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1. Summary.,

In this report some glippage tests for variates following various
specified distributions, viz. the normal, the Poisson, the binomiél
and the negative binomial distribution, as well as a slippage test for
the method of m rankings and a distribution free k-sample slippage
test, are discussed. A method for obtaining approximate critical values
at a prescribed significance level €& , such that the true significance
level corresponding to these values lies between & and & -3 62, is
found to be applicable in all cases under consideration. The same
approximation was applied before by W.G. COCHRAN (1541), R. DOORNBOS
(1956) and R, DOORNBOS and H.J. PRINS (1956) to slippage tests for
gamma-~variates., In addition decision procedures are given to select
the slipped variate when we reject that none of the variates has slip-
ped.

In some cases power functions of the tests and optimum properties

of the decision procedures are also considered,

2. Introduction; description of the tests.

A1l the tests dealt with in this)report are of the following type.
1

Suppose we have k random variables
(20,]) » z(_/]’.l.’zk "

which are, under HO, the hypothesis tested, distributed simultaneously
, which may be continuous

with some distribution function F(x .5 X

preee®)

or not,

Suppose the observed values of Xqsee.sX, are respectively Xq,...,xk.
When testing against slippage to the right we determine the right
hand taill probabilities

def

(2.2) a, ZZPE%;in,(kﬂp.um .2)

We reject HO and decide that the m-th population has slipped to
the right if

(2.3) d. = m§n dj;; £/k,
Testing against slippage to the right requires computing
(2.4) €5 = P[éjgéxg] s (J=1,...,K).

Now Ho is rejected and it is concluded that the m-th population
has slipped to the left if

(2.5) e, = min ey = e/k.

T S .

1) Random variables are denoted by underlined symbols,
2) The symbol 28f denotes an equality, defining the left hand member.




Consider now a set of k real numbers BaseeesBy and the probabil-

vy & p[x=ay ],
def .

ities defined by

Pi,j = Plx;=e; and x;=g5] . (14,
(2.6) def P[X .
qi = ___j_ ﬁi]:
def .
qij: P[§i>gi and _7EJ>%J] > (1#£3),

all computed under HO.

Denoting by P the probability that at least one of the Xy does
not exceed the corresponding value &4 it follows from BONFERRONI's
inequality (cf. W. FELLER (1950), chapter 4) that

(2.7) 2 py -2 Py 3=P= 5 by
i i<j i
For Q, the probability that at least one Xy exceeds Bys WO have
(2.8) 2oay - 2 qq .=Q= 2 q;.
1 j=g 12d 1+

Then in each case separately we proceed to prove the inequality

(2.9) Py j=P3iPy »

or

(2.10) 9, 3=%395>
1,

which is equivalent with (2.9) (cf. R, DOORNBOS and H.J. PRINS (1956)).
Of course (2.9) and (2.10) do only hold for a class of distribution
functions F(x4,...,%,). The problem of finding general conditions im-
posed on F(xq,...,xk), sufficient for the validity of (2.9) has only
partly been solved in this report. Besides in some cases (2.9) only
holds for some sets BaseessBy for instance for all gi;;o.

Assuming that (2.9) and (2.10) are true we get immediately from
(2.7) and (2.8) respectively

(2.11) Zpi - 2 PiP = P§Zpi
1 i<y i
and
(2.12) 2oy -2 9a=0s3q
i i<j i
respectively. Denoting ;pra by p (p needsnot be = 1) we have
i
2 —
p=(2..pi) -2 2 PiP +Zp “y 2 > PiPy
i i<j i<j

where the equality sign only holds if all Dy vanish, or

2
> PiPy= 2p° .
i<j




Thus

o
(2.13) p - 3p=P=p
and
(2.14%) ¢ - a°=q=q,

when Z?nqi = q.

]

Now, when testing H  against "slippage to the left" of one of the

k variables the CPLLlCSl region 1s of the form { 1~_g1£,..,, or

<
= bk&}
The values By are determined 80 as to make all Dy equal to &/k, where
£ is the prescribed level of significance., In the discontinuous case
this will in gencral not be possible; there Big is the largest value

which can be attained by Xy with a positive prooablllty, satisfying
5 e - -
(2.15) 5 P[X = i,a]ég/k'

S0 from (2.13} it follows that the probability Pa of rejecting HO
unjustly satisfies

(2.16) 5—%62.%13&5__ € s
or
(o]
(2.17) e'-z(e')= P = &' (e'=Ze!)
L 1

respectively, accordingly as the continuous or the discontinuous case
is considered,

it

Testing "slippage to the right" we get similar bounds for Q¢ ,

the probability of rejecting Ho when HO is true,

3. The slippage test for normal distributions.

We consgider k normal distgibutions with unknown means /Mq,/%éy...a/&
and common unknown variance o ©, From fthesc distributions we have

samples of Nl eeesly independent observations reSpectively.
We want to test the hypothesis

(3.1) Hot pog=...= = fe, 837,

againet the alternatives

(5.2) e R T R A S
' = ks (a>0),

for one value of 1, which is, however, not known, or

(3»3) H2§ /(,(,1—’::.‘T/‘lj',‘=/‘4i+,}=...=/«ck=/¢
Pt /u (o> 0),




wlh e

for one unknown value of 1, From the observations

gbm, . °°B:\§_]_/]n ]

. 1
Tqseessd P
(3.4) 221 2T]2
zkﬂ""’lknk’
the variables
Vo, (y,-7)
(3-5) b" = )R . (iﬂfl e % @ k:)o
— e N 2 3 $ »
* \/ZDJ(YJ“_Y_) + Z (-B—I-lel‘])
J Jsd
are formed, where -
12
Ve = o= L Y.
(3.6) 29 ny 1 =117
y = —— V. 1 2153,

> on, 4,17t a7
j J I
The b, take the place of the variables x; in (2.1).
In the following section we shall prove the inequality corresponding
to (2,9) if B4 and gj have the same sign and it will be proved that

. anj
(3.7) u; = (1 +\V§§ by)
nj-ni
=D -
has a B-distribution with parameters N+E = and N+g 2 s Where N is
defined by
(3.8) N = ‘Zan—k;
or, equivalently, that \hgznj
7 Zn_-n. =i
(3.9) Eiv: N[N+kw£ SR - s
‘/(m__. ZnJ 2)
' - =i
Zinj—ni

has a Student's t-distribution with N+k-2 degrees of freedom, for
i=1,...5K.

Thus the procedure described in section 2 can be applied and the
dj and € values ag defined by (2.2) and (2.4) may be obtained for
instance by means of (3.7) and the methods described in section 6 of
R. DOORNBOS and H.J. PRINS (1956).

In the present case the determination of the minimum d and e
values is much simpler however because these minimum values correspond
to respectively the largest and the smallest of the Uy and thus of

\ /S o,
the - d_ bi and conscguently only one incomplete B-integral has
n.-n,
J i

to be computed. The critical valucs giafor the bi are determined from.




~N
= J L
(3.10) 81, = —ji?;- (2u g/k"1)9

where uéyk is defined by

(3.11) P Ei§1l%4;]= £/k,

Because of the symmetry of the distribution of Yy with respect

to the point 4, the critical values Gi for the test against slippage

3
to the right are ’

an—ni :
(3.12) Gi’e = _zgg—-_ (2u1_6/K—1) = 84 ¢
J

In the most simple case, 1.e. N4 ...=nk=1, our test-statistie
reduces to the one suggested already by E.S, PEARSON and C, CHANDRA
SEKAR (1936) but for a constant factor, Using previous work of W.R.
THOMPSON (1935), who derived in this special case the distribution of
t; as defined by (3.9), PEARSON and CHANDRA SEKAR were able to derive
certain percentage points of max Ei and min Ri without deriving the

exact distribution, They used the same approximation as is done here,
but only up to g,,=...=g, ,=g.= - E%% (or G, 2 K%%), because, 1if
all n, are equal,in that region the probability that two of the
variables, e.g. Ei and Ej’ both do not exceed g, or exceed Ge is
equal to zero. Thus the level of significance is then exactly equal
to & .

The exact distribution for nqz...=nk=1 has been computed numer-
ically by F.E. GRUBBS (1950), who gave tables of exact percentage
points up to k=25 for & =0,10, 0,05, 0,025 and 0,01.

E. PAULSON (1952) proposed the same test statistic (but for a
constant factor) for slippage to the right and the same approximation

as suggested here in the specilal case n =Ny =0, but he gives no

bounds for the corresponding level of sggnificance, PAULSON proved

that in this case the use of max Ei as test-statistic has the follow-
ing optimum property. Let DO denote the decision that the k means are
equal and let Dj(jzﬂ,...,k) denote the decision that D_ 1s incorrect

and that 5 =max (/Mﬂ""’/uk)' Now the procedure:
(3.13) if b > )., select D,
if b = Aa, select D_,
where m is the index of the maximum b-value maximizes the probability
of making a correct decision, subjecg to the following restrictions.

(a) when all means are equal, D, should be selected with probability
T1- &,
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(b) the decision procedure must be invariant if a constant is added
to the observations,
(c) the decision procedure must be invariant when all the observations
are multiplied by a positive constant, and
(d) the decision procedure must be symmetric in the sense that the
probability of making a correct decision when the i-th mean has
slipped to the right by an amount & must be the same for
i=1,2,...,k.
The constant Aa in (3.13) is determined by requirement (a), Our
critical value G, 1s an approximation of AE
The case. of slippage to the left, although not mentioned explicite-
ly by PAULSON is completely analogous and the same optimum property
holds there,

4, Proof of the results stated in 3,

In this section we shall prove the inequality
(%.1) P[Ei‘f—e gy and Ejé gj] = P[}”J_ié gi] . Plp_jégj] , provided gigjgo,

where b, and Ej are defined by (3.5), for all pairs
1,3 (4#3; i,3=1,...,k). Obviously there is no loss of generality in
taking i=1 and j=2,.

