{2}$. It is easily seen that (4.32) can be transformed into a symmetric B-distribution or into a t-distribution by applying respectively the transformations (3.7) or (3.9) for $i=1$.

The region where $h\left(b_{1}, b_{2}\right)$ differs from zero is bounded by an ellipse (cf. fig. 4.1) with principle axes of length 1 and $\sqrt{\frac{n_{i}^{n} 1^{-1} 2}{\sum n_{i}}}$, whose directions are given respectively by the Iines

$$
\left\{\begin{array}{l}
n_{1} b_{1}+\sqrt{n_{1} n_{2}} b_{2}=0, \tag{4.33}\\
\sqrt{n_{1} n_{2}} b_{1}+n_{1} b_{2}=0 .
\end{array}\right.
$$

Figure 4.1
The region where $h\left(b_{1}, b_{2}\right)>0$

We now proceed to prove the inequality (4.1). We suppose that both g_{1} and g_{2} are $\leqq 0$. This is no restriction for when (4.1) holds for a pair of values g_{1} and g_{2}, the inequality $P\left[\underline{b}_{1}>-g_{1}\right.$ and $\left.\underline{b}_{2}>-g_{2}\right] \leqq$ $\leqq P\left[\underline{b}_{1}>-g_{1}\right] \cdot P\left[\underline{b}_{2}>-g_{2}\right]$ holds also for reasons of symmetry. Consequently (4.1) is also true for $-g_{1}$ and $-g_{2}$ because of the equivalence of (2.9) and (2.10). Further we may assume that the point $\left(g_{1}, g_{2}\right)$ lies within the ellipse of figure 4.1, because otherwise $P\left[\underline{b}_{1} \leqq g_{1}\right.$ and $\left.\underline{b}_{2} \leqq g_{2}\right]=0$ and (4.1) is obviously fulfilled. We shall prove that in the $\left(g_{1}, g_{2}\right)$-region considered (4.1) holds with the $<$ sign.

We put

$$
(4.34)\left\{\begin{array}{l}
c_{1} \stackrel{a b b}{=} \sqrt{\frac{\sum n_{i}}{\sum n_{i}-n_{1}}} \frac{\Gamma\left(\frac{N+k-1}{2}\right)}{\Gamma\left(\frac{N+k-2}{2}\right)} \frac{1}{\sqrt{\pi}}, \\
c_{2} a \underline{a b b} \sqrt{\frac{\sum n_{i}}{\sum n_{i}-n_{2}}} \frac{\Gamma\left(\frac{N+k-1}{2}\right)}{\Gamma\left(\frac{N+k-2}{2}\right)} \frac{1}{\sqrt{\pi}}, \\
c_{1}^{i} a b b \sqrt{\frac{\sum n_{i}-n_{2}}{\sum n_{i}-n_{1}-n_{2}} \frac{\Gamma\left(\frac{N+k-2}{2}\right)}{\Gamma\left(\frac{N+k-3}{2}\right)} \frac{1}{\sqrt{\pi}},} \\
c_{2}^{a b b} \sqrt{\frac{\sum n_{i}-n_{1}}{\sum n_{i}-n_{1}-n_{2}} \frac{\Gamma\left(\frac{N+k-2}{2}\right)}{\Gamma\left(\frac{N+k-3}{2}\right)} \frac{1}{\sqrt{\pi}} .} .
\end{array}\right.
$$

Further we introduce the function $h_{1}(y)$ and $h_{2}(x)$, which are defined respectively for

$$
-\sqrt{\frac{\sum n_{i}-n_{1}-n_{2}}{\sum n_{i}-n_{1}}} \leqq y \leqq 0 \quad \text { and }-\sqrt{\frac{\sum n_{i}-n_{1}-n_{2}}{\sum n_{i}-n_{2}}} \leqq x \leqq 0
$$

by the properties that respectively the points $\left\{h_{1}(y), y\right\}$ and $\left\{x, h_{2}(x)\right\}$ belong to the ellipse of figure 4.1.

Now we have
$(4.35) \mathrm{P}\left[\underline{\mathrm{b}}_{1} \leqq \mathrm{~g}_{1}\right.$ and $\left.\underline{\mathrm{b}}_{2} \leqq \mathrm{~g}_{2}\right]=$

$=c_{1} c_{2}^{\prime} \int_{n_{1}\left(g_{2}\right)}^{g_{1}} d b_{1} \int_{n_{2}\left(b_{1}\right)}^{g_{2}}\left(1-\frac{\sum n_{1}-n_{2}}{\sum n_{i}-n_{1}-n_{2}} b_{1}^{2}-\frac{2 \sqrt{n_{1} n_{2}}}{\sum n_{i}-n_{1}-n_{2}} b_{1} b_{2}-\frac{\sum n_{i}-n_{1}}{\sum n_{i}-n_{1}-n_{2}} b_{2}^{2}\right)^{\frac{N+k-5}{2}} d b_{2}$.
Applying the transformation (4.31) one finds
(4.36) $\mathrm{P}\left[\underline{b}_{1} \leqq \mathrm{~g}_{1}\right.$ and $\left.\underline{b}_{2} \leqq g_{2}\right]=$
$=c_{1} c_{2}^{\prime} \int_{n_{1}\left(g_{2}\right)}^{g_{1}} d b_{1}\left(1-\frac{\sum n_{i}}{\sum n_{i}-n_{1}} b_{1}^{2}\right) \int_{-\sqrt{\frac{N n_{i}-n_{1}-n_{2}}{\sum n_{1}-n_{1}}}}^{\left(1-\frac{\sum n_{i}-n_{1}}{\sum n_{i}-n_{1}-n_{2}}\left(b_{2}^{1}\right)^{2}\right)^{\frac{N+k-5}{2}}} \int_{2}^{\left(g_{2}+\frac{\sqrt{n_{1} n_{2}}}{\sum n_{1}-n_{1}} b_{1}\right) / \sqrt{1-\frac{\sum n_{1}}{\sum n_{1}-n_{1}} b_{1}^{2}}}$.

In the same way, applying the transformation
(4.37)

$$
\underline{b}_{i}=\frac{\underline{b}_{1}+\frac{\sqrt{n_{1} n_{2}}}{\sum n_{i}-n_{2}} \underline{b}_{2}}{\sqrt{1-\frac{\sum n_{i}}{\sum n_{i}-n_{2}} \underline{b}_{2}^{2}}},
$$

it is found that
(4.38) $P\left[\underline{b}_{1} \leqq g_{1}\right.$ and $\left.\underline{b}_{2} \leqq g_{2}\right]=$

We have to prove
(4.39) $\phi\left(\mathrm{g}_{1}, \mathrm{~g}_{2}\right) \stackrel{\operatorname{def}}{=}\left[\underline{b}_{1} \leqq \mathrm{~g}_{1}\right] \cdot P\left[\underline{b}_{2} \leqq \mathrm{~g}_{2}\right]-\mathrm{P}\left[\underline{b}_{1} \leqq \mathrm{~g}_{1}\right.$ and $\left.\underline{b}_{2} \leqq \mathrm{E}_{2}\right]>0$.

First we have
(4.40) $\phi\left(-\sqrt{\frac{\sum n_{1}-n_{1}-n_{2}}{\sum n_{1}-n_{2}}}, g_{2}\right)=P\left[\underline{b}_{1} \leqq-\sqrt{\frac{\sqrt{n_{i}-n_{1}-n_{2}}}{\sum n_{i}-n_{2}}}\right] \cdot P\left[\underline{b}_{2} \leqq g_{2}\right]-0>0$.

Now we consider (cf. 4.38)

$-c_{2} c_{1}^{1} \int^{g_{2}} d b_{2}\left(1-\frac{\sum n_{i}}{\sum n_{i}-n_{2}} b_{2}^{2}\right)^{\frac{N+k-4}{2}} \int\left(1-\frac{\sum n_{1}-n_{2}}{\sum n_{i}-n_{1}-n_{2}}\left(b_{1}^{1}\right)^{2}\right)^{\frac{N+k-5}{2} d b_{1}^{1}}$
$-\sqrt{\frac{\sum n_{i}-n_{1}-n_{2}}{\sum n_{i}-n_{1}}}$
$-\sqrt{\frac{\frac{2 n_{i}-n_{1}-n_{2}}{\sum n_{i}-n_{2}}}{\sum_{i}}}$

for $\frac{\frac{\sqrt{n_{1} n_{2}} b_{2}}{\sum n_{i}-n_{2}}}{\sqrt{1-\frac{\sum n_{i}}{\sum n_{i}-n_{2}} b_{2}^{2}}}$ is monotonously increasing in b_{2}.

Thus

From (4.41) it follows that

$$
\begin{aligned}
& (4.43) \frac{\mathrm{a} \phi\left(0, g_{2}\right)}{d g_{2}}=\frac{1}{2} c_{2}\left(1-\frac{\sum n_{i}}{\sum n_{i}-n_{2}} g_{2}^{2}\right)^{\frac{N+k-4}{2}}+ \\
& -c_{2} c_{1}^{\prime}\left(1-\frac{\sum n_{i}}{\sum n_{i}-n_{2}} g_{2}^{2}\right) \\
& \quad-\sqrt{\frac{N+k-4}{2}} \int^{\frac{\sum n_{i}-n_{1}-n_{2}}{\sum n_{i}-n_{2}} g_{2}} \sqrt{1-\frac{\sum n_{i}-n_{i}}{\sum n_{i}-n_{2}} g_{2}^{2}} \\
& \left(1-\frac{\sum n_{i}-n_{2}}{\sum n_{i}-n_{1}-n_{2}}\left(b_{i}\right)^{2}\right)^{\frac{N+k-5}{2} d b_{i}}= \\
& =c_{2}\left(1-\frac{\sum n_{i}}{\sum n_{i}-n_{2}} g_{2}^{2}\right)^{\frac{N+k-4}{2}} \phi_{1}\left(g_{2}\right), \text { say. }
\end{aligned}
$$

$$
\text { clearly } \phi_{1}\left(g_{2}\right) \text { is a decreasing function of } g_{2} \text { and as } \phi_{1}(0)=0 \text {, }
$$ we have

(4.44) $\frac{d \phi\left(0, g_{2}\right)}{d g_{2}} \geqq 0 \quad\left(-\sqrt{\frac{\sum n_{1}-n_{1}-n_{2}}{\sum n_{1}-n_{1}}} \leqq g_{2} \leqq 0\right)$.

From (4.42) and (4.44) it follows that
(4.45) $\quad \phi\left(0, g_{2}\right)>0 \quad\left(-\sqrt{\frac{\sum n_{i}-n_{1}-n_{2}}{\sum n_{i}^{-n_{1}}}} \leqq g_{2} \leqq 0\right)$.

