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1. Introduction 
The problem treated in this report concerns the maximum 

likelihood estimation of partially or completely ordered para
meters of probability distributions. A special case of this 

problem, the maximum likelihood estimation of ordered probabi

lities, has been treated in (2] . 
The problem will be formulated in section 2; in section 4 

and 5 methods will be given by means of which the estimates may 

be found. For the proofs of the theorems we need some lemma's 

which will be proved in section 3 and in section 6 some examples 

will be given. 

2. The problem 

Consider -k independent random variables >.'.:,, ~"',. . . • 1 ) 

and ,n,., independent observations x,;,,. x..-. a, . . . , x ... "". 
I • t 4, 

Of X. _,_ 
(-i."" 1. 2 •... , -ft) • The distribution of '6,., contains one unknown para-
meter 8;., ( ,i, == i. :>., . .. , -1':.) and its distribution function is 

(2.1) (,i,:::1,2, ... {). 

Two types of restrictions are imposed on the parameters 

8,. 8:i,, . ... 8-f.:. • First let '\J.;_ be a closed interval such that 

""F,: ( x,: l y ;_) is a dis tribut ionfunct ion for each value of y.._ 6- fjl 

(J x1,2, ...• ~). By meansof the choice of -0..._ restrictions of the 

type c ... ~ 8 ... ~ di may be imposed. The second type of restrictions 

consists of a partial or complete ordering of the parameters, 

w h 1 ch may be d_ es c rib e d as f o 11 ow s • Let ci.. . C _.;, , -i "' 1 , ,;i , • • • , --ft.) be 
"•l, (l 

numbers satisfying the conditions 

( 2, 2) °'-· . = o if the intersection lj,.. I"\ '::J. contains at most .. , ;\ " 

one point, 

rx.._,j :::. o , +1 or -1 in all other cases 

and 

O'. .. = f if .i._.-a for any h • 

The restrictions imposed on 8,, 8~, . .. , 8* are then 

(2.1~) J f' 
l2. 

oi:. . . ( e. _ e.) ~ a 
.. , -6 ,. a 

8. E 1:_j, 
,< ,\. 

(L,i = 1,~,- - . , i). 

1) Random variables will be distinguished from numbers (e.g. from 
the values they take in an expe ment) by underlining their 
symbols. 
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and it will be supposed that the parameters 8,, f\, ... , 8-t are 

numbered in such a way that 

( 2 .5) ()(,..:..-4 '?co for each pair of values c~,i). 

No other restrictions on 8,, 8,., ... , 0~ are admitted, such that 

all points y,, :Ji, ... , t.:ll of the Cartesian product 
-¾ 

G ch\- n· ~-
(2.6) "" ,, 

satisfying 

( 2. 7) (..:.,ti "' I'~' ' .. ) l) 

belong to the parameterspace, which thus is a convex subdomain 

of G • This subdomain will be denoted by D. 

Let 

(2.8) oc, . - 0 for N.0 pairs of values ...,,cl - ~ J'1. 
\2. oi:.. .. = 1 for -'(,' pairs of values "-, 6 

(,1,,j) with 

with (,i,,j) A.-<. i' 
then 

(2.9) 

Let further {,., ( x,;, \ 8.J denote the density function of 

~;, if ~i possesses a continuous probability distribution and 

'P [ ?L. ""x."" I HJ if ~~ possesses a discrete probability distri

bution and let 
,n· 

{
'1. L;_::::: Li(YJ c~} :? ·¾ 1., 

(2.10) ,- ~ 
2. L = L(y,, ~ •.... ,y?.:) ;[_ 

.:..::::-1 
L,. ( yJ . 

Then the maximum likelihood estimates of 8,, 8., ... Cj 
. ' \;: -l are the 

values of Y,. y,, ... , y'k which maximize L in the domain D. 

Unless explicitely stated otherwise L will only be considered 

in this domain n; the maximum likelihood estimates will throughout 

this paper be denoted by t1 l t~ & ~ * J t.~ ~ 

Further the restrictions Et ~ 8.; (i.e. o<. .. =I ) satisfying " .... , 
(2.11) «.-i.,h. - = o for each h between ..i. and --i 

;! ~ 

will be denoted 'R, ,'R 2 ,.. ~. Each thus corresponds with 

one pair (-Ld) ; this pair wilJ. be denoted by ( , i,1,) • 

Because of the transitiv~O;y relations (2.3) the system R,,"R.,., ... ,X"' 

is equivalent to (2.4.1) and uniquely determined by (2.4.1). 