First we shall derilve the simultaneous distribution of Rq and
b,. We transform the variables y.,...,y,, as defined by (3.6) into

gqy...,gkngy Vs qu where

oy~
L \.£<XJ ) = 5 (J=1,...5k),
Ve ()
(4.2) 5
Eﬂ‘z 2¢HK21 -3)

There is no one-to-one correspondence between the points
(yq,.;:,yk) and (aq,..,,akwg,sq,y), for, if Vnk_quk_q—y) is replaced
by Vnk(yk—y) and reversely, we obtain the same set of values
(a,lg...,ak Q’Squ)- Therefore we divide the y-space into two parts

and R, such that in R, Ln 1(yk 4—y V% yk—y) and in R,
y oA yk q»y V K (yk—y), then in both parts the correspondence is
unigue in both senses (cf, H. CRAMER (1946), section 22,2)., In both
sub-spaces we shall compute the Jacobian denoted respectively by Jq

and J,. From (4.2) follows that

> VE; ay = 0,

,-

J S

20

4
(%.3) K
>
1

so after somc coleulation 1t 1s found that




-

-VFQ_ j%i? V;‘an+%§_ (1~ Ei?a.e)(n +n )—(Eigl/gia )2
© (L) e k-1 7 i71-""k Rt k-1 "k 1 i71i
n_q + 0
" and Ei? Voo, Ui ‘EE? 5 :Z:v~_
(4.5) o - —Vg; - /nyay Ty g (1= — 8y ) (0 4ty ) = ( ay
Pe-1 P

The signs occurring in the expressions(4.4) and (4.5) are determined by

the requirement that in R4 > 2. Whereas in R2 a s ap 4. The Jacobian J

becomes a
s
1 0 .. 0 R
Vn/‘ Vn/]
i 0 2 g
0 e, i
V& \/
(4.6) 7 = ° e "2
) s a
O O ® 8 n/‘ g—g ’1
k-2 k-2
Bq 984 Bq 984 9 2% Pkt
aa aa ® e ®
/o 1 Vo e Vo 220 Vr;?}
5, PRI 5, 28y 5, 98, a, ,
98y 4
Now —3———-Can be derlved from (4,4) and further it is easily seen
day i
that aa = —== +V —5~~-. Substituting these expressions

into (4. 6) it is found after some calculation that

(s, 7) J =

|
K=-2
< 2 . 2
- 5 B -5 o)
both in R1 and Rg.
The joint distribution of TagseeesTyes under Ho, is, both in R, and

- 1
in Rg, given by their dens1ty function K

'Tﬁvﬁ- - 52 0y (v )"
(4.8) £ (Tqseeesyy) = _M_W o 2077
(2ma=)” . )
k - =
TT vni - Eg‘g {2{.}, Di(yi’y)2+% ni(y-—/«,L)g\}
T eTaf)RZt

Consequently the density function of BhseeesBy_os 8q5F is given
by




(8:9) fologseeosopagy) = o]« |7]] o =
k-2 S Z’)’]"
25n, s, a7 3ot (T |
= oNK/2 T K=o K-2 s
Sl 2 2
(e7a”) »&1~ ;%_ ay )(nk“1+nk)—(zgﬂ/niai)
k-2 2 -t o
it (1= 2_ a.%)(n, .+n )-(>_ Vn. a.)® = 0 and zero otherwise, Where
7 1 k-1""k 7 171

in the following 1t is obvious in what domain a density function is
defined it will not always be stated explicitely.

Thus we see that,§1 and y are mutually independent and independent
of BasevesBy o The distribution functicns of 84
so from (4.9) we get immediately the density function of Bqseves8y o-

Ve, T

=2 Yoy 5 23 %)-(2 Voy;)°
) 1

and y are well known,

(4-10) fB(a’l’ -Jak_g) =

Next we introduce‘the variables

(%.11) a' 'n,e..,2

2.’ _kj
defined by
Vo (y.-y")
(4. 12) 2y = = (=2, k),
A
where
. . &
(4.13) Y o= 20 3
S, °
2

Straightforward computation shows that a' . can be written as

J
follows a4 \/B; \[B“ a
; =) Zn.-n 1 =1
(4.14) a ;= — o (J=2,...,k).
\/1 i _;Ef“ 2
Zon,-n,
The density function of gqﬁa‘g,,.,,gfk_g is found to be
(4.15) f ( ,15__3 23"‘58 k 2) = { an 2 1{-—4
{1 - . 8 2
xKE“ k 1) Vo Eini*nq ’J

k 1)/2 =2 K=o

s Vo ) 2 (a)?)- (> Ve

2




-

() e

S0 a4 is independent of g’g,,,. a simultaneously and conse-

{
S k-2
quently also of a', alone, From (4.15) it is found that the density
function of a4 reads
— kA - k-l
| 2.0 =) 4, Zn 2, "o
(4.16) f(aq) = F [Fets) V?: <1m — 81 ) ?
2oy [(==) V) Z'n;-n,
n.-n Sn.-n
(__\/E.E__.igaq |20y
o = ==
2,ni 2-mny
Because g‘gy...i'kmg are the same functions of Ipsesesy, @S
Bqseses8y o are of Jqseees¥yo the dengity function of 3’2 has the same
form with k replaced by kmﬂ,iz-ni bij ;Z'ni—nq and > n,-n, by

:Zni—n4~n2. Because a4 and 3*2 are independent their joint distribution
and consequently the joint distribution of a, and as follows easily,
using the transformation (4.14) with j=2. It is found to be

Sn,
(4.17)  ela,.a,) = \/37 - =l
2.0 -n,-n,
T K-
2.0, -n, - ann2 S, -n, 5 5
; . 1 - = a, - = 8485 a5 o
2.0, -n,-n 2n,-n,-n, 204 -n,-n,

The function g(aq,ag) is valid in the domain where the expression
between braces is positive.
Returning now to the b, it is seen from (3.5) that

a .

-1
(4918) : p—l = -—:-?-—f:;f;?: 3

Vo 2

54

where
o —

(%.19) 5 = ;l_ <ij1 - lj)g .

As is well known g? is distributed independently of 24""’Xk and
consequently of 34""’§k~2 and 312 simultaneously. Further E?ATE has
a X  distribution with N(:EZni«k) degrees of freedom and §12A72 a
%’2 distribution with k-1 degrees of freedom, while §42 is also in-
dependent of a,,....,a, , (cf. (4.9)). So
(4 20) o= k-1 ﬁ? _ k-1 G

. F == §42 = = -G, say,

has FISHER's F-distribution with N and k-1 degrees of freedom, while F

and consequently also G are independent of iﬂ’“"’ék-E simultaneously.




oy

The density function of G is known to bhe

Nk N-2
(%.21)  f5(a) = D T NTE=
) M(527) g4y —2—
S0 the joint density function of 845 85 and g.is
N-2
< N+k-1 —
/ Z‘Hi F( 5 ) G

(k.22) fela,,80,G) = |/ . T - K-
ottt Zogeogny TR TERD) T (g T52

< - A
S n.-n 2[ n,.n S n.-n k-5
.= 1 2 aqg— — 12 8485~ alile SN 822 2.
zfni—nq—nz S Efni«nqmng
We have
(4.23) ({aq = Ve v,
a o — Vaem
Iag = y%+a D, .
The joint distribution of bq, b2 and G becomes
7 = N-2
\ [ >n, (R ="
(4.24) £ (b,,b,,G) = S : 1 .8 .
[ | Sy T ) T gl
1772 2 (1+G)
( 20470 o 2lnyn, Sni-n, )R
1-(14G) | —=F— b, = b, by + =D, .
‘Zhi~ﬂq~n2 20, -n,~n, Ekﬁ~n1An2
The joint density function of b, and b2 ié equal to
e N -
(4,25) h(bq,bz) = 4) fT(bq,bg,G)dG.
0
This integral has the form
/‘
= -1 a b
(4.26) I = ¢ JC ‘f/l-—C(’l'%G)} G dc.
1 5 (,]+G)a+b+2
In (4.26) we make the substitution
(4.27) 4G = b,
(1-c)v+e
which gives for (4.20)
A
(4.28) I=c, (1-c)*™ v (1) ey =
0
_ Cq(qﬂc)a+b+ﬂ [ (a+1) [(b+1)

[ (a+b+2)

Applying this to (4.25), where




-

(4.29)
we find

N, N4k -3 }‘n,-n
(4930) h(bq,be) = S X {’l - -;-]-'-—--g-..— b,l2 4o

_ \)jfni-nq-nz 27 j{ni—nq—ng
N+k-~5
- 2
2 n,n, . 2n n, N o ’
172 2
Zni—n,l—nz Zni—n,]--n2

1f the expression between braces is positive and h(b b2) is zero
otherwise,
If we apply the transformation

ngﬂ

(4.31) Eé = STh. ?
V1 Syl S
>ny-n, =1

analogous to (4.1 4,41t appears that Eé and 21 are independently distri-

buted and that the density function of 24 is glven by

N4k~ N-tk-4
Sn, T2 1 20y ) °
(#.32) p(bg) =|—= T {1 'mb’l}
Zni-—n,l ["(N'Hr{:-Q) T 1 1

2

and that b! has a distribution of the same form with k replaced by k-1,

)
>n, byifn -n, and >n 370, by Aqni~n1-n2 . It is easily seen that (4.32)

canlbe transformed into a symmetric B-distribution or into a t-distri-
bution by applying respectively the transformations (3.7) or (3.9) for
i= 1.
The reglon where h(bq,bg) differs from zero is b ded by an éllipse
(cf. £ig. %.1) with principle axes of length 4 and V Efn? 2 » whose
i

directions are given respectively by the lines

nb, +-VH1 = 0,

4.33)
( Vn n b + n b

0.

il




-12-

_Vrnmb +m bzo
12 1 1 2

hi(g) x 91 Ay N
S
\ Zrn--mi-'rl;\ by
Emy - Mgy
4 9
/’/:‘/// i ?
//v /e
s /{ y
//
h, 64
_ 2m, -y -,
e -
— 'nib1+ L) bzzo
Figure 4.1

The region where h(bq,b2)3>0

We now proceed to prove the inequallty (4.1), We suppose that both
g, and g, are < 0, This is no restriction for when (4,1) holds for a
pair of vg}ues &4 and gzyﬂmainequality PE91>’"31 and Eg> —gé] =
= P[g1>—g1J.P[g2:»gélholda also for reasons of symmetry. Consequently
(4.1) is also true for ~24 and -g, vecause of the equivalence of (2.9)
and (2,.10). Further we may assume that the point(gq,gg)lies within the
ellipse of fipgure 4.1, because otherwise P §4§;g1 and Eggigg_ = 0 and
(4.,1) is obviously fulfilled, We shall prove that in the (gq,gg)—region
considered (4.1) holds with the < sign.

