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1. Introduction

The problem treated in this report concerns the maximum
likelihood estimation of partially or completely ordered para-
meters of probability distributions. A special case of this
problem, the maximum likelihood estimation of ordered probabi-
lities, has been treated in [2] .

The problem will be formulated in section 2; in section 4
and 5 methods will be given by means of which the estimates may
be found. For the proofs of the theorems we need some lemma's
which will be proved in section 3 and in section 6 some examples

will be given.

2. The problem

Consider & independent random variables %,.%,, .- -. %, 1)
and m, independent observations x;,.%;,.. . . , Xi., of %,
(i=1,2,...,%). The distribution of x, contains one unknown para=-
meter B, (i=1.2....,%) and its distribution function is

def ,
(2.1) , Folxa]8)= Plx, 2%, 08]  (i=1,2,... &)

Two types of restrictions are imposed on the parameters
6,.0,.....6, . First let 7, be a closed interval such that
F. (xi]y:) 1is a distributionfunction for each value of y, e%,
(i=1,2,...,%) , By meansof the choice of 4, restrictions of the

type c. = 0, = d; may be imposed. The second type of restrictions

consists of a partial or complete ordering of the parameters,
which may be described as follows. Let o (4.4=42,...,%) be
numbers satisfying the conditions

1. 9‘4,3' = =0y
(2.2) 2. oy, =0 1f the intersection 4, ¥; contains at most
one point,

3.3 =0, +1 or =1 in all other cases

and

(2.3) o =1 if oy = Ky, =1 Tor any h .

The restrictions imposed on 8,,6,,.. ., 8, are then
Looetg, (8,-6;) =0

(e.h) {2. B e (i =12,..., &),

1) Random variables will be distinguished from numbers (e.g. from
the values they take in an experiment) by underlining their
symbols,




and it will be supposed that the parameters 8,8, ...,6, are
numbered in such a way that

(2.5) «,; to for each pair of values (i,3)
No other restrictions on 8,‘81,...,9& are admitted, such that
all points Yoo Yar o0 Y, of the Cartesian product
4

det
(2.6) G == ;l_‘:‘ ,U;')
gsatisfying
(2"7) iy U:ﬁa"j.i)‘éc (i,gz:,z,...,‘&.)

belong to the parameterspace, which thus 1is a convex subdomain
of &, This subdomain will be denoted by D.

Let

(2.8) {1. “i; =0 for x, pairs of values (4,§) with i<y,

2. e, ;=1 Tor ~, pairs of values (i,4) with i<y,

44
then

3
(2.9) mo"’f"‘(/"—‘: (2).
Let further ﬁ;(xxi9;> denote the density function of
X, 1f x, possesses a continuous probability distribution and
Plx: =x, | 6] if x, possesses a discrete probability distri-
bution and let

1. L, = LL(UL) ot Z: &} Jgd‘,("-x.z}g;) (A=t2,..., %),
(2.10) o= ,{C“ 4‘

2. L—;L(H"E}Z""’H—e‘)\:gLi(lji')'
Then the maximum likelihood estimates of 0.,8,....,9, are the

values of y,.y,,.. wiich maximize L 1in the domainD.

‘,9&
Unless explicitely stated otherwise L will only be considered

in this domainD ; the maximum likelihood estimates will throughout

this paper be denoted by t .t.... .. .%,.

Further the restrictions B; = 0,

; (if.e. =) satisfying

2,11) oo, s =o for each h between 4 and 4
i 3

will be denoted by R ,R,,.. . R,. Each R, thus corresponds with
one palr (i,§) 3 this pair will be denoted by (i,,4,) .

Because of the transitivi’y relations (2.3) the system R,,R,,...,R,
is equivalent to (2.4.1) and uniquely determined by (2.4.1).

The restrictions R, ,R,....,R, will be called the essential

s

restrictions,




...3_.
Remark 1: H.D. BRUNK [1] described a method by means of
which the estimates of‘&,eb_‘_,ﬁ& may be found if the distri-
bution of x, belongs to the "exponential family" (i=i.2,... &)
and 1if moreover 7%, is the set of all values of y, for which

Fi(x;\gb) is a distribution function (4 =1i,2,...%).

His method however leads to much more complicated computatiors
than ours,

3. Lemma's

Definition: A function $(yof a variable 4 will be called
strictly unimodal in an interval } if there exists a value
y' «’f such that

(3.1) 9(y) = @(z) <Y (y")

for each pair of values (Y.2) ¢ ¢ with

(3.2) y <=z <y”

and for each pair of values (Y.Z)ed with

(3.3) Yoo< zZ < y.