The restrictions "R., ,K:.·· .. , 'R,, will be called the essential 

restrictions. 
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Remark 1: H.D. BRUNK ~] described a method by means of 

which the estimates of e, ,e~, ... l B-r,. may be found if the distri

bution of ~t belongs to the "exponential family" (.L .. 1,2, .... l) 

and if moreover ~ .. is the set of all values of ~- for which 
f.., tx.i \ y.,) is a distribution function (,,i,,"' 1,::., ... i). 

His method however leads to much more complicated computatiore 
than ours. 

3. Lemma's 
Definition: A function <f(Ylof a variable 'd will be called 

strictly unimodal in an interval 1 if there exists a value 
y* ~-1 such that 

( ~ .1) tg ( Y) < ~ ( 'Z.) < ~ ( ~ *) 

for each pair of values (Y,-z.) E]: with 

(3.2) 

~!]-d for each pair of values ( Y, z)e 1 with 

(3.3) 

It follows at once from this definition that a strietly 
unimodal function ~{Y) is bounded in every closed suhdom.ain of 

'} not containing ~7'-· 

Now let ~~(~~)be a strictly unimodal function of~~ in 

the interval 1-"" (1c,., ,.~, ... , k) and let further 

{3.4) ;f.,( cld ~ 
't' Y, ,:/,_,. · · · Y1J = ~ 1 tg..,_ ( Y,J, 

then 

Lemma I: ~ ( Y,, Y 2., ·,- ·, ':11,.) po~sesse~ a unique _maximum in 

k 
(3.5) r ~~ 1r 1'K· -...~, 

Proof: Let ':?')c_ ( Y')<.) attain its maximum in 1"K. for Yx = y: 
(')(= 1,?-, ••. , k). Then it follows from the faet that ~(Y .. '::'.lit.••·· ,1:Jk) 

is the sum of the K functions r_g-""- ( y'l<.) and that r is the 

Cartesian product of the k intervals 1..,,, , that 4 ( y,, ':fa, •••• ~k) 

possesses a unique max'i:num in I and attain this maximum for 
,. 

l,l"K. = 1:h. ("K = 1, ~ •..• , k). 

We now define a function V as follows. 
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Let l:1~, 1;1; , ... , l.:i: be a given point in r with ~: * y: 
for at least one value of x and let 

(3.6) { y 'K ( ~) ckf ( I _ r) y: -+- ~ ':I: 
O~~'al, 

( 'k .. I, 2.' ..• ' k) I 

Then{Y,(~),Y,.(0), ... ,Yl<(r)} is a point in r andV is defined 
by 

(3.7) 

Lemma II: V(~)is a monotone increasing function of~ in the 
interval o ~ 0i ~ 1 

Proof: Consider a value of~ with 

(3.8) 

then 

(3.9) for each 0 with o ~ ~ ~ 1. 

Thus in this case we have 

(3.10) ~'X(y;) =<g1t{Y"-(~)}==1.,._(y:) for each~ witho~~il. 

Now consider a value of~ with 

(3.11) 

then it follows from the fact that ~x(Y~) is, in the interval 
1-x, a stnictly unimodal function of yit and attain its 

maximum in 1x for Yx ==- y: that 

(3.12) lf-x(l.:J:) < ~'k{ ~j'I<(~.)} < LJ?< l Y)<(~,)} < lj')c(y;) 

for each pair of values ( r" 0,) with o < \?', <- r:i < 1. 

From (3.4) and the fact that there exists at least one value 
of,c with (3.11) it follows then that 

(3.13) 

for each pair of values ( r,, r).i) with O < r, < ~:i <I. 

Lemma III: If C is a ~!o~ed ~~,n:.v~~u~~omain of l, not eon• 
ta in ing the p~t ( Y ~ , Y: , • . . , ~i;, ) ~- then <P ( Y, , s,. , . • • , ':1 K) 
attains its maximum in Conly in one or more points on its 
border. 