= N4k =1
c agb\/iij“i (= 1
/] Z /"‘(N"Fk"‘2> \/—7}_ ?

We put

0y =y 5
L, N+k-1
c, app\ [ 20 [ 2 2) 1
il ‘ - B N+k - Vir
5(+'34) Z}H.HE ([1§+k12

S Y e B ) 4
1 Ntk - = s
Sn, -n, -0, f(--g—~3-) Vir

— — o N+k-2
abb \/2—“1‘“4 [(—=)

Sn,-n,-n, f(ﬂigli) Vir




-3

Further we introduce the function hq(y) and hg(x), which are

defined respectively for

Sn.-n,-n >n,=n_ =n
e 2 <2y=0 ana -/ 212

‘ = x= 0,
z:ni—nq ani—nz
by the properties that respectively the points (hq(y),y} and
gx,hg(x)} belong to the ellipse of figure 4.1,
Now we have
<2 < —
(43ﬂPﬂ%:&1mdgng-—
&2 84 \ —— N+ -5
= clc o e e v 2
172 2 Zny-n,-n, 1 Zny =n,=ng 1772 In; =N, -, 2
hg(gq) q(bg) o Nk 5
&q o Sni-n, o 2V nn, Sn e, o TTE
= ¢ c) db (1-e————b "~ = Dy s . ) db
172 1 Zna-n,‘—-n2 1 z.ni-n,l—n2 172 Sng=n,-n, 2
h/‘(gg) he(br]) .
Applying the transformation (4,31) one finds
< o
(4.36) P[ﬁqzzgq and Egg;géJ = o
(et anneb)/yq-‘ ani o
g i 22 Sn,-n, 1 N -nq 1
1 N+k i1 Ntk =5
: - 2040y o T
= cqep ) Ab (1= i) (1= == (b5) ) do! .
i 1 i1 2 2
hﬂ(gQ) \En -1, =
_ i1 2
>N, =-n

1

In the same way, applying the transformation

\/n,n
12
ba ¥ Re
(4.37) bl = ,
- SN
VA i SN N
Zni—n2 -2

it is found that

1

2.




e

V“1“2 V‘ =0y o
//'gQ : Sy )N+g {Fbﬂ,Zn - QB n2b2 N4ke-5
= c,C}t db,( 1~ =D
2¢1 oV 7 Sy e ot e ( (b,>2) 20! .
hz(g,‘) e T Zn 1 1
nl‘n

We have to prove

(4.39) QNngg)dg%{p¢ gJ [ 59!}' ﬂﬁ4§%18ndbgéé;%>0-

First we have

S Vﬁﬁgtaﬂ'“g
(4‘40)(P(“ _—Efﬁ;:ﬁ;* 5 %2) = P[bq—— *Egazfﬁ"- . P EBQE_gé] - 0>0.

2

Now we consider (cf. 4.38)

g s, -n T Sh, ~n, o0
2 — N4k -4 i 2 i N+k-5
J/ﬁ >n, . §:%i~n2

ol ’L\— -

is monotonously increasing in b

V1 Lz e g




e

Thus

(1, 42)(?(0

0 sn N+k =4
(0,82) _ 1 i 2,2
(4.43) dz,, 201 - sEmagge ) +
Viqno Jq_ 2Ty 22
. N-+k =4 Zn;-hp 20y ~tp EZH -, N+k-5
- cyeh( —Lgo © ('t————-—-»-—-———('-j’L b))edbiz
271 20 =Ny 2 Zni—nq 1
| e -
PATRETIIS
2
= oo - Eﬁ"fﬁ"gz) Pileg)s sev.
Clearly gbq g2 is a decreasing function of ¢2 and as qh = 0,
we have
d(p 0,g >n,-n_-n
2 i1 2
(B.4Y) =20 (- g =8 = 0) .
g2 z:ni--n,l 2
From (4.42) and (4.44) it follows that
ST, =N, =N,
12
(4.45) ¢)(Os%2):>0 (- —3552:5:— =g,= 0).
Next we consider (cf. 4.30)
£
2
o 2By s, gt [F s, e
(4.40) 5 = o (1= s B9 o (1~ sa=Pe) TP
&4 i1 Sn.-n 172
i 2
;Zni
/n, n S,
172 i 2
et - % Sh e
-0 Nk-h [ 2 2Ry 20y “gn"_n N-+k =5
- C C'(’I - _2_“___.1_...@2') e (1 - i1 (bv)e) 2 db! =
172 z_ni-n,1 1 zni—n1~n 27 2
Zhy =0, =0, :
Zn;-n,
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The partial derivative with respect to &4 of the upper bound of the -
second integral of ¢2(gq,g2) is

>n.
R4 2 1
Zni:hq * E180- Zn,=n,
(4.47) 5, 3 >0, if 2,8, 2 0,
(1 = ——~:—“€ )5
>ny n,l

thus (Pg gq,gz) is a decr6881ng fungﬁignnof &4 in the domai?ggngg
consideration. Further (1 - iﬁf—ﬁfg ) 21s positive. Thus é is
everywhere negative, everywher% p031t1ve, or positive up to a cgrtain
point & (depending upon gg), say, and negative thereafter, So in virtue
of (4,40) and (4.45) we may conclude

>n.-n,-n Sn,-n,-n
1 2 i1 72
(4.48) (g.,8,) > 0, (- —==——==g. =0, - —_——S =g, =0) .
CP 13 ©D s Zni-ng 1 d Zni n,l 2

5. Slippage tests for some discrete variables

In this section slippage tests will be discussed for variates which
follow the Poisson, the binomial or the negative binomial law. Flrst we
shall consider the Poisson case in some detail, Suppose we have a set

of independent random variables

(5!1) Z—q""’gk’
distributed according to Poisson distributions, i,e.:

Y
- /4

— A l
(5.2) P[__z_i = zi—J = Q_E.{/f;.;___. , (1= 1,.,.,k),/ui>o .

Now we want to test the hypothesis Ho that the means e have known
ratios '

A s
(5.3) H s ;/i =p; (i=1,..0,k).
J7

This situation occurs for instance if from k Poisson-populations with,
under HO, equal means unequal numbers of observations are present and
ZgsesesZy represent the sums of these observations. In this case the Py
are proportional to the numbers of observations. Also k Polsson processes
with the same parameter may be observed during different lengths of time.
Then the p; are proportional to these lengths of time.

We want to test HO against the alternatiwves

A i 1 ~-CP4 .
(5.4) Hyt é;%f = CP, s éﬁ = 1qigl.p1 (1#1), 4<c<féL , ¢ unknown,
R Vi i !

for one unknown value of 1 or




T

M /1 _ =cpi

(5'5) Hi: 3 = CP; 3 = ~
2 2 i j/ﬁ 1 Py

for one unknown value of 1,

D4 (1£1), 0<c<1, c unknown,

K are

independent Poisson-variates with means//ﬁ,..., 1 then the simul-

Taneous conditional distribution of ZgseeesZy given their sum (i.e.

A well known property of Poisson~variates is: If Zaye sl

Zgi = N, N a constant), is a multinomial distribution with probabili-

ties p, = 3?3—-and number of trialsi;gi = N. As the hypotheses (5.3),

i o [
(5.4) and ﬂ”.&(B.B) only contain the ratios 1°H it seems natural to use
a conditional test for HO, using only the multinomial distribution

Z .

Tfpl s ifozi = N and O

N!
zi !

(5.6) P[éq = Zgs a2y = 4y [Zzgo= N] =
otherwise.
From tuis 1t is clear that a test against slippage for Poisson
variates is closely related to a similar test for a multinomial dis-
tribution, The reader may easlly translate the tests stated here into

tests for the multinomial case,
In the next section the following theorem will be proved.

Theorem 5.1. Suppose the discrete, random variables

(5"7) E’]""JELC

are distributed independently and can take integer values only (the

latter assumption is not essential but gives a much simpler notation).
ir
> - - =
(5.8) PFuy - uy -y = e

P[?fgl - Uy - u = a+4] ’

where a is an integer, is a non decreasing function of a, then

DAY =N],

I > = -1< . > X*‘ = 1 [ >
(5.9) Pf:t}_i*_ui and Ejg U.J)Z_l:l_l HT_PL\_{iN uy > u; = N|.P p_j;‘:_ v

for every pair of integers uj and Us and for every non-negative

integer N.

In the special case where Uysewosly are distributed according to
the same type of distributicon and this distribution has the property
that a sum of k independent variates has again the same type of dis-
tribution, it is easy to verify whether condition (5.8) holds or not.