Next we consider (cf. 4.36)
(4.46) $\left.\frac{\partial \phi\left(g_{1}, g_{2}\right)}{\partial g_{1}}=c_{1}\left(1-\frac{\sum n_{i}}{\sum n_{i}-n_{1}} g_{1}^{2}\right)^{2} c_{2} \int_{\sqrt{\frac{\sum n_{i}-n_{2}}{\sum n_{i}}}}^{\left(1-\frac{g_{2}}{\sum_{i} n_{i}-n_{2}}\right.} b_{2}^{2}\right)^{\frac{N+k-4}{2} d b_{2}}+$
$-c_{1} c_{2}^{\prime}\left(1-\frac{\sum n_{i}}{\sum n_{i}-n_{1}} g_{1}^{2}\right)^{\frac{N+k-4}{2}} \int^{\left(g_{2}+\frac{\sqrt{n_{1} n_{2}}}{\sum n_{1}-n_{1}} g_{1}\right.} \sqrt{1-\frac{\sum n_{1}}{\sum n_{1}-n_{1}} b_{1}^{2}}\left(1-\frac{\sum n_{1}-n_{1}}{\sum n_{1}-n_{1}-n_{2}}\left(b_{2}^{1}\right)^{2}\right)^{\frac{N+k-5}{2}} d b_{2}^{1}=$

$$
\sqrt{\frac{\sum n_{i}-n_{1}-n_{2}}{\sum n_{i}-n_{1}}}
$$

$$
=c_{1}\left(1-\frac{\sum n_{i}}{\sum n_{i}-n_{1}} g_{1}^{2}\right)^{\frac{N+k-4}{2}} \cdot \phi_{2}\left(g_{1}, g_{2}\right) \text {, say. }
$$

The partial derivative with respect to g_{q} of the upper bound of the second integral of $\phi_{2}\left(\mathrm{~g}_{1}, \mathrm{~g}_{2}\right)$ is
(4.47) $\frac{\frac{\sqrt{n_{1} n_{2}}}{\sum n_{i}-n_{1}}+g_{1} g_{2} \cdot \frac{\sum n_{i}}{\sum n_{i}-n_{1}}}{\left(1-\frac{\sum n_{i}}{\sum n_{i}-n_{1}} g_{1}^{2}\right)^{\frac{3}{2}}}>0$, if $g_{1} g_{2} \geqq 0$,
thus $\phi_{2}\left(g_{1}, g_{2}\right)$ is a decreasing functifn n_{4} of g_{1} in the domajn under consideration. Further ($1-\frac{\sum n_{i}}{\sum n_{i}-n_{1}} g_{1}^{2} \cdot 2$ is positive. Thus $\frac{\partial \phi\left(g_{1}, g_{2}\right)}{\partial g_{1}}$ is everywhere negative, everywhere positive, or positive up to a certain point g_{0} (depending upon g_{2}), say, and negative thereafter. So in virtue of (4.40) and (4.45) we may conclude
(4.48) $\phi\left(g_{1}, g_{2}\right)>0,\left(-\sqrt{\frac{\sum n_{i}-n_{1}-n_{2}}{\sum n_{i}-n_{2}}} \leqq g_{1} \leqq 0,-\sqrt{\frac{\sum n_{i}-n_{1}-n_{2}}{\sum n_{1}-n_{1}}} \leqq g_{2} \leqq 0\right)$.

5. Slippage tests for some discrete variables

In this section slippage tests will be discussed for variates which follow the Poisson, the binomial or the negative binomial law. First we shall consider the poisson case in some detail. Suppose we have a set of independent random variables

$$
\begin{equation*}
\underline{z}_{1}, \ldots, \underline{z}_{k} \tag{5.1}
\end{equation*}
$$

distributed according to Poisson distributions, i.e.:

$$
\begin{equation*}
P\left[\underline{z}_{1}=z_{i}\right]=\frac{e^{-\mu_{i} \mu_{j}^{z_{i}}}}{z_{i}!},(i=1, \ldots, k), \mu_{i}>0 . \tag{5.2}
\end{equation*}
$$

Now we want to test the hypothesis H_{0} that the means μ_{i} have known ratios
(5.3) $\quad H_{0}: \frac{\mu_{i}}{\sum_{j} \mu_{j}}=p_{i} \quad(i=1, \ldots, k)$.

This situation occurs for instance if from k Poisson-populations with, under H_{0}, equal means unequal numbers of observations are present and $\underline{z}_{1}, \ldots, z_{k}$ represent the sums of these observations. In this case the p_{i}

- are proportional to the numbers of observations. Also k Poisson processes with the same parameter may be observed during different lengths of time. Then the p_{i} are proportional to these lengths of time.

We want to test H_{o} against the alternatimes
(5.4) $H_{1}: \frac{\mu_{i}}{\sum_{j} \mu_{j}}=c p_{i}, \frac{\mu_{I}}{\sum_{j} \mu_{j}}=\frac{1-c p_{i}}{1-p_{i}}, p_{I}(I \neq i), 1<c<\frac{1}{p_{i}}, c$ unknown,
for one unknown value of i or
(5.5) $\quad H_{2}: \frac{\mu_{i}}{\sum_{j} \mu_{j}}=c p_{i}, \frac{\mu_{1}}{\sum_{j} \mu_{j}}=\frac{1-c p_{i}}{1-p_{i}} p_{1}(1 \neq j), 0<c<1$, c unknown, for one unknown value of i.

A well known property of Poisson-variates is: If $\underline{z}_{q}, \ldots, z_{k}$ are independent Poisson-variates with means $\mu_{1}, \ldots \rho / \mu_{k}$, then the simultaneous conditional distribution of $\underline{z}_{1} \ldots \underline{\underline{Z}}_{k}$ given their sum (i.e. $\Sigma_{\underline{z}}=N, N$ a constant), is a multinomial distribution with probabili-
 a conditional test for H_{o}, using only the multinomial distribution (5.6) $P\left[\underline{z}_{1}=z_{1}, \ldots, \underline{z}_{k}=z_{k} \mid \underline{z}_{z_{i}}=N\right]=\frac{N!}{\prod_{z_{i}}!} \pi p_{i}{ }^{z_{i}}, i f z_{i}=N$ and 0

From this it is clear that a test against slippage for Poisson variates is closely related to a similar test for a multinomial distribution. The reader may easily translate the tests stated here into tests for the multinomial case.

In the next section the following theorem will be proved. Theorem 5.1. Suppose the discrete, random variables

$$
\begin{equation*}
\underline{u}_{1} \cdots \underline{u}_{k} \tag{5.7}
\end{equation*}
$$

are distributed independently and can take integer values only (the latter assumption is not essential but gives a much simpler notation). If

$$
\begin{equation*}
\frac{P\left[\sum \underline{u}_{1}-\underline{u}_{i}-\underline{u}_{j}=a\right]}{P\left[\sum \underline{u}_{1}-\underline{u}_{i}-\underline{u}_{j}=a+1\right]}, \tag{5.8}
\end{equation*}
$$

where a is an integer, is a non decreasing function of $a_{\text {g }}$ then
(5.9) $P\left[\underline{u}_{i} \geqq u_{i}\right.$ and $\left.\underline{u}_{j} \geqq u_{j} \mid \sum \underline{u}_{i}=N\right] \leq P\left[\underline{u}_{i} \geqq u_{i} \mid \sum \underline{u}_{1}=N\right] \cdot P\left[\underline{u}_{j} \geqq u_{j} \mid \sum \underline{u}_{i}=N\right]$,
for every pair of integers u and u_{i} and for every non-negative integer N.

In the special case where $\underline{u}_{1} \ldots . . \underline{u}_{k}$ are distributed according to the same type of distribution and this distribution has the property that a sum of k independent variates has again the same type of distribution, it is easy to verify whether condition (5.8) holds or not.

In our case the sum of $(k-2)$ of the variables \underline{z}_{i} (given by 5.2) has a Poisson-distribution with mean μ, say. So condition (5.8) reads

$$
\begin{equation*}
\frac{e^{-\mu} \mu^{a}}{a!} \cdot \frac{(a+1)!}{e^{-\mu_{\mu} a+1}}=\frac{a+1}{\mu}, \tag{5.10}
\end{equation*}
$$

is non decreasing in $a_{\text {, }}$ which is clearly true.

Thus the inequality (5.9) holds for every pair $\underline{z}_{1}, \underline{z}_{j}$ and the procedure described in section 2 may be applied to the variables $\underline{z}_{1}, \ldots, \underline{z}_{k}$, under the condition $\underline{z}_{z_{i}}=N .{ }^{1)}$ Now the marginal distri. bution of \underline{Z}_{i} under the condition $\sum_{\underline{Z}}^{\underline{Z}}=N$ is a binomial one, so when testing H_{0} against H_{1} we compute, if z_{1}, \ldots, z_{k} are the observed values and $\sum z_{i}=N$

Now H_{o} is rejected if

$$
\begin{equation*}
\min r_{i} \leqq \frac{\varepsilon}{k} \tag{5.12}
\end{equation*}
$$

and then we decide that $\frac{\mu_{j}}{\sum \mu_{i}}>p_{j}$ if j is the smallest integer for which $r_{j}=\min r_{i}$.

If under $H_{o} \mu_{1}=\ldots=\mu_{k}$, all p_{i} are equal and the smallest r_{i} corresponds to the largest value z_{i}.

The test for slippage to the left is completely analogous.
A table of critical values for max z_{i} is given in section 11 for the case $p_{1}=p_{2}=\ldots=p_{k}$.

Along the same lines as was done by R. DOORNBOS and H.J. PRINS (1956) in the case of Γ-variates it can be shown that the probability Q_{j} of makine the correct decision when the $j^{\text {th }}$ population has slipped to the right (i.e. H_{1} is true with $i=j$) satisfies the inequality
(5.13) $I_{c p_{j}}\left(G_{j, \varepsilon}, N-G_{j, \varepsilon}+1\right)\left[1-\sum_{i \neq j} I_{1-c p_{j}}^{1-p_{j}}\left(G_{i, \varepsilon}, N-G_{i, \varepsilon}+1\right)\right] \leqq Q_{j} \leqq I_{c p}\left(G_{j, \varepsilon} \varepsilon^{N-G_{j, \varepsilon}+1, b}\right.$

1) The validity of (5.9) in the case of Poisson-variates can also be proved in the following way, usine the relation with Γ-variates. The well known relation
(1) $P\left[\underline{z}_{1} \geqq z_{1} \mid \sum_{z_{i}}=\mathbb{N}\right]=\sum_{x=z_{1}}^{N}\binom{N}{x} p_{1}^{x}\left(1-p_{1}\right)^{N-x}=\frac{N!}{\left(z_{1}-1\right)!\left(N-z_{1}\right)!} \int_{0}^{p_{1} z_{1}-1(1-u)^{N-z_{1}} u^{1}}$
can be generalized to
(2)

which may be proved by induction or otherwise. Using (2) for $r=2$ it is seen immediately that inequality (4.10) in R. DOORNBOS and H.J. PRINS (1956) is the same as (5.9) for Poisson variates.

Here $G_{1, \varepsilon}(1=1, \ldots, k)$ is the smallest number which satisfies (5.14) $P\left[\underline{z}_{1} \geqq G_{1}, \varepsilon \mid \Sigma \underline{Z}_{1}=N, H_{0}\right] \leqq \varepsilon / k$, or
(5.15) $\quad I_{p_{I}}\left(G_{I, \varepsilon}, N-G_{I, \varepsilon}+1\right) \leqq \varepsilon / k$.

Clearly Q_{j} converges towards its upper bound when $c \rightarrow 1 / p_{j}$ and for each $c \geqq 1$ the factor between square brackets is larger than $1-\frac{k-1}{k} \varepsilon$, according to (5.15).