Proof: Consider any inner point '::I~, 1::1:, .. . , y: of C and 
let l:JJ~) be defined by (3 .6) ('11: =- 1 ,:o, ... , k). Then., C being a 
closed convex domain not containing the point (':J~, '::J:, ... , ~~:) 
there exists a value of r in the interval O < ~ < I $ say ro 1 
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such that {id,(~.). Yi(P0 ), ••• 1 \.Jk(0 0 )) is a border point of 
C. Further it follows from Lemma II that 

(3.14) 

Thus for each inner point ( l::J~, y:, ... , y;) of C there exists 

a border point ( ld,, y :P ••• , l.h.J of C with a larger value of 
½ . Moreover~ is bounded in C, because the point 

( ~7-. y:, ... , '::J:) is not contained in C • Thus.~ has a 
maximum in C, which can evidently only be attained in border 
points. 

4. The maximum likelihood estimates of 0,. B:. •... , e~ 
Let M be a subset of the numbers 1 • 2, .•. , ~ i let further 

(4.1) 

and if ~M =t- a 

(4.2) 
Z, E: "::JM. 

Throughout this report it will be supposed that the following 
condition is satisfied 

(4.3) Condition: For each M with ~M-tothe functionlM(-z.)1s .. 
strictly unimodal in the interval ".:IM • 

Now let M" (v=,.~ •... ,N) be subsets of the numbers 
,.~ .... ,{ with 

'N 

(4.4) !1. UM,, ={1,2, ... ,.ft.}, 

2. ~~ ~ Mv = o for each pair of values Y,, Y:i = ,.2 .... , N 
' .. 

with v, ,p Vu 
3 ':iM =f::0 for each Y:::::1,1?., ••• ,N> 

V 

where 

(4.5) (Y::,;1,.2, ••• 1 N}. 

Let further 

N 

(4.6) GI'{ d~J JI, i:::rM,, 

and 
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(4.7) L d<!f ' 
M (z,,) = L... l.:_(z.") 

v .-i:..e: M~ 

Then for all points in Gn l(y,,y.,., ... ,\J~) reduces to a function 

of f'I variables 2.,, z~ .... , ; we denote this function by 

L' ( :z,, z:.,. . , zN) and thus have 

(4.8) 
l'i 

l(z,,z:,,, .. ,zN) =v~L.H,,(-z..,), 

which is according to (4.3), a sum of strictly unimodal functions. 

Theorem I: L possesses a unique -~_?fimum in D 

Proof: This theorem will be proved by induction. 

Let M,,M2, ... , MN be an arbitrary set of subsets of the numbers 

1,:i, .•. ,~ satisfying (4.4) and let 

(4.9) D t-t,s 

wheres denotes the number of essential restrictions defining 

D and where GN is defined by ( 4 .6). Then nN is convex and: ,s 

forl'l:a:.-kwe have 1::.JM ""~v (v""-1,/4, ... ,l'i), thusGN..,GandI\,. ""!l 
V ,S 

for s ==:owe have D == G thus nt-1, 0 = GN. 

We shall say that the function L' (z,.z.a,• .. , zN) can be mono-

tonously traced to its maximum in nN,s if 

1 • L' ( z. ' I z. ... ' . . . ' z_ N) p O .3 J n ::; J e s a unique maximum in 

2. every point of DN" ca::1 be connected with the point 

in 1) where L'. ass;Jmes its maximum by means of a 
N,-s 

line in n such that L'. insreases monotonously 
N,S 

( 4 .10) 

along this ltne. (Such a line will be called a 

trace) 

For s = o L' c z.,, 2,., ... , z\",') has this property for every 

set M.,M ... , ... , MM satisfying (4.-+) a~d ever~.,. N. This follows 

from the fact that Lis the sum of strictly unimodal functions 

and that D is the Cartesian product of the intervals 
N,o 

':JM (v=1,:;,,, ... , H) , so that the Lemma's I and II may be 
)I 

appl led. 
Let us now suppo2c ~hat it has been proved that L can be 

monotonously traced to it.s ,n:=rx.:mum for all values of s ~ s 0 

for every set M,,M%, ... , MN satisfying (4.4) and for every 

N • We t.hen prove that the same holde for s 0 + 1 essential 

restrictions. 