In our case the sum of (k-2) of the variables 24 (given by 5.2)
has a Poisson-distribution with mean i, say. So condition (5.8) reads

(5.10) e 7 pd (a+1) ! _ a+1
[] ¢ e A - 3
al e,cua+1 e
is non decreasing in a, which is clearly true.




o | & e

Thus the inequality (5.9) holds for every pair Ei’zg and the
procedure described in section 2 may be applied to the variables

1)

ZaseeesZy, under the condition ZZgi = N, Now the marginal distri-

binomial one, so when

o]

bution of z; under the condition ngi =N is

testing H_ against H, we compute, if z ..,2,. are the observed values

nz By 1 17
and 2~Zi = N
N
ﬂef > Sl - ] — > N X P N‘.X: N"Z,,‘{'/] ®
(5.11) r]_ = PZ-Z-]_: 1]Z 2y = Nj = —}%:Z<X)pi (1 pi) Ipi(zis + )
i

Now HC is rejected if

(5.12) min r, = g
and then we decide thatjigi >7p,. if j is the smallest integer for
i

which rj = min T
If under H_ = e =M. all py are cqual and the smallest v,

corresponds to ;he larzest value 23

The test for slippaie to tne left is completely analojzous.

A table of critical values for max zZy is given in section 11 for
the case pq = p2 o, 4 pk.

Alon;, the same lines as was done by R. DOORNBOS and i.J. PRINS
(1956) in the case of [ -variates it can be shown that the probability

.th

QJ of making the correct decision when the j population has slipped

to the right (i.e. H, is true with i = j) satisfies the inequality

g

G é i WWGL-V

(5.13) Icp (G

B g i mer e b ) o e e wow J

1) The validity of (5.9) in the case of Poisson-variates can alsoc be
proved in the followingz way, using the relation with [ -variates. The
well known relation

N
AN N
P[ 22,5z, = @] > (e (1-p ) 7F=
15 %1 iz, 1 1 (z,=1)
can be generalized to

N

oy o = N 1
(2> 'Z"" e 2‘-‘ X ‘oo-qX l-(?N ° p
/]——Zi/] szzi 1 r

r

g% zi;ﬁ ;H:ﬂ N-—zi,.wz1r
® u-,] oonur (/"‘ul/zann“'u-r> du,]noﬁcul,;g

N}

a"/l)Lnn'(zn*‘/‘)L(N"‘Z»“utu"Za )ll
l,] 11" l,l lr

3
e
Op\
T
o pe
O,

Ye( Ty eansk))s

which may be proved by induction or otherwise. Using (2) for r=2 it is
seen immediately that inequality (4.10) in R. DOORNROS and H.J. PRINS
(1956) is the same as (5.9) for Poisson variates,

(r<k 1s ( 1”“’1r
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Here Gl P (1 =1,...5k) 1is the smallest number which satisfies
(5.14) P(:z 2 Gy E}ZZgi = N, Hol =
or
(5.15) Ipl(Glgg, N—G1,£+1)§ e/k,

Clearly Qj converges towards its upper bound when c->4/pj and for
K-
each ¢z 1 the factor between square brackets is larger than 1 - ﬁﬁi £,
according to (5.15).

In the case of slippage to the left we have analogously

(5:96) [1-1ep (5,00 womy o+ (-6 2

[}—I (g, ., N-g, +4i} %—zi;{%—l (g. ., N-g. +4ﬁ
L TCPst T s Js€ . 7x 1=-Ccp . i,e i,e
1#] Ip,

i 1
—pj

<P, =1-1 +1),

., N-g
=F; = opj(gJ,E’ &

Jst

where g 1 =1,...,k) is the largest number satisfying
1,¢e

o : - c £
(5'17) 1T - Ipl(gl,f+/]’ N gl,f)ék s

We can apply theorem (5.1) also to the case of independent
variables

(5.18) VseeesYy s

which are distributed according to binomial laws with numbers of trials

N,;es050,  and probabilities of success DP,s;e..5D,,. Now the hypothesis H
1 k 1 k o)

is

(5.19) Hyt Py = «ee= Dy =D, 83y

and the alternatives are

[63}

(5.20) H,‘: D,‘ = %llt /\ pl+/‘ ..=pk=p s

p; = cp (1=c=1/p) ,

for one unknown value of i and

!

(5.27) Hot Pq = eee S Py g = Pyyq = eee S0 =P

%_=cp(O§céﬂ),
for one unknown value of 1.

Because, under H_, the sum of (k~2) of the variates (5.18) has again
a binomial distribution with number of trials, n say, and probablility of

a successg in eaeh trial p, the condition (5.8) of theorem 5.1 reads

n,_a n-=a
a + — _1 - - @
(aiﬂ)pa 1(1_p)n a n=-a e
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is a non decreasing function of a, which is true., So in this case also
the approximation procedure described in section 2 can be applied to
ohtain a conditional test for slippage under the condition that the
sum of the variates Z?Ei has a constant value N, The conditional dis-
tribution of vy is a hypcrgeometrical one

N 2T L=,
(3})( Ny 1)
i

1
N,
"y d)

2y = ﬁ] -

, (vy20) ,

(5.23) P [li = v,

so with help of this distribution critical values for the tests with
prescribed level of significance may be obtained, in the same way as
was done with the Poisson variates,

Provided that none of the values 0y, zinj-ni, N andj{nj~N are very
small, a good approximation to the sum of the tail terms of the hyper-
geometric series of equation (5.23) magube obtained from the integral

i

— and variance
n

under a normal curve, having the mean

ni(an-ni)N(an—N)
2/
(an) (ZHj—ﬂ)

In the special case n, = ,.. = n,. = n, the test procedure for slippage

1 k
to the right reduces to comparing the largest variate Vo with a constant
vy determined by the level of significance &, such that v is the

largest value satisfying

5 — N | =< EN-
P Elig‘QJZ"Y& N=E Ykl
The same holds for the variates

(5.24) WsenesWy s

which are independently distributed according to negative binomial

laws, with parameters TyseeesTy and probabilities DysevesDyos i.e.

i W.+r. =1 1. W,
i 71
i

1 1

where T is an integer 21 and O§§pi§§1, whilst pi+qi = 1,

(5.25) P [ﬁi = W,

The hypothesis HO is

(5.26) Hyt 94 = «e0 =0qQy =0, say

and the alternatives are
(5.27) H/l: q,‘ = s we T qi_/‘ = qj__y} = see = qk = J,
q, =ca (1=c=1/q),

for one unknown value of 1 or




2w

(5-28) HQ: q,]=ats=qi/]=q~ =ttv=C1k=q’
q; = cq (0=c=1),

for one unknown value of i,

The hypotheses are gtated in terms of the qi and not in terms of
the Dy in order to obtain that slippage to the right of the ith popu-
lation corresponds to a large value of Wy

Under HO, the sum of a set of independent negative binomial
variates has again a negative binomial distribution with the same
probability p (or q) and a paremeter r, say, whih is the sum of the
r, of the individual variates, So condition (5.8) gives here

7
{

(a+r—1) r_a

paq S
(a+r) r_a+ a+r*q ?
r-1/P 9

is a non decreasing function of a, which is true if r =21. Thus again
the method of section 2 may be applied, The conditional distribution
of w, under the conditioniiﬂj = N, has the form

AT =y N2 =W, v, =]
("1 i)

. r.,-JI >ry-r.-1
(5.30) P [W-i = wi\Z_via = Nl = — e ,
J (N +ZI’="‘/I)
er-’l‘} (W, = 0,1, 000,N).

The critical region for the test against H,l (5.27) consists of
large values of the variables Ei' In the case where rq = ees =T the
test statistic is the largest variate W when testing against slippage
to the right and the smallest when testing against slippage to the left,

If in the case of the variables (5,1), (5.18) and (5.24
folds thatb Dg = een = Ppy 04 = ewe = 0y and Ty = eoe =T
respectively, then in each case the following optimum property can be
proved.q) As in the cage of the normal distribution we denote by DO the
decision that H  is true and by D, (1 = 1"‘éﬁk) the decision that Huy
is true, i.e, that H, is True and that the i population has slipped

/]
to the right, Now the procedure:

Em:>>%,N select D_,

(5.31)

if P—mé/\e,N select D_,

under the condition that;ZEa = N where u stands for z, v, w according
as the Polsson, the binomial or the negative bilnomial case 1s concerned
and where m 1s The index of the maximum u-value, maximizes the probabil-

o gy mp end wse v mvy 08 poow ORE

but all statements may be easily translated for the other case,
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lity of making a correct decision when H,l is true subject to the follow=-
ing restrictions:

(a) When H, is true, D should be selected with probability = 1- £,

(b) The probability of making a correct decision when thei-th popula-
tion has slipped by an amount ¢ must be the same for 1 = 1,...,K.

The constant >é N in (5.31) 1s determined by the level of signi-
ficance ¢ and depends on N, the sum of the variables,

In the binomial and the negative binomial case this optimum pro-
perty follows from

Theorem 5,2. Suppose the discrete, random variables

5.1"..,25.}{

are under H_distributed independently according to the same distri-

bution function, then for each value of N, the procedure (5,31) is
optimum in the abovementioned sense if

(5.32) P[zxj.:xm:]j]

PE§i=X\H6] ’

is a non decreasing function of x for every 0.1)

This theorem will be proved in section 6.
Applying it to the two distributions under consideration we get in case
of the binomial and the negative binomial distribution the eonditions’
that respectively

() (ep)*(1=cp)™* b % e
(5.33) }(‘n) e (SR ¥ (22207, (o 1)
X
and
(XN (1=ca) T (ea)® )
(5.34) (;ir%1)(1_q)r - (T2 7", (e=>1)
T

cre non decreasing functions of x, which i1s true in both cases.
For the Poisson distribution a separate proof will be given 1n
sectivn 0.