In the case of slippage to the left we have analogously
(5.16) $\left[1-I_{c p_{j}}\left(g_{j, \varepsilon}, N-g_{j, \varepsilon}+1\right)\right](1-\varepsilon) \leqq$

$$
\begin{aligned}
& {\left[1-I_{c p_{j}}\left(g_{j, \varepsilon}, N-g_{j, \varepsilon}+1\right)\right]\left[1-\sum_{i \neq j}\left\{1-I_{1-c p_{j}}^{1-p_{j}}\left(g_{i}, \varepsilon, N-g_{i, \varepsilon}+1\right)\right\}\right]} \\
& \leqq p_{j} \leqq 1-I_{c p_{j}}\left(g_{j, \varepsilon}, N-g_{j, \varepsilon}+1\right),
\end{aligned}
$$

where $g_{1, \varepsilon}(1=1, \ldots, k)$ is the largest number satisfying

$$
\begin{equation*}
1-I_{p_{1}}\left(g_{1, \varepsilon}+1, N-g_{1, \varepsilon}\right) \leqq \frac{\varepsilon}{K} . \tag{5.17}
\end{equation*}
$$

We can apply theorem (5.1) also to the case of independent variables

$$
\begin{equation*}
\underline{v}_{1} \ldots \underline{v}_{k}, \tag{5.18}
\end{equation*}
$$

which are distributed according to binomial laws with numbers of trials n_{1}, \ldots, n_{k} and probabilities of success p_{1}, \ldots, p_{k}. Now the hypothesis H_{0} is
(5.19)

$$
H_{0}: p_{1}=\ldots=p_{k}=p, \text { say }
$$

and the alternatives are

$$
\begin{align*}
H_{1}: p_{1} & =p_{2} \ldots=p_{i-1}=p_{i+1}=\ldots=p_{k}=p, \tag{5.20}\\
p_{i} & =c p(1 \leqq c \leqq 1 / p),
\end{align*}
$$

for one unknown value of i and

$$
\begin{align*}
H_{2}: p_{1} & =\ldots=p_{i-1}=p_{i+1}=\ldots=p_{k}=p, \tag{5.21}\\
p_{i} & =c p(0 \leqq c \leqq 1) .
\end{align*}
$$

for one unknown value of i.
Because, under H_{0}, the sum of $(k-2)$ of the variates (5.18) has again a binomial distribution with number of trials, n say, and probability of a success in each trial p, the condition (5.8) of theorem 5.1 reads

$$
\begin{equation*}
\frac{\binom{n}{a} p^{a}(1-p)^{n-a}}{\binom{n}{a+1} p^{a+1}(1-p)^{n-a-1}}=\frac{a+1}{n-a} \cdot \frac{1-p}{p} \tag{5.22}
\end{equation*}
$$

is a non decreasing function of a, which is true. So in this case also the approximation procedure described in section 2 can be applied to obtain a conditional test for slippage under the condition that the sum of the variates $\sum \underline{V}_{i}$ has a constant value N. The conditional distribution of \underline{V}_{i} is a hypergeometrical one
(5.23) $P\left[\underline{v}_{i}=v_{i} \mid \Sigma \underline{v}_{i}=N\right]=\frac{\left(\begin{array}{c}n_{i} \\ v_{i}\end{array} \sum_{N}^{\sum n} j_{V_{i}}^{-n_{i}}\right)}{\left(\sum_{N}^{n} j\right)}, \quad\left(\underline{v}_{i} \geqq 0\right)$,
so with help of this distribution critical values for the tests with prescribed level of significance may be obtained, in the same way as was done with the Poisson variates.

Provided that none of the values $n_{i}, \sum n_{j}-n_{i}, N$ and $\sum n_{j}-N$ are very small, a good approximation to the sum of the tail terms of the hypergeometric series of equation (5.23) may be obtained from the integral under a normal curve, having the mean $\frac{n_{i} \cdot N}{\sum n_{j}}$ and variance

$$
\frac{n_{i}\left(\sum n_{j}-n_{i}\right) N\left(\sum n_{j}-N\right)}{\left(\sum n_{j}\right)^{2}\left(\sum n_{j}-1\right)} .
$$

In the special case $n_{1}=\ldots=n_{k}=n_{\text {, the }}$ test procedure for slippage to the right reduces to comparing the largest variate v_{m} with a constant v_{0} determined by the level of significance ε, such that v_{o} is the largest value satisfying

$$
P\left[\underline{v}_{i} \geqq v_{0} \mid \Sigma \underline{v}_{i}=N\right] \leqq \varepsilon / k
$$

The same holds for the variates

$$
\begin{equation*}
\underline{w}_{1}, \ldots, W_{k}, \tag{5.24}
\end{equation*}
$$

which are independently distributed according to negative binomial laws, with parameters r_{1}, \ldots, r_{k} and probabilities $p_{1} \ldots, p_{k}, i, e$.

$$
\begin{equation*}
P\left[\underline{w}_{i}=w_{i}\right]=\binom{w_{i}+r_{i}-1}{r_{i}-1} p_{i} q_{i} q_{i}, \tag{5.25}
\end{equation*}
$$

where r_{i} is an integer $\geqq 1$ and $0 \leqq p_{i} \leqq 1$, whilst $p_{i}+q_{i}=1$.
The hypothesis H_{0} is
(5.26) $\quad H_{0}: \quad q_{1}=\ldots=q_{k}=q_{\text {, }}$ say
and the alternatives are
(5.27) $\quad H_{1}: \quad q_{1}=\ldots=q_{i-1}=q_{i+1}=\ldots=q_{k}=q_{1}$,
$q_{1}=c q \quad(1 \leqq c \leqq 1 / q)$,
for one unknown value of i or
(5.28)

$$
\begin{aligned}
H_{2}: \quad q_{1} & =\ldots=q_{i-1}=q_{i+1}=\ldots=q_{k}=q, \\
q_{i} & =c q \quad(0 \leqq c \leqq 1),
\end{aligned}
$$

for one unknown value of i.
The hypotheses are stated in terms of the q_{i} and not in terms of the p_{i} in order to obtain that slippage to the right of the $i^{\text {th }}$ population corresponds to a large value of W_{i}.

Under H_{0}, the sum of a set of independent negative binomial variates has again a negative binomial distribution with the same probability p (or q) and a parameter r, say, which is the sum of the r_{i} of the individual variates. So condition (5.8) gives here

$$
\begin{equation*}
\frac{\binom{a+r-1}{r-1} p^{r} q^{a}}{\binom{a+r}{r-1} p^{r} q^{a+1}}=\frac{a+1}{a+r} \cdot \frac{1}{q} \tag{5.29}
\end{equation*}
$$

is a non decreasing function of a, which is true if $r \geqq 1$. Thus again the method of section 2 may be applied. The conditional distribution of \underline{W}_{i} under the condition $\underline{W}_{j}=N$, has the form
(5.30) $\left.P\left[\underline{w}_{i}=w_{i} \mid \sum \underline{w}_{j}=N\right]=\frac{\left(W_{i}+r_{i}-1\right.}{r_{i}-1}\right)\binom{N+\sum r_{j}-W_{i}-r_{i}-1}{\sum r_{j}-r_{i}-1}$
$\left(\sum_{r_{j}-1}^{N+1}\right) \quad\left(w_{i}=0,1, \ldots, N\right)$.

The critical region for the test against $H_{1}(5.27)$ consists of large values of the variables ${\underset{w}{i}}$. In the case where $r_{1}=\ldots=r_{k}$ the test statistic is the largest variate ${\underset{m}{m}}$ when testing against slippage to the right and the smallest when testing against slippage to the left.

If in the case of the variables $(5.1),(5.18)$ and (5.24) holds that $p_{1}=\ldots=p_{k}, n_{1}=\ldots=n_{k}$ and $r_{1}=\ldots=r_{k}$ respectively, then in each case the following optimum property can be proved. 1) As in the case of the normal distribution we denote by D_{0} the decision that H_{0} is true and by $D_{i}(i=1, \ldots, k)$ the decision that $H_{1 i}$ is true, i.e. that H_{1} is true and that the $i^{\text {th }}$ population has slipped to the right. Now the procedure:

$$
\left\{\begin{array}{l}
\text { if } \underline{u}_{m}>\lambda_{\varepsilon, N} \text { select } D_{m}, \tag{5.31}\\
\text { if } u_{m} \leqq \lambda_{\varepsilon, N} \text { select } D_{0},
\end{array}\right.
$$

under the condition that $\sum_{\underline{i}}=N$ where \underline{u} stands for \underline{z}, \underline{v}, \underline{w} according as the Poisson, the binomial or the negative binomial case is concerned and where m is the index of the maximum u-value, maximizes the probabi-

1) In the sequel only the case of slippage to the right is considered but all statements may be easily translated for the other case.
lity of making a correct decision when H_{1} is true subject to the following restrictions:
(a) When H_{0} is true, D_{0} should be selected with probability $\geqq 1-\varepsilon$,
(b) The probability of making a correct decision when thei-th population has slipped by an amount c must be the same for $i=1, \ldots, k$.
The constant $\lambda_{\varepsilon, N}$ in (5.31) is determined by the level of signi. ficance ε and depends on \mathbb{N}, the sum of the variables.

In the binomial and the negative binomial case this optimum property follows from
Theorem 5.2. Suppose the discrete, random variables

$$
\underline{x}_{1} \ldots, x_{k}
$$

are under H distributed independently according to the same distribution function, then for each value of N, the procedure (5.31) is optimum in the abovementioned sense if
(5.32)

$$
\frac{P\left[x_{i}=x \mid H_{1 i}\right]}{P\left[\underline{x}_{i}=x \mid H_{0}\right]},
$$

is a non decreasing function of x for every c. 1)
This theorem will be proved in section 6 . Applying it to the two distributions under consideration we get in case of the binomial and the negative binomial distribution the conditions that respectively
(5.33) $\quad \frac{\binom{n}{x}(c p)^{x}(1-c p)^{n-x}}{\binom{n}{x} p^{x}(1-p)^{n-x}}=\left(\frac{c-c p}{1-c p}\right)^{x}(1-c p)^{n}, \quad(c>1)$
and
(5.34) $\quad \frac{\binom{x+r-1}{r-1}(1-c q)^{r}(c q)^{x}}{\binom{x+r-1}{r-1}(1-q)^{r} q^{x}}=\left(\frac{1-c q}{1-q}\right)^{r} c^{x}, \quad(c>1)$
are non decreasing functions of x, which iss true in both cases.
For the Poisson distribution a separate proof will be given in section 6:
6. Proofs of the results stated in section 5 and a general condition for the inequality (2.9) in the continuous case.