Consider, for a given set M,, M:l,, ... , MN, satisfying 
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( 4 .4), a domain 1) N, s.+, and the domain 1\'f,-s,, which is 
obtained by omitting one of the essential restrictions de-

fining DN.s. ➔-,· Let this be the restriction "R>-; z .. >- 1 zh. 

Then clearly 

(4.11) 

Now L has a unique maximum in nN,s"', attained in (say) the 

point T. We first consider the case that Tis outside 

D N, $ 0 +1 . Then an arbitrary point P of DN,s
0

+ 1 with 

:z. < z . 
... >. 11 >s 

can be connected with T by means of a trace in 

and this t~ace must contain at least one border point 

with Z.;. = z~ , because within 1) 
:,. 0 >, N, s 0 + I 

we have: 

z., < z.1 and outside TI . z. > z· The first of these 
>, dl- - N, 5 0 * 1 ' ..,,. i\:,. • 

points when following the trace be denoted b:,- Ll ; then L 
assumes a larger value in LL than in -P • Now Lllies in a domain 

1) , , ; where l'I' = N -1 and .s~ ~ s 0 and L can thus mono-
N, s0 

tonously be traced from LL to its unique maximum in DN, s' 
' 0 

by means of a tr2.ce within 1) ~, , • The trace from ""F' to ll in 
,t ' s., 

D N ,, and from LL to the maximum of L' in llH. , together 
, v 0 + l , ~a 

form a ./-race from --P to the max:l:mum of L in J) ... , . 
"1 Sa-ti 

Consider next the case where T is a point of n N, 5 0 +1 

Then L attains a unique maximum in Dt-1,..,,.,+ 1 in T. If T is the 

maximum of Lin G~ then, according to Lemma II, L can be 
monotonously traced to its maximum from ever:r point of 

D by mP~ns of a straight line, connecting this point 
H, S 0 +1 

with T • If T is r.ot th2 maxirr.nm of L' in GN then it follows 

from Lemma III th::i,t T is a bc:;.~c:e:r point of l\; s +i where at 
' " 

least two :zv from ::i-.,, z;:.,. 

restriction fo1' T _, N, s 0 + 1 

(4. 12) 

. ) 2.r--i corr2sponding to an essential 

are equal. Let this pair be 

then we consider the domain J)' which is obtained from 
N'l,£0 n b .,_, . .,_, ·t·t· K < f 

N,Sa+I Y OmlvGlng Gae res r1c -ion tL: z,.p.,,,, z~t-'- rom 
the essential restric:'ul.ons def:!.n1.ng 1) 1 • The maximum 

'-.\~ Sa ~'r\ 

of L' in JJ' then exists and the point where it is attained 
M, $ 0 

is a point of L' .... i • with z.. ... ~ z; The rest of the proof 
1 , 5 0 ~L tl )..L 

for this case is then the same as for the first case consi-

dered. 
Thus L' can be monotonously +-.raced to its maximum in every 

J) , c:1e of which is ]) . N,s 

Remark 2: For s = a and N =--IL we have nr-,, 5 = G . Thus L attains 

a unique m~ximu~ in Gin a point which will be denoted 

by v, ,v.,_, .... , v1". 
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Th l..' t' ' eorem II: If -..,, , '.l., ••• , t-lt are the values of ':l,, Y2., ..• , ':;I~ which 

maximixe L in G and under the restrictions K,, ... ,"R~_, ,1\i...,., •... ;Rs 

then 

r-
t.;, = t~ (l::1,2.,. . '~) if t'. £t'. , 

"-•;. - i;. 

(4.13) 
2. t- :::: t. if t'. > \.1.. ...,. 'II)< "'J>.. 

Proof: The ~,.have not been arranged in a special order, thus 

we may take without any loss of generality>..:::s. First consider 

the case that t,'.'6 ;;. t'ia ; then t; 1 t~ , . . . , t~ satisfy al 1 

restrictions "R,, "R:1., ... ;R. 5 ; thus in this case we have 

(4.14) t;, = t~ (A-.: I, 2-, ••• , _.f:;_). 