6. Proofs of the results stated in section 5 aund a general condition
for the inequality (2.9) in the continuous case.

Starting with the proof of theorem 5.1 we have that
P[uy=y] P[u;=x] P[Z uy-u-a=N-x-y]

P[Ei=i}P[gj=x+i}P{ZfEl—gi-gj=N-x-y-i]

P - R

1) In case of slippage to the left (5.32) should be non increasing.,

(6.1)




“23m

18 non decreasing in y, according to (5.8), Dividing (6.1) by the factor
P§§221=N and szxj

(6.2)
P[S uy=N and u_ =x+1]

which does not depend on y, (6.1) changes into

P[Hi=y)§:3i=N and Ej=x]

(6.3)

P[Ei=V}Z:Ei=N and gj=x+11

Thus also (6.3) is non decreasing in y for all values of x. This
means that there exists a value Voo which may depend on x, which has the
property that

(6.4) Pwéi=y{2jgl=N and Ej=%]§; P[ri=y}2f21=N and Ea=x+1) s if yéiyo s

PE&i=y&ZfEl=N and Ej=i];§ P[Ei=y‘Z:gl=N and‘gj=x+1] , 1f ¥<V, o

llLiijﬁdh%H:j

y, —y
fig. 6.1

Pt51=y\z~11=N and gj=x] (dotted 1lines),

(

and

Plu,=v|5 u =N and u =x+1]  (full lines),

This siltuation 1s sketched in figure 6,1, It follows that for each value
Uy ’

(6.5) P(x) def‘EZ: P[‘ —y u;=N and Ejle
is a non increasing function of x. Now

(6.6) P[u >’u and uJ u 4_u1~N]
o P[-‘ijéuj Zﬂl”ﬂ

xgujp[ﬁfx ba El:N];%iP[l%i:Y\Z u; =N and u = x |

[=2=] [.‘ 3 N
é%P%*hm4l
S v\~ — 2 ._]
= £ P Ei“y\a_gl—N ana EJ-uJ .
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In the same way we have
Plu. >ulandxb<11|711~wj>>zz
P[£j<:uj‘2~glfNJ y=y

(6.7) Ptgi=y\§:g&=N and Ejzuj] .
From (6.6) and (6.7) it follows that, in the notation of (2.6),

where ui=g1+1 and uj=gj+13 whilst Yy under the condition 2?31=N stands

for x; end u, under the condition 2 u,=N for ESP
(6.8) Eia; = 37, 5

g. T 1=q. ?
or J J

which proves the theorem, because (6, ) 1is the same as (5.9).
Following a somewhat similar line of thought in the continuous
case we arrive at the following thecrem:

Theorem 6.1. Suppose the random variables x and y have a joint distri-
bution, which is given by the density function f(x,v). Now the inequality

(6.10) P[gc_“—fw_a and yéb]g_ P[}i;’_al P[;_r__g_b] i

holds for all real values a and b, if

(6.14) f(xq,yq)f( 2,y2) f(xg,yq) (x 1,y2), for x,=%, and y,=7, .

Proof: From (6 it follows that
6 12) f» J/ /fi // V) T (Xps V) =f (X0, v ) £(X,,V 2}
oo ylewce xua “;f?‘ Xq07 ) E (%0595 02 V) E E 70
dquyquzdyeééo.
Or oo co
a b
(6.13) J f. £(x,y)dxdy £(x,y)dxdy
K= CO y:-oc w=a -:-,-=‘
oo b -
A :
jﬁ j/ f(x,y)dxdy }/ // f(x,y)dxdy .
X=a y=m=moo K==0C0 y=b

Adding to both sides of (6.13) the product

(6.14) }f J/ £{x. v\dxmy' ]/ j/ X,y)dxdy,

e (OO y,-—:tf‘

_/

(6.13) passes into
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A
ll\
o
4
>
‘a
5
o
>
o
<
»
8
M
S
s
o
>
o
o
L")

or

(25w}

j/a bf(x,y)dxdy J[a J[f(x,y)dxdy

(6.16) E==2 J=-= X==co y=b_

/»é J(bf(x,y)dxdy f/ }rf(x,y ) dxdy

w00 Ym0 K=wco Y=bD

A

or

(6.17) P[g_ia}ggb]§f>[gc_§ajy>b],

which is equivalent to (6.10) (cf. the transition from (6.8) to (6,9) ).

Remark

Thg condition (6,11) is certainly satisfied in the special case
0°logf (X,7)
0 Xy

For (6.11) says

where

exists everywhere and is everywhere non positive,

(6. 15) f(x4,51) = g(xq,yz)
Xg:yq) Xg:yg)

If x, =%, and y,= Ve
1 2 1=v2
f(xq,y)

> ] 3 _,E__ 5 -
(6.1&) holds if 6:‘\/*. m?_—o if x/‘zxe
or
(6.19) ayf(xqiy)-f(xgsy) - f(quy)ayf(Xg,y)géo ir xqﬁfxg v

The inequality (6.19) may be written

dlogf(x,,v) dlogf(%X,,V)
12 = 2N IR _

(6. go) a;\}-f e ;):y 1f K,l:: 2 5

which is. certainly satisfied

a 1ng (X y
3 3 ) = 3 - ~
if 3 55 = 0 6VCI‘yWhel”6 .

If f(x, v )0 (x0sV0) 2 f{x5,7 ) F(x,7,)
everywhere, where X = Xy and V4= Yo

then ﬂﬁéaamiléd = nga].Plgq
wngtead of (6.10).
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Theorem 6,1 does not seem to have many practical applications.
As an example we may consider the bivariate normal distribution, where
the density function has the form

) [1/“1 2_201/’1 o7, Tol 2]
(6.21) f(xq,x2)= 1 — ¢ 2(1 ) 1 72 72 .
210, 6’2\/’]-—/0"—

Here we have

22 P
s—s——logf (X ,,%,) = 3
BX,IBXE 1 2 0*1 6—2(1‘P2)
thus the inequality (6,10) holds if the correlation coefficient P is
negative., This case of the inequality (6.10) was recently used by

H.A. DAVID (1956) but no proof was given.

(6.28)

The proof of theorem 5,2 follows the lines indicated by E. PAULSON
(1952) and D.R. TRUAX (1953). It consists mainly in showing that for any
¢y, N and p or g there exists a set of non zero a priori probabilitiles
EosBqsesesy s which are functions of N andp or q so fthat, when 8y is the
probability that Di is the correct decision the decision procedure
described in section 5 maximizes the probability of making the correct
decision. Assuming this has been demonstrated, it follows easily that
(5.31) is the optimum solution. For suppose there existed an allowable
decision procedure, which for some ¢ and N and p or g had a greater
probability than (5.31) of making the correct decision when some cate-
gory had slipped to the rizht by an amount c. Then this procedure will
nave a greater probability than (5.31) of making a correct decision
(for that values of ¢, N and p or g) with rcespect to any set of a priori

probabilities, with max g.> 0, which would be a contradiction.
1=i=sk
According to A. WALD (1950), pp127-128 the optimum solution is given

by the rule:"For eachj (j= 0,1,...,k) decide D, for all points in the
sample space where j 1s the smallest integer for which ng =

max {g f ,51f1,u,.,5k k’} where fJ is the Jjoint elementary probability
law of KgsoonsXy under the hypothesis H

We consider the special a priori dggtribution go=4—kg, Eq = oo
g = & For ewample the region where Dq is selected is given by the
points in the sample space where f,]>fi (i = 2,...,k) and gf1:>(1-kg)fo
The region wherc fq )f is given by _
(6.27 Rlegmg | Haq ] - Plmem i) Pl ] Hlmen s q’li]’
Plzx v |y, Pl w)n 1‘1]

(ZiizN)
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Because x <X, have the same distribution and on account of the

,lgno

form of the hypotheses H”i we have
I

P{;Z§i=Niﬁﬁjj is ths same for j = 1,...,k ,
(6.24)13[ X, =x izyﬂ: ?xl—x \H?] for j = 1,...,ks J # 1,
P[ §i=xlﬂqi]= Ptﬁﬂlequj s for 1,5 = 1,.0.5K,

Pl xy=x|B, | = [ =xn ], for 1,5 = 1,...,%.
With help of thuese relations (6.23) reduces to

- Ko FA 44, ng_e-’:Xq‘H .
( 6.2 5) mt,&‘(;._,-f‘.‘__.ji‘;]“ ~ A l] ,

which is equivalent to x4 >%; on account of the condition (5.32) of
the theorem.,

Tne region where gf

P[k qul jn,GP

(1~ kg)fo is given by

lhf E P2 = 1‘HQj"'P[ék=xk}Ho]

/‘
1c~

(6.20) g S S k) ,
Pjéﬂx -q[ﬂM] P[Z§i=NlHO]
or, on account of (6,2%) by
(6.27) ] s e
P[z:./,:fxq‘(Ho] PLZ- %, =] IHO]
In virtue of (5.32) this is equivalent to x,>L, where L is a

1
number depending cn N, a@uu oo (Lmay vte+eo), Thus the Bayes solution
is: 1if X is Tthe maximum of KasosnsXy sclect Dm if Xm;>L, otherwisec

select Do' Define the furction Fl(z) by the equation

(6.28) F(g) = - .‘_i‘ﬂi;,.f,.,ﬂrf« NSO Ak om0
3 . I3 < —
P[§4“/\3N i, ) Pi?ﬁ - 1H§]
where ) is the constant used in (5.31). It is obvious that F(g) is a

&N A
continuous function of g, with E(éjz>o and that there exists a d with
. * .
O<:5?iE such that F(d) <0. Hence there exists a value g* with
s, ) .
O<TJ<:Q“<Z%-SuCh that T'(g™) = 0., To get the Bayes solution relative to