Starting with the proof of theorem 5.1 we have that

$$
\begin{equation*}
\frac{P\left[\underline{u}_{i}=y\right] \cdot P\left[\underline{u}_{j}=x\right] \cdot P\left[\sum \underline{u}_{1}-\underline{u}_{i}-\underline{u}_{j}=N-x-y\right]}{P\left[\underline{u}_{i}=y\right] \cdot P\left[\underline{u}_{j}=x+1\right] \cdot P\left[\sum \underline{u}_{1}-\underline{u}_{1}-\underline{u}_{j}=N-x-y-1\right]} \tag{6.1}
\end{equation*}
$$

1) In case of slippage to the left (5.32) should be non increasing.
is non decreasing in y, according to (5.8). Dividing (6.1) by the factor

$$
\begin{equation*}
\frac{P\left[\Sigma \underline{u}_{1}=N \text { and } \underline{u}_{j}=x\right]}{P\left[\sum \underline{u}_{1}=N \text { and } \underline{u}_{j}=x+1\right]}, \tag{6.2}
\end{equation*}
$$

which does not depend on y, (6.1) changes into

$$
\begin{equation*}
\frac{P\left[\underline{u}_{i}=y \mid \sum \underline{u}_{i}=N \text { and } \underline{u}_{j}=x\right]}{P\left[\underline{u}_{i}=y \mid \sum \underline{u}_{i}=N \text { and } \underline{u}_{j}=x+1\right]} \tag{6.3}
\end{equation*}
$$

Thus also (6.3) is non decreasing in y for all values of x. This means that there exists a value y_{0}, which may depend on x, which has the property that
(6.4) $P\left[\underline{u}_{i}=y \mid \Sigma \underline{u}_{1}=N\right.$ and $\left.\underline{u}_{j}=x\right] \geqq P\left[\underline{u}_{i}=y \mid \Sigma \underline{u}_{1}=N\right.$ and $\left.\underline{u}_{j}=x+1\right]$, if $y \geqq y_{0}$, $P\left[\underline{u}_{1}=y \mid \sum \underline{u}_{1}=N\right.$ and $\left.\underline{u}_{j}=x\right] \leqq P\left[\underline{u}_{1}=y \mid \sum \underline{u}_{1}=N\right.$ and $\left.\underline{u}_{j}=x+1\right]$, if $y<y_{0}$.

fig. 6.1

$$
\text { and } \begin{aligned}
P\left[\underline{u}_{i}=y \mid \sum \underline{u}_{1}=\mathbb{N} \text { and } \underline{u}_{j}=x\right] & \text { (dotted lines) } \\
P\left[\underline{u}_{i}=y \mid \sum \underline{u}_{1}=\mathbb{N} \text { and } \underline{u}_{j}=x+1\right] & \text { (full lines). }
\end{aligned}
$$

This situation is sketched in figure 6.1. It follows that for each value u_{i}
(6.5) $P(x)$ def $\sum_{y=u}^{\infty} P\left[\underline{u}_{i}=y \mid \sum \underline{u}_{1}=N\right.$ and $\left.\underline{u}_{j}=x\right]$
is a non increasing function of x. Now

$$
\begin{align*}
& \frac{p\left[\underline{u}_{i} \geqq u_{i} \text { and } \underline{u}_{j} \geqq u_{j} \mid \sum \underline{u}_{1}=N\right]}{P\left[\underline{u}_{j} \geqq u_{j} \mid \sum \underline{u}_{1}=N\right]}= \tag{6.6}\\
&= \frac{\sum_{x=u_{j}}^{\infty} P\left[\underline{u}_{j}=x \mid \sum \underline{u}_{1}=N\right] \sum_{j=u_{i}}^{\infty} P\left[\underline{u}_{i}=y \mid \sum \underline{u}_{1}=N \text { and } \underline{u}_{j}=x\right]}{\sum_{X=u_{j}}^{\infty} P\left[\underline{u}_{j}=x \mid \sum \underline{u}_{I}=N\right]} \\
& \leqq \sum_{Y=u_{i}}^{\infty} P\left[\underline{u}_{i}=y \mid \sum \underline{u}_{I}=N \text { and } \underline{u}_{j}=u_{j}\right]
\end{align*}
$$

In the same way we have
(6.7) $\frac{P\left[\underline{u}_{i} \geqq \underline{u}_{i} \text { and } \underline{u}_{j}<u_{j} \mid \sum \underline{u}_{1}=N\right]}{P\left[\underline{u}_{j}<u_{j} \mid \sum \underline{u}_{1}=N\right]} \geqq \sum_{y=u_{i}}^{\infty} P\left[\underline{u}_{i}=v \mid \sum \underline{u}_{1}=N\right.$ and $\left.\underline{u}_{j}=u_{j}\right]$.

From (6.6) and (6.7) it follows that, in the notation of (2.6), where $u_{i}=g_{i}+1$ and $u_{j}=g_{j}+1$, whilst \underline{u}_{i} under the condition $\sum \underline{u}_{1}=N$ stands for \underline{x}_{i} and \underline{u}_{j} under the condition $\sum \underline{u}_{1}=\mathbb{N}$ for \underline{X}_{j} g

$$
\begin{equation*}
\frac{q_{i, j}}{q_{j}} \leqslant \frac{q_{i}-q_{i, j}}{1-q_{j}} \tag{6.8}
\end{equation*}
$$

or

$$
q_{1, j} \leqq q_{i} q_{\jmath}
$$

which proves the theorem, because (6.9) is the same as (5.9).
Following a somewhat similar line of thought in the continuous case we arrive at the following theorem:

Theorem 6.1. Suppose the random variables x and y have a joint distribution, which is given by the density function $f(x, y)$. Now the inequality

$$
\begin{equation*}
P[X \leqq a \text { and } y \leqq b] \leqq P[\underline{X} \leqq a] \cdot P[y \leqq b], \tag{6.10}
\end{equation*}
$$

holds for all real values a and b, if
$(6,11) f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right) \leqq f\left(x_{2}, y_{1}\right) f\left(x_{1}, y_{2}\right)$, for $x_{1} \leqq x_{2}$ and $y_{1} \leqq y_{2}$.
Proof: From (6.13) it follows that
$(6.12) \int_{x_{1}=-\infty}^{a} \int_{y_{1}=-\infty}^{b} \int_{x_{2}=a}^{\infty} \int_{y_{2}=0}^{\infty}\left[f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right)-f\left(x_{2}, y_{1}\right) f\left(x_{1}, y_{2}\right)\right]$ $d x_{1} d y_{1} d x_{2} d y_{2} \leqq 0$.

Or
$(6.13) \int_{x=-\infty}^{a} \int_{y=-\infty}^{b} f(x, y) d x d y \int_{x=a}^{\infty} \int_{y=0}^{\infty} f(x, y) d x d y$

$$
\leqq \int_{x=a}^{\infty} \int_{y=-\infty}^{b} f(x, y) d x d y \int_{x=-\infty}^{a} \int_{y=b}^{\infty} f(x, y) d x d y
$$

$$
\text { Adding to both sides of }(6.13) \text { the product }
$$

$(6.14) \int_{x=-\infty}^{a} \int_{y=-\infty}^{b} f(x \cdot y) d x d y \int_{x=\infty}^{a} \int_{j_{j}=b}^{\infty} f(x, y) d x d y$,
(6.13) passes into
(6.15)

$$
\leqq \int_{x=-\infty}^{\infty} \int_{y=-\infty}^{b} f(x, y) d x d y \int_{x=-\infty}^{a} \int_{y=b}^{\infty} f(x, y) d x d y,
$$

or
(6.16)

or

$$
\begin{equation*}
P[\underline{x} \leqq a \mid \underline{y} \leqq b] \leqq P[\underline{x} \leqq a \mid y>b] . \tag{6.17}
\end{equation*}
$$

which is equivalent to (6.10) (cf. the transition from (6.8) to (6.9)).

Remark

The condition (6.11) is certainly satisfied in the special case where $\frac{\partial^{2} \log f(x, y)}{\partial x \partial y}$ exists everywhere and is everywhere non positive. For (6.11) says

$$
\begin{equation*}
\frac{f\left(x_{1}, y_{1}\right)}{f\left(x_{2}, y_{1}\right)} \leqq \frac{f\left(x_{1}, y_{2}\right)}{f\left(x_{2}, y_{2}\right)} \tag{6.18}
\end{equation*}
$$

if $x_{1} \leqq x_{2}$ and $y_{1} \leqq y_{2}$.
(6.18) holds if $\frac{\partial}{\partial y} \frac{f\left(x_{1}, y\right)}{f\left(x_{2}, y\right)} \geqq 0$ if $x_{1} \leqq x_{2}$
or
(6.19) $\quad \partial_{y} f\left(x_{1}, y\right) \cdot f\left(x_{2}, y\right)-f\left(x_{1}, y\right) \partial_{y} f\left(x_{2}, y\right) \geqq 0 \quad$ if $x_{1} \leqq x_{2}$.

The inequality (6.19) may be written

$$
\begin{equation*}
\frac{\partial \operatorname{logf}\left(x_{1}, y\right)}{\partial y} \geqq \frac{\partial \log f\left(x_{2}, y\right)}{\partial y} \text { if } x_{1} \leqq x_{2} \text {, } \tag{6.20}
\end{equation*}
$$

which is certainly satisfied
if $\quad \frac{\partial^{2} \log f(x, y)}{\partial x \partial y} \leqq 0$ everywhere.
If $\quad f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right) \geqq f\left(x_{2}, y_{1}\right) f\left(x_{1}, y_{2}\right)$
everywhere, where $x_{1} \leqq x_{2}$ and $y_{1} \leqq y_{2}$
then $P[\underline{x} \leqq a$ and $\underline{y} \leqq b] \geqq P[\underline{X} \leqq a] . P[\underline{y} \leqq b]$
instrad of (6.10).

Theorem 6.1 does not seem to have many practical applications. As an example we may consider the bivariate normal distribution, where the density function has the form
(6.21) $f\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-p^{2}}} e$

Here we have

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x_{1} x_{2} x_{2}} \log f\left(x_{1}, x_{2}\right)=\frac{\rho}{\sigma_{1} \sigma_{2}\left(1-\rho^{2}\right)}, \tag{6.2?}
\end{equation*}
$$

thus the inequality (6.10) holds if the correlation coefficient p is negative. This case of the inequality (6.10) was recently used by H.A. DAVID (1956) but no proof was given.

The proof of theorem 5.2 follows the lines indicated by E. PAULSON (1952) and D.R. TRUAX (1953). It consists mainly in showing that for any c, N and p or q there exists a set of non zero a priori probabilities $g_{0}, g_{1}, \ldots g_{k}$, which are functions of N andp or q so that, when g_{i} is the probability that D_{i} is the correct decision the decision procedure described in section 5 maximizes the probability of making the correct decision. Assuming this has been demonstrated, it follows easily that (5.31) is the optimum solution. For suppose there existed an allowable decision procedure, which for some C and N and p or q had a greater probability than (5.31) of making the correct decision when some category had slipped to the right by an amount c. Then this procedure will have a greater probability than (5.31) of making a correct decision (for that values of c, N and p or q) with ruspect to any set of a priori probabilities, with $\max _{1 \leqq i \leqq k} g_{i}>0$, which would be a contradiction.