If -t/ > t'. then ( 4 .13. 2) may be proved as follows. The domain 
~ Ii, il 'S 

defined by the ,· ssential restrictions 'R, ,"R2 •••• , "Rs_, will be 

denoted by 1)' • Then for each point CY,, y., ... , ':l--1,.,) in 'D with 

'.::l. < l:::J. there exists a trace inn' from the point 
,, .. 'ii ,, 

( y,, Yi, ..• , Y-l) to the point ( ·, t~, ... ,ti) and this trace 

contains a point ( y,', y~, ... , Y'.t) with 

(4.15) 
J 1. 

)2. L(y:,L:J.~,- · ~ .~~_)>L(y,,y:.,· · ·•Y.t,)· 

Thus., if t. > t:. 
,.s j5 

, then L C..Y,, y,,,., ... ,l:::Jl.) attains its 

maximum inn for ':h., = 1::1 .. ; (4.13.2) then follows from the 
os 

uniqueness of LJh'i c, ,naxi.mum 

Remaris_l ~ 

If 

(4.16) 
and 

(4.17) 
then 

(4.18) 

"Pc ~ .. == 1] = e. . ~ 

dc;; f- . o 
' b,;, = 'h,. - o.,._ ( ,(, :;: I' /l •• •. ''K) 

~ 

L ( y,, y 2 , ••• , ~i) = L {Cc;.-¼, ldt + 6 ... ½ ( 1 - lj;,). 
• .,t.:::..t. 

In[2] it has been proved that, if~"' is the interval 

(0,1), this funct"ion L satisfies the following condi

tion. 
(4.19) Condition: If (\J.,Y:., .. ,,\:If..) and(.z.,z.2.,··. ,:z..f.:.) 

are __ anx two J?Oints in G with ~~ * z.... for at least one 

value of ,;., and if 
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ld.t(0) ~F (1-P)•:J;, +piz.L (,i,::::1,"',·· .,~) 

then L{Y,CP-iLlh(I:,), · · •, Y1di?i1·) is a strictly unimodal 

f1:3-Dction of 0 in the in_!:erval 0 ~ f-':J ~ 1 

This condition is stronger than condition (4.3) and the 
theorems I and II of this report have been proved in (2] 

by using condition (4.19), 

Further if condition ( 4 .19) is satisfied then theorem I 

of this report may be proved in a more simple way than 

we did in [2] as follows. Consider any two points 

( Y,, 1::J:l,, ... , Y4.) and ( z.,, z", ... ,2,i:J in Il with Y. =t- z"' 

for at least one value of~ and 

u~. 20) l(11" l:J \ :=l.(.z,,z.,, .... ~Zn .. )-:i I l :) 2, l ' • • > . ~ J ~ a ~, 

Then it follows from condition (4.19) that there exists 

a point ( y, , y ~-, ... , Y -ft.) in 11 with 

(4.21) L(y,,y;,.,· .. ,ld.rJ> L(:-1,,1::1,., .. -•~-f<l· 
Thus L possesses a unique maximum in D. 

The maximum likelihood estimates of 8, ,8,,, ... , 0-e:_. may 

always be found by repeatedly applying theorem II. This fol

lows from the fact that L' ( z,, z,,, ... , zN) is a sum of strictly 

unimodal functions and that I\.,,s is a convex subdomain of the 

Cartesian product of the 'intervals -;:J 1, 1y ( v = 1, :z., ... , N) for each set 

M,, M~,, ... , l'-1N and each N. 

This leads however to a rather complicated procedure which 

may often be s impl if ied by using one of the theorems -.0f tb.1;;, 

following section, 

5. Some special theo~~ 

The theorems III-VI in this section may be proved in 

precisely the same way as the theorems II-V in [2] . 

Theorem III: If c<;,,,i (\!;, -V.J) ~ o .!:or each pal_r of values(~.~) then 

(5.'1) t,._::::\I;" (,Cs,;1,::,., ... ,J<:.). 