7 %* EeoL : . . R
(1—kgﬁ, Yy eney2 ) 1t 15 only necessary in the solution given above

to replace L by A Thus the procedure (5.31) 1s the Bayes solution

SN

relative to (1-kg™, g“gnqsggx), which proves that 1t is an optimum one.
In the ca 564@L the Poisson variates (5.1), with under HJ (5.3)

Pg = see = by = §15 we start directly from their joint distribution as

ziven by (5.0),

-t

shich vends in this =spc2i=1 case:s
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_ N 1\ N

fO(Z,],...,Zk) - 7-/—211. (E) 3

(6.29) Zi N-Zi
N! 1N k=C

fi(zﬂ""’zk) = R ()" e (ETT) (1<c<k),

Because
3 Zi K- N-2zZ_

(6'j0) c (E‘:“%‘) 8 9

is monotonously increasing in Z4 for 1<c<k, WALD's rule may be applied
in the same way as was done in the preceding proof as also herc
the regilon where f1:>fi is gilven by Zy>2y and the region where

gf1:>(1~kg)fo by z,>L, L depending on N and c,

1
(. Slippage tests for the method of m rankings

In the well known method of m rankinzs due to M. FRIEDMAN (1937)
(cf, M,G., KENDALL (1955), chapters 6 and 7) m "observers'" are considered.
Each observer ranks k "objects", The method of m rankings enables us to

investipate whether the observers agree in their opinion about the ob-
'jects. For that reason one tests the hypothesis HO, which states that
the rankings are chosen at random from the collection of all permutations
of the numbers 1,...,k and that they are independent,

Here we present tests which are powerful especially against the
alternative that one of the objects has larger probability than the
other ones of being ranked high (or low), whilst the other (k-1) ob-
jects are ranked in a random order, We denote the sums of the m ranks
of each object by

(7.1) _S_/lj.tlg_s'k: F] (méiif__km),
Obviously we have

(7.2) S 8.

1 = zmk(k+).

In section 8 the following theorem will be proved,
Theorem 7.1, For each pair s.,s. of the variables (7.1) and for every

dJd
pair of integers Srigj the following inequality holds under HO

-

(7.3) P[ij_-%si and g,j—gsjjé P[_s__ig s,j],P[_s_Jg_ SJJ‘

So we can apply our approximation method for obtaining slippage
tests for the variables SasesesBye Because the marginal distributions
of the 5, are all equal under HO, the test statistic for the test against

slippace to the right is max g, end for testing against slippage to the

i
left min Sy The critical values are determined by the smallest integer

S8 satisfying




elo

< ¢

(7.4) P[gigséj_ /&
and the largest inteper 8¢ satisfying
(7.5) Pls=s. ] e/,

respectively.,
The distribution of 54 is easily seen to be symmetric with mespect
to the mean value Zm(k+1), so we have

(7.6) s¢=m(k+1) - 8, .

In section 8 1t will be shown that the distribution of s,, under Hos
reads *
- = my ;n-kx =1 X, =M ;. . - 1
(7.7) play=a) = 2 b (M ()R (19, L kins nz km)

where ,y is defined by
ly =0 if y =0,
(7.8) ly =1 if y > 0.

The tables of critical values s
bagsed on this formula.

g ,presented in section 411,are

8., Proofs of the results of section 7
First we shall prove theorem 7.1. We suppose that both S5 and Sj
are 1lying between m and km, because otherwise (7.3) obviously holds

with the equality sign. For m = 1 we have

5.8, - min(s,,s,)
= = = = L J 1 J
P[gi: Sy and Ej__sj\m 1] ) 5
] S,
(8.1) P Eiggsi}m=1] = ?} s
S .
P[gjggsj\m=1} = ?% s

so in that case (7.3) is true. Now let us suppose that (7.3) is true

for m observers, then we have

G 0 G G MR MO W) GOR A QU T

1) We owe this formula to Mr A, BENARD, Statistical Department of the
Mathematical Centre.
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- _
(8.2) PL_s_ié s, end 8 = sj‘mm_j:

J
=2 P[:i 8;,-a and §j§5j4ﬂm}é{ﬁhe 1 &h object has rank a and the
oA : jth object rank b in the (m+1)®
ST ranklngl =

i

it

/l
=s, - ] =s,-
g;% P[ﬁi“‘si a and gjfisj b&m]. e

A
g
w
lIA
03]

i

»
Nl
Yo
1
jw
Cdo
A
[6)]
Cte

H
o
=

1
=~
=
-
{

K k-ﬂ)ﬁéfﬂ ’ b=
1
k(K1) g?lP{§£§S -aln]. Pls;=s;-aln] -
= P[S ‘—"_:Sli m+’l]. PLS ésﬂm%—’l] ;
- i ) {%,ﬁ é:s"-a\m] - gg% P[E_E - ~b{m]3‘
k(k=1) a=1 1k K
Z i el i

So theorem 7.1 is proved by induction.
Formula 7.7 can be proved in the followling way:

k“?L§i=n}m] = the number of partitions of n into m positive integers, no
one beins larger then k (different permutations of the same
intesers are counted as different partitions).

Thus

ka[§i=n[m] = co¥fficient of z in (z+...+zk)m =

\ k
= cotfficient of 2" in (322" = covfficient of 2 in
2y, (X kx L mtr-lyLr S my , n=kx="1 X
t%ZO () (-)7z o Ty 2 s §Ebln—kx-m(x)( a-q ()

wnich provesb(7.7).
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9, A distribution free k-sample slippa;c test

We consider the independent variates
(9.1) Ups ool s

which have, under HO, the same continuocus distribution function. From
the ith population we have ti independent observations Eij (j=1,...,ti).
We want to test HO against the alternatives

pluyou, ]

U, (J=15ses1=1,14+1,...,k) follow the same distri-
d bution,

-

(9.2) K, (J#1),

for one unkncwn value of 1 and
Plu.>u. <z (A1),
(9.3) Hy 2]

(=15 0e0,i=1, 141, .0.,k) follow the same distri-

u.
J bution.

Now the following test procedure is proposed. If all observations

Eij (i=1, cee,rk3 j:ﬂ,...,ti) are ranked, we denote by ii the sum of the
ranks of the observations Yy (j=4,...,ti). As T, is a linear function
th

of WILCOXON's test statistic applied to the i
k-1 samples together, its distribution function under HO is known (cf,
H.B. MANN and D,R., WHITNEY (1947)). So for each set of values TasveesTy
we can, under HO, compute

sample and the other

C(9.4) a, = P[Ta~Ti .

Now, when tTesting HO against Hq, HO is rejected when min qié.%ﬂc.
A similar procedure 1s followed for slippage to the left., In the next
section we shall prove the inequality

livg

(9.5) P[T;z7 and 2,27 )= ploar ). Plrz,],

s0 the limits between which the level of gignificance may vary are
known also in this case,

Let now for every fixed 1 H be the hypothesis

1,1

Plug>u|>5 (340,

Ej(j=1,...,i—1,iﬁﬂ,...,k)y follow the same distribution.
Put
r . def T
P 7 )x, )% plzariln ] .

This probability still depends on tqﬁ“"tk'
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In the same way as in sections 3 and 5 we consider the decisilon
procedure 5:

"Decide that H, 1s true if
P[TJ l —]> £ for‘ j = 13-..31{,
Decide that Hq 18 true, if J is the smallest integer such that
] ] £ oy 7 - T m 7 )
P D%Jz%ng{ ath[Tl‘ijg PLEJIJOJ , 1 # 3.

We prove in the next section

Theorem 9,1, If Hq 5 ig true, the probability of a correcct decision

2
with the procedure & tends to 1 if tqn;oo,...,tb»»co such that

T,

. . 1
lim inf 2:;-7{;‘-]--—

>0 (1 = 1yeeaskK) &

Another test for the k-sample slippame problem was proposed by
F, MOSTELLER (1948) (cf. also F., MOSTELLER end J.W., TUKEY (1950)) who
uses as test statistic the number of observations of the sample with
the largest observation which exceed 2all observations of all other
samples, A comparison of the power of both tests with respect to some

alternatives of practical interest seems desirable,

10, Proof of the inequality (9,5) and of theorem 9,1
For definiteness we take in (9,5) 1 =1, jJ = 2. We also take k = 3.

This is no restriction on the senerality as pooling of the BPd, 4ﬁ?.”
th - ) . - Tdef

and k sample does not focct P[ & J P[T H lcn‘ P P19T2 JIL] =

Al plp >m end T 2T ) )

= L 4 and Tpz T |k

Put now def

(10.1) t = ‘c,l+t2+t3

and define

7 def ”m S . -
anan,HB [Tij = P{ - (n i if tq~n1, tg“ngs t3~u3.
. LT l] def Pl_ . and the largest element belongs to
NysfgsNg 1
s mple number 1 { ] if L1=n1, t2~n2, t3wn3.
P ! [ 7 =" the conditional prohability of T.> T, under H_,
05050 3 - . ~i= "1 0

ziven that the largest element belongs to sample

=0 To=hos tB”HB

In the same way we define P 1,n yﬂ [T ST ]

and P [Ti,ijl :Jfor the events {Q&;;Ti and EJ: Tj}.

number 1 1f ©

F@i,Tj,ﬂ

nq,ng,nB
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We shall prove (9.5) by induction with respect to n1+n2+n3. So we
have to prove

(10.2) 1,n2,n [T19T2];§ Pn,],ng,n3 [Tﬂl'an,nz,n3 [TEJ'

Clearly (10.2) holds for n,]+n2+n3 = 2 (we take T, = 0 with probability
1 when . = 0). Now suppos¢ (10.2) holds if n,+n, +n3§§t~1. We have

T,

(10.3) Pt,],tg,tB[Tq’Tej = Z;E; + et 0oty LT’I’TQ) ]

For the first term of the sum in the right hand member we gt

(10.4) Ptqﬁtelthfqug}ﬂ]z Ptq'q’tgﬁt3LT -3, éw (according to our

assumption)

2Pt [T, n?Ptq » t2,©§ré}” b Ak sty [r2]1 ]

In the same way, it can be derived that

(10.5) Ptq:t2»t3"[ 7o 2] = tg,tB{jT1 }él-Ptq,tg,tBE?z) é} .