According to A. WALD (1950), pp 127-123 the optimum solution is given by the rule:"For each $j(j=0,1, \ldots, k)$ decide D_{j} for all points in the sample space where j is the smallest integer for which $g_{j}^{f}{ }_{j}=$ $\max \left\{\mathcal{E}_{0} f_{0}, g_{1} f_{1}, \ldots, g_{k} f_{k}\right\}$, where f_{j} is the joint elementary probability law of $\underline{x}_{1}, \ldots, \underline{x}_{k}$ under the hypothesis $H_{1 j} 0^{\prime \prime}$

We consider the special a priori distribution $\mathrm{g}_{0}=1-\mathrm{kg}, \mathrm{E}_{1}=\ldots=$ $g_{k}=g$. For ewample the region where D_{1} is selected is given by the

- points in the sample space where $f_{1}>f_{i}(i=2, \ldots, k)$ and $g f_{1}>(1-k g) f_{0}$. The region where $f_{1}>f_{i}$ is given by
(6.23)

Because $x_{1} \ldots . . x_{k}$ have the same distribution and on account of the form of the hypotheses H_{11} we have

$$
\left\{\begin{array}{l}
P\left[\sum \underline{X}_{i}=N \mid H_{i j}\right] \text { is the same for } j=1, \ldots, k, \\
P\left[\underline{X}_{i}=x \mid H_{1 j}\right]=P\left[x_{i}=x \mid H_{0}\right] \text { for } j=1, \ldots, k ; j \neq i, \tag{6,2,2}\\
P\left[x_{i}=x \mid H_{1 i}\right]=P\left[x_{j}=x \mid H_{1 j}\right], \text { for } i, j=1, \ldots, k \\
P\left[x_{i}=x \mid H_{0}\right]=P\left[x_{j}=x \mid H_{0}\right], \text { for } i, j=1, \ldots, k
\end{array}\right.
$$

With help of theserelations（6．23）reduces to

$$
\begin{equation*}
\frac{P\left[\underline{x}_{i}=x_{1} \mid H_{1 i}\right]}{P\left[x_{i}=x_{1} \mid H_{0}\right]}>\frac{P\left[x_{i}=x_{i} \mid H_{1 i}\right]}{P\left[\underline{x}_{i}=x_{i} \mid H_{0}\right]}, \tag{6.25}
\end{equation*}
$$

which is equivalent to $x_{1}>x_{i}$ on account of the condition（5．32）of the theorem．

The region where $\mathrm{gf}_{1}>(1-\mathrm{kg}) \mathrm{f}_{0}$ is given by
（6．26）

or，on account of（6．24）by
（6．27）

$$
\frac{P\left[X_{1}=r_{1} \mid \mathrm{H}_{11}\right]}{P\left[X_{1}=X_{1} \mid H_{0}\right]}>\frac{1-\operatorname{Kg}_{g}}{E} \frac{P\left[\sum X_{1}=N \mid H_{1}\right]}{P\left[\sum X_{1}=N \mid H_{0}\right]}
$$

In virtue of（5．32）this is equivalent to $x_{1}>L$ ，where L is a number depending on N ，aut \quad（Lmay be $+\infty$ ）．Thus the Bayes solution is：if x_{m} is the maximum of $x_{1, \ldots} \ldots x_{k}$ select D_{m} if $x_{m}>L$ ，otherwise select D_{0} ．Define the furction $F(B)$ by the equation

where $\lambda_{\varepsilon_{g} N}$ is the constant used in（5．31）．It is obvious that $F(g)$ is a continuous function of s with $\mathrm{P}\left(\frac{1}{\mathrm{~K}}\right)>0$ and that there exists a δ with $0<\delta<\frac{1}{K_{2}}$ such that $F(\delta)<0$ ．Hence there exists a value $\mathbb{B}^{\text {来 }}$ with
 $\left(1-\mathrm{kg}^{\frac{k}{k}}, \mathrm{~g}^{z^{k}}, \ldots . \mathrm{c}^{\text {点 }}\right.$ ）it is only necessary in the solution given above to replace L by $\lambda_{G} \mathbb{N}^{\prime}$ ．Thus the procedure（5．31）is the Bayes solution relative to $\left(1-\operatorname{ci}^{2}, g^{*}, \ldots, g^{\text {漛 }}\right)$ ，which proves that it is an optimum one．

In the case of the Poisson variates（5．1），with under H_{0}（5．3） $p_{1}=\ldots=p_{k}=\frac{1}{k}$ ，we start directly from their joint distribution as given by（5．6），which reads in thic spooi．at nase：
(6.29)

$$
\left\{\begin{array}{l}
f_{0}\left(z_{1}, \ldots, z_{k}\right)=\frac{N!}{\pi z_{i}!}\left(\frac{1}{k}\right)^{N}, \\
f_{i}\left(z_{1}, \ldots, z_{k}\right)=\frac{N!}{\pi z_{i}}\left(\frac{1}{k}\right)^{N} c^{z_{i}}\left(\frac{k-c}{k-1}\right)^{N-z_{i}} \quad(1<c<k) .
\end{array}\right.
$$

Because

$$
\begin{equation*}
c^{z_{1}}\left(\frac{k-c}{k-1}\right)^{N-z_{i}}, \tag{6.30}
\end{equation*}
$$

is monotonously increasing in z_{i} for $1<c<k$, WALD's rule may be applied in the same way as was done in the preceding proof as also here the region where $f_{1}>f_{i}$ is given by $z_{1}>z_{i}$ and the region where $\mathrm{Ef}_{1}>(1-\mathrm{kg}) \mathrm{f}_{\mathrm{o}}$ by $\mathrm{z}_{1}>\mathrm{L}$, L depending on N and c .
7. Slippage tests for the method of m rankings

In the well known method of m rankines due to M. FRIEDMAN (1937) (cf. M.G. KENDALL (1955), chapters 6 and 7) m "observers" are considered. Each observer ranks k "objects". The method of m rankings enables us to investigate whether the observers agree in their opinion about the objects. For that reason one tests the hypothesis H_{0}, which states that the rankings are chosen at random from the collection of all permutations of the numbers $1, \ldots . \mathrm{m}_{\mathrm{k}}$ and that they are independent.

Here we present tests which are powerful especially against the alternative that one of the objects has larger probability than the other ones of being ranked high (or low), whilst the other ($k-1$) objects are ranked in a random order. We denote the sums of the m ranks of each object by

$$
\begin{equation*}
\underline{s}_{1}, \cdots, \underline{s}_{k},\left(m \leqq \underline{s}_{1} \leqq k m\right) . \tag{7.1}
\end{equation*}
$$

Obviously we have

$$
\begin{equation*}
\sum \underline{s}_{\hat{i}}=\frac{1}{2} m k(k+1) \tag{7.2}
\end{equation*}
$$

In section 8 the following theorem will be proved.
Theorem 7.1. For each pair S_{i} s. of the variables (7.1) and for every pair of integers $s_{i}, s_{\text {s }}$ the following inequality holds under H_{0}

$$
P\left[\underline{s}_{i} \leqq s_{1} \text { and } \underline{s}_{j} \leqq s_{j}\right] \leqq P\left[\underline{s}_{i} \leqq s_{j}\right] \cdot P\left[\underline{s}_{j} \leqq s_{j}\right] .
$$

So we can apply our approximation method for obtaining slippage tests for the variables $\underline{S}_{1} \ldots \underline{S}_{k}$. Because the marginal distributions of the \underline{S}_{i} are all equal under H_{0}, the test statistic for the test against slippage to the right is max \underline{S}_{i} and for testing against slippage to the left min \underline{s}_{i}. The critical values are determined by the smallest integer S_{ε} satisfying
(7.4)

$$
P\left[\underline{S}_{i} \geqq S_{\varepsilon}\right] \leqq \varepsilon / k
$$

and the largest integer s_{ε} satisfying

$$
\begin{equation*}
P\left[\underline{S}_{1} \leqq s_{\varepsilon}\right] \leqq \varepsilon / K, \tag{7.5}
\end{equation*}
$$

respectively.
The distribution of S_{i} is easily seen to be symmetric with respect to the mean value $\frac{1}{2} m(k+1)$, so we have

$$
\begin{equation*}
s_{\varepsilon}=m(k+1)-S_{\varepsilon} \tag{7.6}
\end{equation*}
$$

In section 8 it will be shown that the distribution of sis under H_{o}, reads
(7.7) $\left.P\left[\underline{s}_{i}=n\right]=\left.\sum_{x=0}^{\infty}\right|_{n-k x-m}\binom{m}{x}\binom{n-k x-1}{m-1}(-1)^{x} k_{;}^{-m}(i=1, \ldots, k ; m \leqq n \leqq k m)^{1}\right)$ where $\left.\right|_{y}$ is defined by

$$
\left\{\begin{array}{l}
\left.\right|_{\mathrm{y}}=0 \text { if } \mathrm{y} \leqq 0, \tag{7.8}\\
\left.\right|_{\mathrm{y}}=1 \text { if } \mathrm{y}>0 .
\end{array}\right.
$$

The tables of critical values s g spesented in section 11, are based on this formula.

8. Proofs of the results of section 7

First we shall prove theorem 7.1. We suppose that both s_{i} and s_{j} are lying between m and km , because otherwise (7.3) obviously holds with the equality sign. For $m=1$ we have
(8.1) $\left\{\begin{array}{l}P\left[\underline{s}_{i} \leqq s_{i} \text { and } \underline{s}_{j} \leqq s_{j} \mid m=1\right]=\frac{s_{i} s_{j}-\min \left(s_{i}, s_{j}\right)}{k(k-1)}, \\ P\left[\underline{S}_{i} \leqq s_{i} \mid m=1\right]=\frac{s_{i}}{K}, \\ P\left[\underline{S}_{j} \leqq s_{j} \mid m=1\right]=\frac{s_{j}}{K},\end{array}\right.$
so in that case (7.3) is true. Now let us suppose that (7.3) is true for m observers, then we have

1) We owe this formula to Mr A. BENARD, Statistical Department of the Mathematical Centre.
(8.2) $P\left[\underline{s}_{i} \leqq s_{i}\right.$ and $\left.\underline{s}_{j} \leqq s_{j} \mid m+1\right]=$

So theorem 7.1 is proved by induction. Formula 7.7 can be proved in the following way:
$\mathrm{km}^{m}\left[\underline{S}_{i}=n / m\right]=\begin{aligned} & \text { the number of partitions of } n \text { into } m \text { positive integers, no } \\ & \\ & \text { one being larger than } k \text { (different permutations of the same }\end{aligned}$ integers are counted as different partitions).