Th Iv If /) ') r, e ore m : _- ·0 , , ·,, ,, , . . . , 1.. ·= 

(5.2) c<.,i,. 0 """d.:.,z =· .. ::::!:;,l;,.e, =o for each ,;_,:p t,,tz.;• ., ,,f. 
, ..... 1 \ A, ) iJ-l"t ""'1-\., 

then the maximum likelihood estimates of Be,,B2, ... ,9i:.~~ are the 

l " li u ' " h . . L . L + I va ues 01 ::;t,, "z,, • • •, Y~~- wn:Lc max1 m1.ze t . .,. .t,., +. . . L,e.,_.,.,_ in the 

domain 
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(5.3) 

(5.4) Di.- · (V· -V·) ). o '"•il ,., i 

and 

(5.5) {'" 
c;{_. h :::: o(h ' =O for each h between ,1, and t, '-, •cl 

::i. o(.h · ::::: dh ' for each h < ,;,., 
'"' •,l 

:3 . cx-L,h =ol.i,h for each h > j-, 
then 

(5.6) 

Theorem VI: If (--\, ,-:i-)is __ a pair o( va l.~~e ~-satisfying 

(5.7) v, -s \/· ,v - -;}-

and 

r c( ... ,i :;:: 0 
' 

(5.8) :z. O{i,,,;_, ~ o(h,-;i, for each h <A,·, 

3. o<.h>o<.•h for each h > i,, 
Av, ::t;. ;,}3 

then 

(5.9) t.., < t-= j, • 

Theorem VII: If C,{,,j)is a pcj·• of vaJ--c.es with 
---•-.,.,...~ . ..,.._ , -.,,,. ,,-._ ""-~'"'"'''"""'--'~'>"•c-·-,,,._, ...,._,._._ 

(5.10) rx;,,i =o, 

if l)' is the subdoma :.r. of IJ 'Aihe:~' 'cJ;, ~- lJi and if (t'., -ii, . . , t'!l:.) 
_,_ __ ..,_".,...""'"'"'"~~ ,.,,..,_,.. -·- ... , •• -, .... ., .... - z ,,,_._ ·-~·---~,, - ... ~ "'':--- ......... 

is the point where L aDfrnrr..:.2 ~i-~s"y--,i:z:l_rr:·1.m"*:'i.n__E' then 

(5.11) 

Proof: The proof of this theorr::m d 1:·fr:::..,s from the one given 
~ ., 

for theorem VI in 1\2\ or12.y in the form of the trace from a 
l . 

point in n' to the max':ra:.~:;1 jn Il . r;:-his t::ace which is a straight 1 

line in [2] , need not be straigh1
j now(cf. t.he proof of theorem 

II of the present repor~, 

6. Examples 

In this section the pooled samples of ~~and ~iwill be 

denoted by <.;,,,- ( :r = 1, ::., ••• , ~J :J where r(t~ "'""-.- + '\'1_.:i- • 

6 .1 ~ .. possesses a no:;mal dis..!!:ibutigp with mean 8 .. and known 

variance c,... = 1 ,2., ... ,.{), 

Without any loss of generality we way suppose that 

er '1, { ~ .., } = , for a 11 .,i, ; t 1'-,e n 
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(6.1.1) ( .i, "' I • :t, • • • '-f.t_). 

From (6.1.1) it follows that 

(6.1.2) d l.,(\:I.:) = E_ ( x. _ .) 
d~l., lr=I "•b' !:JI ... 

(.t. :=:1,2., •••• ~). 

thus, if 

(6.1.3) ( ,l., :,, It :t, I • • • • .,__, • 

then 

>O if y.._ <_~ ... I 

(6.1.4) 
d. L,;,( I:!.,) 

if ( ,i., ~,.2.- ... l). ::::::o Y.t ""'YY\._ I 
d y., 

<O if Id._ > 'YYI.._. 

From (6 .. 1.4) it follows that L .. ('d;.) 1s a str1.ct;J..y un,1meda.l 
function of '::Ii in the interval (-o.:i, +G<>), thus l.;, ( y.._) is a 
strictly unimodal function of ~1 in each @losed subinterval 

~;. of the intarval (- cl'Zi, +6t> ) (..t = 1,:i. 1 ••.• ~). 