Further

—

(10'6) PtqstEstB )_T']’Tg } B_J = Pt ,tg,t -] [Tq:TQ:):{::

=P, PRENE ps g (1] =

= Ptq,tgg‘% [1, El .Pt,lgtg,t [Tgﬂ‘ | 3J .

3

So, combining (10.3), (10.4), (10.5) and (10.6) we find, droppins the
subscripts

3

i} b 3
(10.7) ¥ lTﬂ’Tejg 2 2% bl fafp [1,] 1] - %ZH F [Tﬂli]'P[%E’i]'

i=1

We have

(10.8) P ETﬂ 12] = PIiTQ [3] =P [Tqi 2 or 3]

and similarly with 1 zad 2 interchen oo, and

3

(10.9) P [ :] [ . {EQ-P[&q [1] + 33;31 P [Tq |2 or 3];} :
o {P [Tg,ﬂ:] + P [TE,Q or 3:}}




From (10.7) and (10.9) we sec that it is sufficient to prove
_\_3%
1 ENN . <
(10,10) - P[J?,]] ]P}”I - P[T 1) PLTZ,ﬂJr P[T,IIE_}P[EE, 2 or J

3 plr, ]2 or ]} {P[Tg,ﬂ + P[Te, 2 or 3]}

= {%’l P[y]’i-} et

or 1ts equivalent

(10.11) { ENEIR: ,ljﬂ}z(t 23 Tg,’l:} - Eci p [Tg, 2 or 3]} <0

But the inequality

(10.2) P[‘I‘,I\’l] > P[T,‘lzj

holds as can be seen in the followin: way
(10.12) is equivalent to

(10.13) t,0[1,,2]st0]r,,1] .

Consider now 2 ranking which cives T, and 2 (i.e. the larpgest element

/]

o nd . ] ]
belongs to the 2 sample and T g'Pq) and interchante the last element

/l
with every e¢lement of the first sample, This pives t1 ¢ifferent rankinrs
with T,l and 1. In this wey we get each ranking with Tq end 1 2t most
t2 times, because in o rankins with T,l and 1 the last element can be

interchanged with at most t,. different elements of the second sample.

2
This proves (10.13) and thus (10.12). Interchanring 1 and 2 in (10.12)

we find
(10.14) Plryl2] » Pl1,[1]

(10.11) and thus (10.2) is an immediate consequence of (10.12) and
(10.14) . This completes the proof of (9.5).

We now turn to the precof of theorem 9.1. Let Hq 1 be true., If
3
t,—=eo(l = 1,44.,k) such that
, Z ty=t,
. . 1="
lim inf tI:a—-— >0 and 1lim inf ———v-—~——>>O,
Zty
1= 1 -

we kncw that Wilcoxon's test comparing sample 1 with the other samples

pooled 1s consistent. This mcans

(10.15) lim P[P[_T_qjgﬂr&lﬁ,]n] = 1

to> (=)
lh}

for every m (0= 7=1)
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From (10.7) and (10.9) we see that it is sufficient to prove

:—P[4‘ ] [2”]'Prflﬂ LQVJ+PE%‘% Eb’2‘”5ﬂ4
2 e fryfe ox 3} [ P[]+ E[ny 2 or i)

{\/I‘”

(10.10)

el

= {—-— p|T, 1]+ =2

or 1its equivalent

T +t

t 4T

(10.11) {P[Tqi’l]—P[T,]’E:’}{ 21’: 3 P[Tg,ﬂ:} - %1 P [TE, 2 or 31}} <o

But the inequality

(10.12) P[T,]M] > P[T,]\Qj

nolds as can be seen in the followin: way
(10.12) is equivalent to

(10.13) thEI‘,I,EjgtEP[T,],’l] i

Consider now a2 ranking which gsives Tq and 2 (i.e, the largest element
belongs to the ond sample and lqgiﬁﬁ
with every clement of the flrst sample., This pives t,l different rankings

and interchance the last clement

with T,l and 1. In this way we get each ranking with Tq end 1 2t most

t2 times, because in a2 rankine with Tq and 1 the last element can be
interchanpged with at most t2 different c¢lements of the sccond sample.
This proves (10.13) and thus (10.12). Interchancing 1 and 2 in (10.12)

we find

(10.14) plryl2] x pf1, (1],

(10.11) end thus (10.2) is an immediate consequence of (40.12) and
(10.14) . This completes the proof of (9.5).

Wie now turn fto the proof of thecrem 9.1, Let H1s1 be true., IF
£ oo (i = 1,+..,k) such that 1
6, S
lim inf fEf——~':>O and lim inf ——%75————>>O,
1 i

/l

we know that Wilcoxon's test comparing semple 1 with the other samples

pooled is consistent, This mecans

(10.15) lim [ pl2,]=7 J = 1

for every m (0= 7=1)
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or the exceedance probability found in the first sample converges to
0 in probability (cf. D. VAN DANTZIG (1951)).
In a similar wey as in D, VAN DANTZIG (1951) we find, if

p = P(Eq:>uj}ﬁq’1)>'%
(10.16) E(gjlﬂo) = %—tj( Ztﬁ-’cj) + 3t (t.+1)
and
(10,17) E(gjfﬁq’q) = 3t (Zt 1=ty=tq) + (1mp) ST, %—tj(‘cj+’i)<E(_’]}__jIHO)
Further
2 < T
(10,18) (L, |y, ) = 3@2@_3[;

Frem (10.15) we have

(10.19) 1an e[ ofs J=efz] [y J= vim e elz ] =0l o]

1
for every % (0=v%=1). T -E(T. | H )
As the limit distribution under H_ of = —J ) is normal with
mean O and unit variance (10.19) leads to Ou(lﬂlHo)
" T.-E(T,[H,)
(10.20) 1im PLP[@_} =nlH, q] = lim P[ J J 9 }H,H =
£y oe J- ; b oseo L cr(gr_j{HO) Y

= 1lim P[EJ REE R =\V3E | H, ,Jg .
"? 2

£ -sco a (T (1»,‘ 1) 337
where § is defined by
(=]
x°
_1_ & = dx ='7.

(10.,20) is valid £o every % (o= ?<:1) and as % oo (p—0) (10.,19)
combined with (10.20) gilves

(10.21)  1lim P[P[gjjf__ P{T,] ] 54’1) =0,
tg—>oo -t
i
Ir Hq g is true the probability of correct decision is
2

(10.22) P [P[I_,J_é_ £ and P[T, ]2 P[_T_j] for j#1 | Hy 1]
K
2 F [PLT.’]] = £ H’I,’J - %—:—2 P[PLT-.J] > P[2,] K H”I,’J.

(10.15) and (10.21) show that the probability of a correct decision

™

converges to 1, which proves theorcm 9.1,
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11. Tables of critical values for the Poisson distribution and for

the method of m rankings

‘Table 11,1 gives critical values for the test for Poisson
variates against slippage to the right if Ho is: ]Q,l = DPp = eoe = Do
The critical values for max z, as test statistic are given for the
values of ¢ 0,05 (the upper numbers) and 0,01 (the lower numbers).
Owing to the discontinuous character of the binomial distribution
the true level of gignificance will penerally be less, and very often
considerably less,than ¢, Therefore approximated levels of signifi-
cance (i.e. &' ecf. p. 37) are shown also, The exact values satisfy
inequality (2.13). The¢ table was constructed with the help of a table
of the binomial distribution. This can also be done for critical
values for the test apainst slippape to the left, Table 11.2 given
critical values for specified ¢ for the methed of m rankings, when

testineg agalnst slippage to the left with min s, as test statistic,

If this critical value is equal to 1, fthe critiial value r at the
same level of significance for the test against slippage to the right
is given by r = m(k+1) - 1.

As in table 11.1 the approximated true levels of significance
( ¢') are also given,
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Critical wvalues for the slippage test to the
right in the Poisson-case with H : = =
=.%.= . Test statistic: max z,.° /Mﬂ /M’2
Approx%mate significance level™0.05 (upper
values) and 0,01 (lower values)., The approxi-
mated true level of significance is written
behind the critical value. Number of obser-
vations k, sum of the observations n,

3 )‘I' 5 6 7 oy 0
n ~ ? 1 Table 11.1

S . N o S e e

3 - - - 3 0.040 3 0.028 3 0.020 3 0,016 3 0.012 3 0.010

- - - - - - - - - - - - - - 3 0.010

o - 4 0,037 4 0,016 4 0,008 | 4 0.005 L 0.003 4y 0,002 3 0.045 3 0,037

- - - - - - 4 0,008 4 0,005 4 0,003 4y 0,002 4 0.001 L 0,001

5| - 5 0.012 | 5 0,004 | 4% 0,034 | 4 0.020 | 4 ©.013 | 4 0.009 | 4 0.006 | 4 0.005

- - - 5 0,004 5 0,002 5 0.001 5 0.000 4 0.009 4 0,006 4 0,005

6 6 0,031 § o.,004 | 5 0.019| 5 0.008| 5 0.004 | 4 0.035 | 4 o0.02% |4 0.017 | ¥ 0.013