Thus

$$
\begin{aligned}
& k^{m} P\left[\underline{s}_{i}=n \mid m\right]=\text { coefficient of } z^{n} \text { in }\left(z+\ldots+z^{k}\right)^{m}= \\
& \quad=\text { coefficient of } z^{n-m} \text { in }\left(\frac{1-z^{k}}{1-z}\right)^{m}=\text { coefficient of } z^{n-m} \text { in }
\end{aligned}
$$

$$
\sum_{x=0}^{\infty}\binom{m}{x}(-)^{x} z^{k x} \sum_{r=0}^{\infty}\binom{m+r-1}{r} z^{r}=\sum_{x=0}^{\infty} l_{n-k x-m}\binom{m}{x}\binom{n-k x-1}{m-1}(-)^{x}
$$

$$
\begin{aligned}
& =\sum_{a \neq b} P\left[\underline{s}_{i} \leqq s_{i}-a \text { and } \underline{s}_{j} \leqq s_{j}-b \mid m\right] \cdot \frac{1}{k(k-1)} \leqq \\
& \leqq \sum_{a \neq b} P\left[\underline{s}_{i} \leqq s_{i}-a \mid m\right] \cdot P\left[\underline{s}_{j} \leqq s_{j}-b \mid m\right] \cdot \frac{1}{k(k-1)}= \\
& =\sum_{a=1}^{k \neq} P\left[\underline{s}_{i} \leqq s_{i}-a \mid m\right] \cdot \frac{1}{k} \cdot \sum_{b=1}^{k} P\left[\underline{s}_{j} \leqq s_{j}-b \mid m\right] \cdot \frac{1}{k}+ \\
& +\frac{1}{k^{2}(k-1)} \sum_{a=1}^{k} P\left[\underline{s}_{i} \leqq s_{i}-a \mid m\right] \sum_{b=1}^{k} P\left[\underline{s}_{j} \leqq s_{j}-b \mid m\right]+ \\
& -\frac{1}{k(k-1)} \sum_{a=1}^{k} P\left[\underline{s}_{i} \leqq s_{i}-a \mid m\right] \cdot P\left[\underline{s}_{j} \leqq s_{j}-a \mid m\right]= \\
& =P\left[\underline{s}_{1} \leqq s_{i} \mid m+1\right] \cdot P\left[\underline{s}_{j} \leqq s_{j} \mid m+1\right] \\
& -\frac{1}{k(k-1)} \sum_{a=1}^{k}\left\{p\left[\underline{s}_{i} \leqq s_{i}-a \mid m\right]-\frac{\sum_{b=1}^{k} P\left[\underline{s}_{i} \leqq s_{i}-b \mid m\right]}{k}\right\} \text {. } \\
& \text { - }\left\{P\left[\underline{s}_{j} \leqq s_{j}-a \mid m\right]-\frac{\sum_{b=1}^{k} P\left[\underline{s}_{j} \leqq s_{j}-b / m\right]}{k}\right\} \leqq \\
& \leqq P\left[\underline{s}_{i} \leqq s_{i} \mid m+1\right] \cdot P\left[\underline{s}_{j} \leqq s_{j} \mid m+1\right],
\end{aligned}
$$

9. A distribution free $k-s a m p l e ~ s l i p p a s e ~ t e s t ~$

We consider the independent variates

$$
\begin{equation*}
\underline{u}_{1} \ldots \ldots \underline{u}_{k}, \tag{9.1}
\end{equation*}
$$

which have, under H_{0}, the same continuous distribution function. From the $i^{\text {th }}$ population we have t_{j} independent observations $\underline{u}_{i j}\left(j=1, \ldots, t_{i}\right)$. We want to test H_{o} against the alternatives

$$
H_{1}\left\{\begin{array}{l}
P\left[\underline{u}_{i}>\underline{u}_{j}\right]>\frac{1}{2} \quad(j \neq i), \tag{9.2}\\
\underline{u}_{j}(j=1, \ldots, i-1, i+1, \ldots, k) \text { follow the same distri- } \\
\text { bution, }
\end{array}\right.
$$

for one unknown value of i and

$$
H_{2}\left\{\begin{array}{l}
P\left[\underline{u}_{i}>\underline{u}_{j}\right]<\frac{1}{2} \quad(j \neq i), \tag{9.3}\\
\underline{u}_{j}(j=1, \ldots, i-1, i+1, \ldots, k) \text { follow the same distri- } \\
\text { bution. }
\end{array}\right.
$$

Now the following test procedure is proposed. If all observations $\underline{u}_{i j}\left(i=1, \ldots, k ; j=1, \ldots, t_{i}\right)$ are ranked, we denote by T_{i} the sum of the ranks of the observations $\underline{u}_{i j}\left(j=1, \ldots, t_{i}\right)$. As T_{i} is a linear function of WILCOXON's test statistic applied to the ith sample and the other k-1 samples together, its distribution function under H_{o} is known (cf. H.B. MANN and D.R. WHITNEY (1947)) So for each set of values $T_{1} \ldots \ldots T_{k}$ we can, under H_{O}, compute

$$
\begin{equation*}
q_{i}=P\left[T_{i} \geqq T_{i}\right] \tag{9.4}
\end{equation*}
$$

Now, when testing H_{o} against H_{1}, H_{0} is rejected when min $q_{i} \leqq \varepsilon / k$. A similar procedure is followed for slippage to the left. In the next section we shall prove the inequality
(9.5) $P\left[\mathbb{T}_{i} \geqq T_{i}\right.$ and $\left.T_{j} \geqq T_{j}\right] \leqq P\left[T_{i} \geqq T_{i}\right] \cdot P\left[T_{j} \geqq T_{j}\right]$,
so the limits between which the level of significance may vary are known also in this case.

Let now for every fixed i $H_{1, i}$ be the hypothesis

$$
\left\{\begin{array}{l}
p\left[\underline{u}_{i}>\underline{u}_{j}\right]>\frac{1}{2} \quad(j \neq i), \\
\underline{u}_{j}(j=1, \ldots, i-1, i+1, \ldots, k), \text { follow the same distribution. }
\end{array}\right.
$$

Put

$$
P\left[T_{1} \mid H_{0}\right] \stackrel{d e f}{=} P\left[\mathbb{T}_{1} \geqq T_{i} \mid H_{0}\right]
$$

This probability still depends on t_{1}, \ldots, t_{k} 。

In the same way as in sections 3 and 5 we consider the decision procedure δ :
"Decide that H_{o} is true if

$$
P\left[T_{j} \mid H_{0}\right]>\frac{\varepsilon}{k} \quad \text { for } j=1, \ldots, k
$$

Decide that $\mathrm{H}_{1, j}$ is true, if j is the smallest integer such that

$$
P\left[T_{j} \mid H_{0}\right] \leqq \frac{\varepsilon}{K} \text { and } P\left[T_{1} \mid H_{0}\right] \geqq P\left[T_{j} \mid H_{0}\right], \quad I \neq J
$$

We prove in the next section
Theorem 9.1. If H_{1}, is true, the probability of a correct decision with the procedure δ tends to 1 if $t_{1} \rightarrow \infty, \ldots, t_{1} \rightarrow \infty$ such that

$$
\lim \inf \frac{t_{i}}{\sum t_{1}}>0 \quad(i=1, \ldots, k)
$$

Another test for the k-sample slippage problem was proposed by F. MOSTELLER (1948) (cf. also F. MOSTELLER and J.W. TUKEY (1950)) who uses as test statistic the number of observations of the sample with the largest observation which exceed all observations of all other samples. A comparison of the power of both tests with respect to some alternatives of practical interest seems desirable.

10. Proof of the inequality (9.5) and of theorem 9.1

For definiteness we take in $(9,5) i=1, j=2$. We also take $k=3$.
This is no restriction on the generality as pooling of the $3^{r d}, 4$ th . and $k^{\text {th }}$ sample does not affect $P\left[T_{1} \mid H_{0}\right], P\left[T_{2} \mid H_{0}\right]$ or $P\left[T_{1}, T_{2} \mid H_{0}\right]$ def def $P\left[T_{1} \geqq T_{1}\right.$ and $\left.\underline{T}_{2} \geqq T_{2} \mid H_{0}\right]$.
Put now
(10.1)

$$
t \stackrel{d e f}{=} t_{1}+t_{2}+t_{3}
$$

and define
$P_{n_{1}, n_{2}, n_{3}}\left[T_{1}\right] \stackrel{\text { def }}{=}\left[T_{1} \mid H_{0}\right]$ if $t_{1}=n_{1}, t_{2}=n_{2}, t_{3}=n_{3}$.
$P_{n_{1}, n_{2}, n_{3}}\left[T_{i}, I\right]$ def $P\left[T_{i} \geqq T_{i}\right.$ and the largest element belongs to
sample number $\left.1 \mid H_{0}\right]$ if $t_{1}=n_{1}, t_{2}=n_{2}, t_{3}=n_{3}$. $P_{n_{1}, n_{2}, n_{3}}\left[T_{i} \mid I\right]$ def the conditional probability of $T_{i} \geqq T_{i}$ under H_{o}, given that the lareest element belones to sample number 1 if $t_{1}=n_{1}, t_{2}=n_{2}, t_{3}=n_{3}$ 。
In the same way we define $P_{n_{1}}, n_{2}, n_{3}\left[T_{i}, T_{j}\right], P_{n_{1}, n_{2}, n_{3}}\left[T_{i}, T_{j}, I\right]$ and $P\left[T_{i}, T_{j} \mid I\right]$ for the events $\left\{T_{i} \geqq T_{i}\right.$ and $\left.I_{j} \geqq T_{j}\right\}$.

We shall prove (9.5) by induction with respect to $n_{1}+n_{2}+n_{3}$. So we have to prove
(10.2)

$$
P_{n_{1}, n_{2}, n_{3}}\left[T_{1}, T_{2}\right] \leqq P_{n_{1}}, n_{2}, n_{3}\left[T_{1}\right] \cdot P_{n_{1}, n_{2}, n_{3}}\left[T_{2}\right] .
$$

Clearly (10.2) holds for $n_{1}+n_{2}+n_{3}=2$ (we take $I_{i}=0$ with probability 1 when $t_{i}=0$). Now suppose (10.2) holds if $n_{1}+n_{2}+n_{3} \leqq t-1$. We have
(10.3) $\quad P_{t_{1}, t_{2}, t_{3}}\left[T_{1}, T_{2}\right]=\sum_{i=1}^{3} \frac{t_{i}}{t} P_{t_{1}, t_{2}, t_{3}}\left[T_{1}, T_{2} \mid i\right]$

For the first term of the sum in the right hand member we get (10.4) $P_{t_{1}, t_{2}, t_{3}}\left[T_{1}, T_{2} \mid 1\right]=P_{t_{1}-1, t_{2}, t_{3}\left[T_{1}-t_{2} T_{2}\right] \leqq \text { (according to our }}$
$\leqq P_{t_{1}-1, t_{2}}, t_{3}\left[T_{1}-n\right] P_{t_{1}-1, t_{2}}, t_{3}\left[T_{2}\right]=P_{t_{1}}, t_{2}, t_{3}\left[T_{1} \mid 1\right] P_{t_{1}, t_{2}}, t_{3}\left[T_{2} / 1\right]$ assumption.
In the same way, it can be derived that
(10.5) $\quad P_{t_{1}, t_{2}, t_{3}}\left[T_{1}, T_{2} \mid 2\right] \leqq P_{t_{1}, t_{2}, t_{3}\left[T_{1} \mid 2\right] \cdot P_{t_{1}, t_{2}, t_{3}}\left[T_{2} \mid 2\right] .}$ Further
(10.6) $\quad P_{t_{1}, t_{2}, t_{3}}\left[T_{1}, T_{2} \mid 3\right]=P_{t_{1}, t_{2}, t_{3}-1}\left[T_{1}, T_{2}\right] \leqq$ $\leqq P_{t_{1}, t_{2}, t_{3}-1}\left[T_{1}\right] \cdot P_{t_{1}, t_{2}, t_{3}-1}\left[T_{2}\right]=$ $=P_{t_{1}, t_{2}, t_{3}\left[T_{1} \mid 3\right] P_{t_{1}} t_{2}, t_{3}\left[T_{2} \mid 3\right] \text {. } . ~ . ~ . ~}$

So, combining (10.3), (10.4), (10.5) and (10.6) we find, dropping the subscripts
(10.7) $P\left[T_{1}, T_{2}\right] \leqq \sum_{i=1}^{3} \frac{t_{i}}{t} P\left[T_{1} \mid i\right] \cdot P\left[T_{2} \mid i\right]=\sum_{i=1}^{3} P\left[T_{1} \mid i\right] \cdot P\left[T_{2}, i\right]$.