Further if lj ... = Y;1 then L.., < y._) + L .i ( ~~) reduces to one t1.1rm of' 
the form I 

111,, 

( L I I J~ I 'I;"°' I S 6 .1. 5) d Y;,) ...,. Li ( YL) ::; - 2 M-.-, --a :i'TI' - T {:;i (x;,.~ • 'd..) 

and analogous relations hold if more than two of they~ are 
equal. Thus L satisfies condition (4.3). 
From (6.1.5) it follows further that if L attain its maximum 

for Yz = ':.1-J then the two samples of ~-t and ~i are to be pooled. 
The procedure will now be illustrated by means of the 

following example • 

Suppose 1 ::: ,. , /'(,,0 -= 2. "t,, = 1.; and 

(6."J.6) oC,,'.t = o<..,, 3 ::::: o'.. 11 ,,;=I. 

let further 



. 

1 1 2 3 4 
-0,40 1,4.3 -0.,70 0,29 

2,56 1,86 2,61 0 
0,25 0,06 0,79 1,31 
2,87 0,07 o,86 0 .. 15 

x .. ,; 1,14 0,14 2,53 
0,29 1,86 

(6.4.7) 2,57 
o,85 
1.,21 

tn...t /h"\.i'. 5.,28 9.,48 3,70 6.,14 

'I'\.• .., 4 9 5 6 

/\-'11...;, 1,32 1,05 0.,74 1.,02 

.;, 1 2 i 4 

(6.18) '::j. ... (-co,t) (-co, +cc) (o,.S ,oo) (-eo, .. oo) 

Then it follows from (6.1.7) and (6.1.8) that the coo?"dJ.na-tes 
of the maximum in G are 

2 3 4 
(6.1.9) '1,05 i,O 2 

From (6.1.6) and (6.1.9) it then follows that the pairs A-r?., 

1 =:i and l=4,-i =--2 satisfy (5.7) and (5.8). Thus according to 
theoremVI L attains its maximum inn for 

(6.1.10) Y, ~ Y-. ~ ':1 4 ~ ~z· 

From (6.1.9), (6.1.10) and theorem V then follows 
(6.1.11) ·t1::::t!,. 

In this way the problem is reduced to the case of 3 samples 
with /\{.,~ =- o., 
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i 1{+3) 4 2 

-0,40 0,29 1,43 
2,56 0 1,86 
0,25 1,31 0,06 
2,87 0,15 0.,07 

(6,.1.12) }( .. ,)( -0,70 2,53 1,14 

2,61 1,86 0,29 
0,79 2.,57 
o,86 0,85 
0,14 

'-
1.,21 

111:4, 1:1t'l 8,98 6.,14 9.,48 

m. 9 6 9 

/mi 0,998 1,02 1.05 
' 

~.L (o,5 , 1) (-oo, +oo) (-oo,+oo} 

v: .., 0,998 1,02 1,05 

and 
(6.1,.13) ot,.'4 :. a{t,:a. =I, 

From (6.1.111(6.1.12) and (6 4 1.13) then follows 
{6.1.14) t, :=t?> :::.o,gg8 ,.t,.::-1,05 ,t,.=1,0~. 

6.2. ~~possesses a norm~l distribution with known mean and 
variance 8.t. (-i-:: ,, 2, .•. , -¥:.). 

We suppose without loss of generality t'. ~ .. ::::00(,t.=1,::i., .• .,-l); 

then 

(6.2.1) (.,i, =,.~ .... ,-It). 

From (6.2.1) it follows, if 

(6.2.2) 

that 

ro if 0 ~ Y., < s: ' 

(6 .. 2.3) d L ... ( lJ,..) 
=G if 2, 

(-i,=1,::1., ..•• ~); 
cly.-. 

Y-1.. = S,1. 

t <:o if :I. 
:_;J;_, > S;, 

thus Ld yJ is a strictly unimodal function of Yt 1n the in
terval ( o, oo). 

Further if ~ .. ::: ~J then L,., ( '::!J + L~ ( y1) reduces to 



I 
Y •. -:£ ~---

'::!" 

and analogously more than two of the Yt equal. 