- - 6 0.004 | 6 0.001 5 0,008 5 0.004 5 0.002 5 0,001 5 0,001 5 0.001

7 7 0.016 | 6 0.021 6 0,005 5 0.023 5 0.,012 | 5 0.007 | 5 0,004 4 0,037 4 0,027

- - 7 0,001 6 0.005| 6 0.002| 6 C.001 5 0.007 5 0.004 5 0.003 5 0.002

8 § 0.008 7 0.008 | 6 0,017 | 6 0.006 5 0.028 5 0.016 5 0.010 5 0,000 5 0.004

5 0.008 7 0.008 7 0,002 6 0.006 | 6 0.003 5 0.001 5 0.010 5 0,006 5 0,004

9 8 0.039 | 7 0.025 | 6 0.040 | 6 0,015 6 0.007 | 5 0.032 | 5 0.020 | 5 0.013 | 5 0.009

9 0.004 8 0.003 7 0,005 7 0.002 | 6 0,007 | 6 0.003 65 0,002 | 6 0.001 5 0.009

10 |9 0.021 8 0.010 7 0.014 | 6 0.032 | 6 0.015 | 5 0.008 5 0,036 5 0.024% | 5 0.016

10 0.002 9 0.001 8 0.002 7 0.00U4 7 0.002 | 5 0.008 6 0.004 6 0.002 | 6 0.001

49 |10 0.012 | 8 0.027 | 7 0.030 | 7 0.010 | 6 0.0223 | 6 ©.015 | 6 0.008 |5 0.04%0 | 5 0.028

11 0.001 2 0.004 8 0.005 7 0.010 7 0.004 7 0.002 & 0.008 6 0.005 | 6 0.003

49 10 0.039 50,012 8 0,011 7 0.020 | 6 0.048 6 0.026 5 0.015 6 0.009 5 0,043

11 0.006 [10 0.002 ¢ 0,002 8 0,003 7 0.000 7 0.004 7 0.002 | 6 0.009 { 6 0.005

13 |11 0.022 1 9 0.027 | 8 0.023 | 7 0.035 | 7 0.015 | 6 o.042 | & 0.02% | 6 0.015 | 6 0.009

12 0.003 {10 0.005 ¢ 0,004 | 8 0.006 | 8 0,002 | 7 0.007 1 7 0.003 7 0.002 | 6 0.009

q4 |12 0.013 |10 0.012 | 8 0.041 | 8 0,012 | 7 0.025 | 7 0.012 | 6 0.038 | 6 0.023 | 6 0.015

13 0.002 |11 0.002 9 0,009 | 9 0.002 | 8 0.004% | 8 0.002 7T 0.006 7 0.003 7 0.002

15 |12 0.035 |10 0.026 | 9 0.017 | 8 0,021 | 7 0.0%0 | 7 0.012 7 0.010 | 6 0.035 | 6 0.022

13 0.007 |11 0.005 [10 0.003 9 0.004 | 8 0.005 { 8 0.003 3 0.001 7 0.005 | 7 0.003

16 |13 ©0.021 110 0.048 | 9 0.030 | 8 0.035 | 8 0.013 | 7 ©.030 | 7 0.016 | 7 0.009 | 6 0.033

14 0.004 {12 0.002 {10 0.007 2 0.007 | 9 0,002 | 8 0.005 | & 0.002 | 7 0,009 {7 0.005

47 |13 0.049 111 0.02% | 9 0,050 | 9 0.013 | 8 0.021 | 7 0.045 | 7 0.02% | 7 0.013 | 6 0.047

15 0.002 |12 0.006 (11 0.002 (10 0.002 | 9 ©0.004% | 8 0,009 @ B8 0.004 |8 0,002 | 7 0.008

ag |14 0.031 |11 0.0%4k |10 0.022 | 9 ©0.021 | 8 0.032 | 8 0.0 | 7 0.035 | 7 0.020 | 7 0.012

15 0.008 {13 0.003 |11 0.005 [10 0.005 9 0.007 | 9 0.003 5 0,007 | 8 0,003 | 8 0.002

19 |12 0.019 |12 0.022 |10 0.036 | 9 0.033 | 8 0,048 | 8 0.021 7 0.050 | 7 0.028 | 7 0.017

16 0.004% {13 0.006 {11 0.009 [10 0.003 [1C 0.002 | & 0.00k © 0,002 | 8 0,005 ;| 8 0.003

20 |15 0.041 112 0.039 |11 0.016 | ¢ 0.050 | @ ©.017 | 3 ©0.031| & 0.015 | 7 0.0%0 | 7 0.024

17 0.003 |14 0.003 |12 0.004% |11 0.003 |10 0.004 c  0.007 QO 0,003 8 0.008 8 0.004

21 |16 0.027 |13 0.021 |11 0.026 |10 0.020 | 2 0.026 | 5 0.0k | 2 0,022 | 8 0,011 | 7 0.033

17 0.007 |14 0.006 |12 0.007 {11 0.005 |10 C.006 |10 0.002 o 0,004 9 0,002 8 0.006

oo |17 0.017 113 0.035 {11 0,040 |10 0,031 9 0.037 | 9 0.015 1 & 0.031 38 0.016 7 0.044

18 0.004 [15 0,003 |13 0.003 |11 0,008 (10 0.00% |10 0.003 ¢ 0,007 | ¢ 0,003 | 8 0.009

o3 |17 ©.035 4 0,015 (12 ©0.019 |10 0.045 (10 0.01% | 9 o0.022 | & o.042 | 8 0.022 | 8 0.012

12 0.003 |15 0.005 |13 0.005 |12 0,003 [11 ©.003 |10 0.005 9 0.010 9 0,004 | 9 0.002

oy (18 0.023 |14 0.031 (12 0,029 (11 ©.019 |10 0.020 9 ©.030 2 0,014 | 8 0.030 | 8 0.017

9 0.007 |15 0,010 13 0.008 |12 0.005 {11 0.005 [10 0.007 ! 10 0.003 9 0,006 | 9 0.003

o5 |18 0.043 114 0,049 |12 0.043 |11 0.028 |10 0,025 | & 0.0411 9 o0.019 | 8 o0.0k0 | 8 0.023

20 0.00k 16 0.005 |14 ©0.00% |12 0,008 (11 0,008 |11 0.002 | 10 ©0.00k | 9 ©0.002 | 9 0.005
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Igble 1.2
’Qg}ﬁ;gg%mygiqgﬁmifvgf the test statistic min s, for the slippage test to
the left for the method of m rankings. Level of significance €, number of
rankings m, number of ranked objects k, The approximated true levels of

significance are written behind the corresponding critical values,

R ym—

k| T 3 b 5 6 7 8 9
0.05 - - - - - - 6 0.031| 7 0.016 | 8 0.008 |10 0.039
2 10,025~ - |- - - - - - 7 0.016 | 8 0,008 | 9 0.00k4
10,01 - - - - - - - - - - 8 0,008 | 9 0,004
0.05 |- - |40.037 |5 0.012 |7 0.029 | 5 0.049 |10 0.021 12 0.032
3 10,025 | - - - - 5 0.012 | 6 0,004 |8 0,011 (10 0.021 1M1 0.008
0.0 - - - - - - 6 0.004 |7 0,001 2 0.00% 1M1 0.008
oﬂosww - - 4 0.016 | 6 0,023 | 8 0,027 |10 0.029 12 0.030 14 0,029
4 o1o,005 | - - 4 0.016 {6 0.023 | 7 0.007 | 9 0,009 |11 0.010 13 0.011
0.0 - - - - 5 0.004 | 7 0.007 | 9 0.009 |10 0.003 [12 0.003
0.05 |3 0.9%0 5 0.040 | 7 0.03% | 9 0.027 11 0.021 1% 0.038 116 0.028
5 10.025 |- - |4 0.008|6 0.010 |8 0.009 11 0.021 (13 0.016 |15 0.013
0,07 - - 4 0.008 |6 0.010 | 8 0.009 |10 0.003 {12 0.006 14 0,005
o . 5. e, e 5 .
0.05 | 3 0.,028|5 0.023 | 8 0.043 |10 0.027 |13 0.037 |16 0.045 18 0,028
6 10.025 | - - 5 0.023 |7 0.016 {9 0,011 12 0.017 |15 0.023 17 0.014
0,07 - - |4 0.005|6 0.005| 8 0.004 11 0.007 |13 0.005 |16 0,007
0.05 | 3 0.020|6 0.04% | 8 0,023 |11 0.027 14 0.029]17 0.029 |21 0.04E
7 10,025 3 0,02015 0.014 { 8 0.023 |10 0,012 {13 0.015 |16 0,016 |19 0,016
0.01 - = 40,0037 0,009 9 0.005 |12 0,007 15 0.008 |18 0.008
0.05 | 3 0.046/6 0.029 | 9 0.031 |12 0.028 |16 0.043 |19 0.035 (23 0.046
8 10.025| 3 0.0%5|5 0.010 | 8 0.01%4 |11 0.014 |15 0.025[18 0.021 [21 0,047
0.01 - - 5 0,010 | 7 0.005 {10 0.006 |13 0,007 {16 0.006 |20 0,010
0.05 | 4 0.049|7 0.048 |10 0.038 |13 0.029 |17 0.036 |21 0.04%2 |25 0.045
9 |0.025] 3 0.012/ " 0,021 | 9 0.019 |12 0.016 {16 0.022{19 0,016 |23 0.01C
0.0 - - 5 0,007 | 8 0.009 |11 0,008 |14 0.006]18 0,009 |21 0.007
7005 | ¥ 0.08[7 0.075 |17 0.046 |1 0.070 |18 0.032|23 0.048 |27 0.045
10 10,025 | 3 0.010{6 0.015| 9 0.013 {13 0.017 |17 0.019|21 0,020 {25 0.020
0,01 | 3 0.010/5 0,005 | 8 0,006 |12 0.009 {15 0.006|19 0,008 |23 0,008
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