We have
(10.8) $\quad P\left[T_{1} \mid 2\right]=P\left[T_{2} \mid 3\right]=P\left[\begin{array}{l}T_{1} \mid 2\end{array}\right.$ or 3$]$
and similarly with 1 and 2 interchon od, and
(10.9) $P\left[T_{1}\right] P\left[T_{2}\right]=\left\{\frac{t_{1}}{t} P\left[T_{1} \mid 1\right]+\frac{{ }^{t} 2^{+t} 3}{t} P\left[T_{1} \mid 2\right.\right.$ or 3$\left.]\right\}$. - $\left\{P\left[T_{2}, 1\right]+P\left[T_{2}, 2\right.\right.$ or 3$\left.]\right\}$.

From (10.7) and (10.9) we see that it is sufficient to prove
(10.10) $\sum_{i=1}^{3} P\left[T_{1} \mid i\right] \cdot P\left[T_{2}, 1\right]=P\left[T_{1} \mid 1\right] P\left[T_{2}, 1\right]+P\left[T_{1} \mid 2\right] \cdot P\left[\mathbb{T}_{2}, 2\right.$ or 3$] \leqq$ $\leqq\left\{\frac{t_{1}}{t} P\left[T_{1} \mid 1\right]+\frac{{ }_{2} 2^{+t} 3}{t} P\left[T_{1} \mid 2\right.\right.$ or 3$\left.]\right\}\left\{P\left[T_{2}, 1\right]+P\left[T_{2}, 2\right.\right.$ or 3$\left.]\right\}$
or its equivalent
(10.11) $\left\{P\left[T_{1} \mid 1\right]-P\left[T_{1} \mid 2\right]\right\}\left\{\frac{t_{2}+t_{3}}{t} P\left[T_{2}, 1\right]-\frac{t_{1}}{t} P\left[T_{2}, 2\right.\right.$ or 3$\left.]\right\} \leqq 0$.

But "the inequality
(10.12)

$$
P\left[T_{1} \mid 1\right] \geqq P\left[T_{1} \mid 2\right]
$$

holds as can be seen in the following way (10.12) is equivalent to
(10.13)

$$
t_{1} P\left[T_{1}, 2\right] \leqq t_{2} P\left[T_{1}, 1\right]
$$

Consider now a ranking which \mathbb{E} ives T_{1} and 2 (i. \in. the largest element belongs to the $2^{\text {nd }}$ sample and $I_{1} \geqq T_{1}$) and interchance the last element with every element of the first sample. This cives t_{1} different rankines with T_{1} and 1. In this way we get each ranking with T_{1} and 1 at most t_{2} times, because in a ranking with \mathbb{T}_{1} and 1 the last element can be interchaneed with at most t_{2} different elements of the second sample. This proves (10.13) and thus (10.12). Interchanding 1 and 2 in (10.12) we find

$$
\begin{equation*}
P\left[T_{2} \mid 2\right] \geqq P\left[T_{2} \mid 1\right] . \tag{10.14}
\end{equation*}
$$

(10.11) and thus (10.2) is an immediate consequence of (10.12) and (10.14). This completes the proof of (9.5).

We now turn to the proof of theorem 9.1. Let $H_{1,1}$ be true. If $t_{i} \rightarrow \infty(i=1, \ldots, k)$ such that

$$
\lim \inf \frac{t_{1}}{\sum_{i=1}^{K} t_{i}}>0 \text { and } \lim \inf \frac{\sum_{i=1}^{k} t_{i}-t_{1}}{\sum_{i} t_{i}}>0 \text {, }
$$

we know that Wilcoxon's test comparine sample 1 with the other samples pooled is consistent. This means
(10.15)

$$
\lim _{i \rightarrow \infty} P\left[P\left[\underline{I}_{1}\right] \leqq \eta \mid H_{1}, 1\right]=1
$$

for evory $\eta(0 \leq \eta \leq 1)$

From (10.7) and (10.9) we see that it is sufficient to prove
(10.10) $\sum_{i=1}^{3} P\left[T_{1} \mid i\right] \cdot P\left[T_{2}, i\right]=P\left[T_{1} \mid 1\right] P\left[T_{2}, 1\right]+P\left[T_{1} \mid 2\right] \cdot P\left[T_{2}, 2\right.$ or 3$] \leqslant$

$$
\leqq\left\{\frac{t_{1}}{t} P\left[T_{1} \mid 1\right]+\frac{t_{2}+t_{3}}{t} P\left[T_{1} \mid 2 \text { or } 3\right]\right\}\left\{P\left[T_{2}, 1\right]+P\left[T_{2}, 2 \text { or } 3\right]\right\}
$$

or its equivalent
(10.11) $\left\{P\left[T_{1} \mid 1\right]-P\left[T_{1} \mid 2\right]\right\}\left\{\frac{t_{2}+t_{3}}{t} P\left[T_{2}, 1\right]-\frac{t_{1}}{t} P\left[T_{2}, 2\right.\right.$ or 3$\left.]\right\} \leqq 0$. But the inequality
(10.12)

$$
P\left[T_{1} \mid 1\right] \geqq P\left[T_{1} \mid 2\right]
$$

holds as can be seen in the following way (10.12) is equivalent to

$$
\begin{equation*}
t_{1} P\left[\mathbb{T}_{1}, 2\right] \leqq t_{2} P\left[T_{1}, 1\right] \tag{10.13}
\end{equation*}
$$

Consider now a ranking which ives T_{1} and 2 (i.e. the largest element belongs to the $2^{\text {nd }}$ sample and $T_{1} \geqq T_{1}$) and interchange the last element with every element of the first sample. This gives t, different rankines with T_{1} and 1. In this way we get each ranking with T_{1} and 1 at most t_{2} times, because in a ranking with T_{1} and 1 the last element can be interchaneed with at most t_{2} different elements of the second sample. This proves (10.13) and thus (10.12). Interchanging 1 and 2 in (10.12) we find
(10.14)

$$
P\left[T_{2} \mid 2\right] \geqq P\left[T_{2} \mid 1\right] .
$$

(10.11) and thus (10.2) is an immediate constquence of (10.12) and (10.14). This completes the proof of (9.5).

We now turn to the proof of theorem 9.1. Let $H_{1,1}$ be true. If $t_{i} \rightarrow \infty(i=1, \ldots, k)$ such that

$$
\lim \inf \frac{t_{1}}{\sum_{i=1}^{k} t_{i}}>0 \text { and } \lim \inf \frac{\sum_{i=1}^{k} t_{i}-t_{1}}{\sum_{i} t_{i}}>0,
$$

we know that Wilcoxon's test comparine sample 1 with the other samples pooled is consistent. This means
(10.15)

$$
\lim _{t_{i} \rightarrow \infty} P\left[P\left[\underline{I}_{1}\right] \leqq \eta \mid H_{1}, 1\right]=1
$$

for evory $\eta(0 \leqq \eta \leqq 1)$
or the exceedance probability found in the first sample converges to 0 in probability (cf. D. VAN DANTZIG (1951)).

In a similar way as in D. VAN DANTZIG (1951) we find, if

$$
p \operatorname{def} P\left(\underline{u}_{1}>u_{j} \mid H_{1,1}\right)>\frac{1}{2}
$$

(10.16)

$$
E\left(T_{j} \mid H_{0}\right)=\frac{1}{2} t_{j}\left(\sum t_{i}-t_{j}\right)+\frac{1}{2} t_{j}\left(t_{j}+1\right)
$$

and
(10.17)

$$
E\left(\underline{T}_{j} \mid H_{1,1}\right)=\frac{1}{2} t_{j}\left(\sum t_{i}-t_{j}-t_{1}\right)+(1-p) t_{j} t_{1}+\frac{1}{2} t_{j}\left(t_{j}+1\right)<E\left(\mathbb{T}_{j} \mid H_{0}\right)
$$

Further (10.18)

$$
\sigma^{2}\left(\underline{I}_{j} \mid H_{1,1}\right) \leqq 3 \sigma^{2}\left(\underline{I}_{j} \mid H_{0}\right)
$$

From (10.15) we have
(10.19) $\lim _{t_{j} \rightarrow \infty} P\left[P\left[\underline{T}_{j}\right] \leqq P\left[\underline{T}_{1}\right] \mid H_{1}, 1\right] \leqq \lim _{t_{1} \rightarrow \infty} P\left[P\left[\underline{T}_{j}\right] \leqq \eta \mid H_{1,1}\right]$
for every $\eta(0 \leqq \eta \leqq 1)$.
for every $\eta(0 \leqq \eta \leqq 1)$.
As the Iimit distribution under H_{0} of $\frac{\mathbb{I}_{j}-E\left(\underline{I}_{j} \mid H_{0}\right)}{\sigma\left(\underline{I}_{j} \mid H_{0}\right)}$ is normal with

$$
\begin{aligned}
& \text { (10.20) } \lim _{t_{i} \rightarrow \infty} P\left[P\left[\underline{T}_{j}\right] \leqq \eta \mid H_{1,1}\right]=\lim _{t_{i} \rightarrow \infty} P\left[\left.\frac{\mathbb{T}_{j}-E\left(\underline{T}_{j} \mid H_{0}\right)}{\sigma\left(\underline{T}_{j} \mid H_{0}\right)} \geqq \xi_{\eta} \right\rvert\, H_{11}\right] \leqq \\
& \leqq \lim _{t_{i} \rightarrow \infty}\left[\left.\frac{\mathbb{T}_{j}-E\left(\underline{T}_{j} \mid H_{1,1}\right)}{\sigma\left(\underline{T}_{j} \mid H_{1,1}\right)} \geqq \sqrt{3} \xi_{\eta} \right\rvert\, H_{1,1}\right] \leqq \frac{1}{3 \xi_{\eta}^{2}}
\end{aligned}
$$

where ξ_{η} is defined by

$$
\frac{1}{\sqrt{2 \pi}} \int_{\xi_{n}}^{\infty} e^{-\frac{x^{2}}{2}} d x=\eta
$$

(10.20) is valid for every $\eta(0 \leqq \eta \leqq 1)$ and as $\xi_{\eta} \rightarrow \infty(\eta \rightarrow 0)(10.19)$ combined with (10.20) gives
(10.21) $\lim _{t_{i} \rightarrow \infty} P\left[P\left[\underline{T}_{j}\right] \leqq P\left[\underline{\underline{T}}_{1}\right] \mid H_{1,1}\right]=0$.