Thus L satisfies condition (4.3) and L attains its maximum 

for ~;, =- yil then the two samples of and ~i are to be pooled, 

Numerically the method is thus precisely the same as 6.1, 
with st ln stead of rn1.., • 

6.3 x,t12e:ssesses a Poisson distribution with ?arametertl.,(-(.,::ci,:i .... 1~)_ 

In this case we have 

(6.3.1) 
'11.· 

L""(YJ = -'l'c;. Yt + L 
~=I 

'h-~ ,-
Y;, - "-

~~I 

From (6.3.1) it follows t J if 

then 

( > 0 if O :§. ·::i~. < '(Yl.t, 

\:: (6.3.3) 
d L.z ( Lh) 

d,h 

if 

thus L .... (1dJ is a strictly unimodal function of '::J;.. the inter
val (o, oo)(L:::: 1,R., ... ,l,). 

Further if then reduces to 

(6.3.4) 

thus L satisfies cond ion (4.3) and if L attains its maximum 

for then the two samples of >.:;. and ~< are to be poo 
" 

The theorems of the foregoing sections may e.g. also be applied 

in the following case. 

6. 4. ~ •. possesses a normal distribution with mean ft and known 
variance for L :c:: t,, i"', • . , , .f. s. and a Poisson distribution with 

parameter G., for,;_,t-f,,-E~,···,£t 

Taking crz{~ ::::cl for L:=t,, we have 

\ 
' ••• ' fo • 
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From the sections 6.1 and 6.3 it follows that L.,(yJ is a 

strictly unimodal function of Yt. in the interval (-=, +co) 

for ,i, =- -t,, t~, ... , ,e'it and in the interval (o, co) for ,t. ::1=- .e. .. t~ ...... ,ti· 
Further, if lJi, = y 1 , where ?5t possesses a normal and~~ a 

Poisson distribution then L ... ( ~t) + L/y~) reduces to 

,,,,,~ 

(6.4.3) 
L .. (YJ +li{y..) = -½,n. ... ½z11 -½ i~ (x.(.,~-yt.),?.-'n.t\!L i-

It may be proved as follows that l.t,i (Yt) der L,dyJ +Lt(l::/-1.,) 
is a strictly unimodal function of y._ in the interval (o,oo). 

We have 

(6.4.J+) 

(6.4 .. 5) 

d Lq,( yJ = 
d,-:Jt. 

d L.,,i. (1.J.1,) < o for each q., > o 
d y., 

and in all other cases 

1 de~ , { m:f 

{

> 0 if O ~ '0 ... 
1

< /\'n, = ~ '1>Y\,<, - '11,,1, 

:::::0 if ':_j;_ =rn-,,._ I 

< o 1 r y 1.. > "Y!-1'.,~ • 

Analogous relations hold if more than two of the~~ 

Thus L satisfies condition (4.3). 
are equal. 

This case will be illustrated by means of the following example. 
Suppose --k = '1 • ,Y. 0 = 'Y,, = 3 , 

(6 .4 • 7) ol'.,,;i. = «.,,i.. ::: c<,,.,l, :::::. I 

Further 
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i A 2 3 4 

5,38 4,84 4 2 

3,88 3,56 5 7 
x. 4,14 4.,40 3 5 "'•t 

5.,36 4,77 3 4 
5.,48 4 

(6.4.8) M,·"'"t\,, 24,24 17,57 19 18 
,n,., 5 4 5 4 

IW!, .. 4.85 4,39 3.,8 4,5 
I 

~,:_, (-co ,5) (-co,+oo) (O,co) (o, ~) 

V;, 4,85 4,39 3,8 4 

Then the pairs ,1,-::;:. 3, j- ==:,, ; ;, "'4,-}"'?.. and .-i.,"' 3. ~- =-, satisfy 
(5.7) and (5.8). Thus the problem is reduced to the case of 
the 4 samples (6.4.8) with ,..,,~ "'a and 
(6.,4.9) Ol~,, = oc',,,1 :::: r:/..1

1.;,'l. :I. 

From (6.4.3), (6.4.9) and theorem V then follows 
{6 .. 4.10) t,:.:: t,.. 

In this way the problem is reduced to the problem of maximizing 
the function 

(6.4.11) 

in the domain 

(6.4.12) 

From (6.4.5) and (6.4.6) it follows that 

i 3 1 2 

(6.4.13) 
I 3.8 4,8 4,39 IYY\.,i, 

~~ (o, co) (o,t,) (-co,+=) 
I I 3,8 4 4,39 V, I 

,C i 

Thus 
(6.4.14) 
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