If $\mathrm{H}_{1,1}$ is true the probability of correct decision is
(10.22) $P\left[P\left[\underline{I}_{1}\right] \leqq \frac{\varepsilon}{K}\right.$ and $P\left[\underline{I}_{1}\right] \geqq P\left[\underline{I}_{j}\right]$ for $\left.j \neq 1 \mid H_{1,1}\right] \geqq$
$\geqq P\left[\left.P\left[\mathbb{T}_{1}\right] \leqq \frac{\varepsilon}{K} \right\rvert\, H_{1}, 1\right]-\sum_{j=2}^{k} P\left[P\left[\underline{T}_{j}\right]>P\left[\mathbb{T}_{1}\right] \mid H_{1}, 1\right]$.
(10.15) and (10.21) show that the probability of a correct decision converges to 1 , which proves theorem 9.1.
11. Tables of critical values for the Poisson distribution and for the method of m rankings
Table 11.1 gives critical values for the test for Poisson variates against slippage to the right if H_{0} is: $p_{1}=p_{2}=\ldots=p_{k}$. The critical values for max z_{i} as test statistic are given for the values of $\varepsilon 0,05$ (the upper numbers) and 0,01 (the lower numbers). Owine to the discontinuous character of the binomial distribution the true level of sienificance will penerally be less, and very often considerably less, than ε. Therefore approximated levels of significance (i.e. ε^{\prime} cf. p. 37) are shown also. The exact values satisfy inequality (2.13). The table was constructed with the help of a table of the binomial distribution. This can also be done for critical values for the test against slippace to the left. Table 11.2 gives critical values for specified ε for the method of m rankings, when testine against slippage to the left with min s_{i} as test statistic. If this critical value is equal to 1 , the critical value r at the same level of significance for the test against slippage to the right is given by $r=m(k+1)-1$.

As in table 11.1 the approximated true levels of significance $\left(\varepsilon^{\prime}\right)$ are also given.

Table 11.1

Critical values for the slippage test to the right in the Poisson-case with $H_{0}: \mu_{1}=\mu_{2}=$ $=\ldots=\mu$. Test statistic: max $z_{i} 0.05$ (upper Approximate significance level $\mathrm{values)}$ and 0.01 (lower values). The approxivalues and 0.01 (lower values). The approx mated true level of significance is written ehind the critical value. Number of obse vations k, sum of the observations n.

Table 11.2

Critical values s. of the test statistic min $\mathrm{S}_{\text {i }}$ for the slippace test to the left for the method of m rankings. Level of significance ε, number of rankings m, number of ranked objects k. The approximated true levels of Significance are written behind the corresponding critical values.

k		3	4	5	6	7	8	9
2	$\begin{aligned} & 0 . \\ & 0 . \\ & 0 . \end{aligned}$				60.03	$\begin{aligned} & 70.016 \\ & 70.016 \end{aligned}$	$\begin{array}{ll} 8 & 0.008 \\ 8 & 0.008 \\ 8 & 0.008 \end{array}$	$\begin{array}{rr} 10 & 0.039 \\ 9 & 0.004 \\ 9 & 0.004 \end{array}$
3			40.0		$\begin{array}{ll} 7 & 0.029 \\ 6 & 0.004 \\ 6 & 0.004 \end{array}$	$\begin{array}{lll} \hline 9 & 0.049 \\ 8 & 0.011 \\ 7 & 0.001 \end{array}$	$\left\lvert\, \begin{array}{rr} 10 & 0.021 \\ 10 & 0.021 \\ 9 & 0.004 \end{array}\right.$	$\left\|\begin{array}{ll} 12 & 0.032 \\ 11 & 0.008 \\ 11 & 0.008 \end{array}\right\|$
4			$\left[\begin{array}{ll} 4 & 0.0 \\ 4 & 0.0 \end{array}\right.$	$\begin{array}{ll} 6 & 0.023 \\ 6 & 0.023 \\ 5 & 0.004 \end{array}$	$\begin{array}{ll} \hline 8 & 0.027 \\ 7 & 0.007 \\ 7 & 0.007 \end{array}$	$\begin{array}{rr} 10 & 0.029 \\ 9 & 0.009 \\ 9 & 0.009 \\ \hline \end{array}$	$\begin{array}{ll} 12 & 0.030 \\ 11 & 0.010 \\ 10 & 0.003 \\ \hline \end{array}$	$\begin{array}{ll} 13 & 0.011 \\ 12 & 0.003 \end{array}$
5			$\left[\begin{array}{ll} 5 & 0.040 \\ 4 & 0.008 \\ 4 & 0.008 \end{array}\right.$	$\begin{array}{ll} 6 & 0.010 \\ 6 & 0.010 \end{array}$	$\begin{array}{ll} 9 & 0.027 \\ 8 & 0.009 \\ 8 & 0.009 \end{array}$	$\left\|\begin{array}{ll} 11 & 0.021 \\ 11 & 0.021 \\ 10 & 0.008 \end{array}\right\|$	$\begin{array}{ll} 14 & 0.038 \\ 13 & 0.016 \\ 12 & 0.006 \end{array}$	$\begin{array}{ll} 15 & 0.013 \\ 14 & 0.005 \end{array}$
6		$30 .$	$\left[\begin{array}{lll} 5 & 0.023 \\ 5 & 0.023 \\ 4 & 0.00 \end{array}\right.$	$\begin{array}{ll} 8 & 0.043 \\ 7 & 0.016 \\ 6 & 0.005 \end{array}$	$\begin{array}{rr} 10 & 0.027 \\ 9 & 0.011 \\ 8 & 0.004 \end{array}$	$\left\|\begin{array}{ll} 13 & 0.037 \\ 12 & 0.017 \\ 11 & 0.007 \end{array}\right\|$	$\begin{array}{ll} 16 & 0.045 \\ 15 & 0.023 \\ 13 & 0.005 \end{array}$	$\begin{array}{ll} 17 & 0.014 \\ 16 & 0.007 \end{array}$
7		$\left[\left.\begin{array}{ll} 3 & 0.020 \\ 3 & 0.020 \\ - & \end{array} \right\rvert\,\right.$	$\begin{array}{ll} 6 & 0.044 \\ 5 & 0.014 \\ 4 & 0.003 \end{array}$	$\begin{array}{ll} 8 & 0.023 \\ 8 & 0.023 \\ 7 & 0.009 \end{array}$	$\left\lvert\, \begin{array}{rr} 11 & 0.027 \\ 10 & 0.012 \\ 9 & 0.005 \end{array}\right.$	$\begin{array}{ll} 14 & 0.029 \\ 13 & 0.015 \\ 12 & 0.007 \end{array}$	$\begin{array}{ll} 17 & 0.029 \\ 16 & 0.016 \\ 15 & 0.008 \end{array}$	18
8	$\begin{aligned} & 0 . \\ & 0 . \end{aligned}$	30.015	$\left[\begin{array}{ll} 6 & 0.029 \\ 5 & 0.010 \\ 5 & 0.010 \end{array}\right.$	$\begin{array}{ll} 80.014 \\ 70.005 \end{array}$	$\begin{array}{ll} 12 & 0.028 \\ 11 & 0.014 \\ 10 & 0.006 \\ \hline \end{array}$	$\begin{array}{ll} 16 & 0.043 \\ 15 & 0.025 \\ 13 & 0.007 \\ \hline \end{array}$	$\begin{array}{ll} 19 & 0.035 \\ 18 & 0.021 \\ 16 & 0.006 \end{array}$	$\begin{aligned} & 21 \\ & 20 \end{aligned}$
9	$\begin{aligned} & 0.025 \\ & 0.01 \end{aligned}$	$\left.\begin{array}{cc} 4 & 0.049 \\ 3 & 0.012 \\ - & - \end{array}\right]$	$\left[\begin{array}{ll} 7 & 0.048 \\ 5 & 0.021 \\ 5 & 0.007 \end{array}\right.$	$\left\lvert\, \begin{array}{cc} 10 & 0.038 \\ 9 & 0.019 \\ 8 & 0.009 \end{array}\right.$	$\begin{array}{ll} 13 & 0.029 \\ 12 & 0.016 \\ 11 & 0.008 \\ \hline \end{array}$	$\left\|\begin{array}{ll} 17 & 0.036 \\ 16 & 0.022 \\ 14 & 0.006 \end{array}\right\|$	$\left[\begin{array}{ll} 21 & 0.042 \\ 19 & 0.016 \\ 18 & 0.009 \end{array}\right.$	$\begin{aligned} & 23 \\ & 21 \end{aligned}$
10	$\begin{aligned} & 0.025 \\ & 0.01 \end{aligned}$	$\left[\begin{array}{ll} 4 & 0.040 \\ 3 & 0.010 \\ 3 & 0.010 \end{array}\right]$	$\begin{array}{ll} 7 & 0.025 \\ 6 & 0.015 \\ 5 & 0.005 \end{array}$	$\begin{array}{cc} 1 & 0.046 \\ 9 & 0.013 \\ 8 & 0.006 \end{array}$	$\begin{array}{ll} 14 & 0.0: 0 \\ 13 & 0.017 \\ 12 & 0.009 \end{array}$	$\begin{array}{ll} 18 & 0.032 \\ 17 & 0.019 \\ 15 & 0.006 \end{array}$	$\begin{array}{ll} 23 & 0.048 \\ 21 & 0.020 \\ 19 & 0.008 \end{array}$	$\begin{array}{ll} 27 & 0.045 \\ 25 & 0.020 \\ 23 & 0.008 \end{array}$

References

W.G. Cochran,	The distribution of the largest of a set of estimated normal variances as a fraction of their total, Ann. of Eugenics, 11, 47-52,(1941).
H. Cramer,	Mathematical methods of statistics, Princeton (1946).
D. van Dantzig,	On the consistency and the power of Wilcoxon's two sample test. Indagationes Mathematicae 13.1-8, (1951).
H.A. David,	On the application to statistics of an elementary theorem in probability, Biometrika 43, 85-91, (1956).
R. Doornbos.	```Significance of the smallest of a set of estimated normal variances, Statistica Neerlandica, 10, 17-26, (1956).```

R. Doornbos and H.J. Prins, Slippage tests for a set of gamma-variates, Indagationes Mathematicae, 18, 329-337,(1956).
W. Feller, An introduction to probability theory and its applications, Vol.I, New York and London, (1950).
M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis of variance, J.A.S.A., 32, 675-699, (1937).
M.G. Kendall, Rank correlation methods, sec. ed., London, (1955).
H.B. Mann and D.R. Whitney, on a test of whether one of two random variables is stochastically larger than the other, Ann. Math. Stat., 18, 50-60, (1947).
F. Mosteller, A k-sample slippage test for an extreme population, Ann. Math. Stat., 19, 58-65, (1948).
F. Mosteller and J.W. Tukey, Significance levels for a k-sample slippage test, Ann. Math. Stat., 21, 120-123, (1950).
E. Paulson, An optimum solution to the k-sample slippage problem for the normal distribution, Ann. Math. Stat. . 23, 610-616, (1952).
E.S. Pearson and C. Chandra Sekar, The efficiency of statistical tools and a criterion for the rejection of outlying observations, Biometrika, 28, 308-320, (1936).

W.R. Thompson,	On a criterion for the rejection of observations and the distribution of the ratio of deviation to sample standard deviation. Ann. Math. Stat., 6, 214-219. (1935).
D.R. Truax,	An optimum slippace test for the variances of k normal distributions, Ann. Math. Stat., 24, 669-673, (1953).
A Wald,	Statistical Decision Functions, New York and London, (1950).