It follows at once from this definition that a strietly
unimodal function y(4) is bounded in every closed subdomain of

“} not containing y*.
Now let @, (y,)be a strictly unimodal functlon of y, in

the interval 7} (%x=12,...,K) and let further
\‘ i<
(3.4) G uvar oy ) F D g ()
then
Lemma I: @<‘$~9z~~‘nﬁk) possesses a unique maximum in
cdef a
(3.5) IS | S T

Towy

Proof: Let w, (y,)abbain its maximum in 7}, for y, - yX
(x=1,2,...,k) . Then it follows from the fact that & (y.y,....,y,)
is the sum of the K functions 4. (y, ) and that ' is the
Cartesian product of the Kk inﬁervals j% , that @(guga“..,gk)
possesses a unique maximum in | and attain this maximum for

‘ﬂx"‘"‘\j: ("i:hQ,...AK).

We now define a functionl as follows,




.
Let y’, ys,. . ., y. be a given point in [ with y; + ¢l
for at least one value of x and let

(3.6) {Uum Pl Pl (eenaek,
o= P 2 1.
Then {g.(ﬁ),qz(p),.‘.‘ gk(ﬁ)} ig a point in U and Y is defined
by
(3.7) ViR E Ly . Ly e

Lemma II: V(P)is a monotone increasing function of [ in the

interval os D= |

Proof: Consider a value of w with

(3.8) 4y = Yo
then
(3.9) Y () =yl for each p with o s =1,

Thus in thils case we have

(3.10) @k(gi)::gk{gépuzzgmuﬁ) for each pvmmh<>;ng
Now consider a value of x with
(3,11) gy £y,

then 1t follows from the fact that ¢ _¢y.) 1s, in the interval
q% » & stnictly unimodal function of y_ and attain its
maximum in /I for gy, = ¢¢  that

(3:92) 9u(9l) < 9 Uulp)} < 9o { U (BD) = 0nt])

for each pair of values (P e witﬁ o< @,<(@ <1,

From (3.4) and the fact that there exists at least one value
of » with (3.11) it follows then that

(3.13) V(o) <‘V(@J<:v(@gv<v(0

for each pair of values (frs o) With o <o py <

Lemma TIT: If C is a closed convex subdomain of T , not con-
taining the point (Y7, 4yi .. . . :9?} , then é(&hvwz,--->am)

attains its maximum in C only in one or more points on its

border,

Proof: Consider any inner point y/, y.,.. ., Y of ¢ and
let Y (p) be defined by (3.6) (x=1,z....,K). Then,C being a
closed convex domain not containing the point (y*,y......ux)

there exists a value of 5 in the interval o< p <t , say f.,




-
such that { Y, (p). U, (0, . . - Y (R} is a border point of
C . Further it follows from Lemma II that

(3.14) PLUPD B Ul pa} > Bt oy,

Thus for each inner point (y°, y°, .. -syp) of © there exlsts

a border point (Y,,y,, .. . 4,) of C with a larger value of
$ . Moreover $ 1s bounded in C, because the point

(9 yr, oL Yy ) 1s not contailned in C , Thus . § has a

maximum in C , which can evidently only be attained in border

points,

4. The maximum likelihood estimates of 8..8,,. .., 0.
Let M be a subset of the numbers 1,2,...,%;let further
(4.1) Iy d—;‘f&QM e

and 1f U, #o
™M

(4,2) Lo (2z) esf Z Li(=z) z e
LM

Throughout this report it will be supposed that the following
condition 1is satisfied

(4.3) Condition: For each M with Y% o the function Lm(z) is
strictly unimodal in the interval Jn. .

Now let ™M, (v=1,2,...,N) e subsets of the numbers
W2, ...k with

™~

. Jﬁ M, :.{s\z,A.,,VK},

(4.4) 2. M, n M, =o for each palr of values Y,Ve=t.2,...,N
with v, % v,
3 ﬂm + o for each v=1,2,...,HN,
W
where
o def ~
(4.5) N ARCE (V=2 .., M)

ILet further
(4.6) Gy T I,

and
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| R caf -
()'!’.7) LM‘)(ZV) :;,;Zi:'k L‘.‘(Z.\,) zye'ﬂm\) (v=1i,2,...,0),

Then for all points in G, L(y ,u,,....y,) reduces to a function
of N variables =z..zZ, ..., z, ; we denote this function by
L'(z.,2,, ....2,) and thus have

[

= 2 b 2

(4.8) L‘(z\,zz,.,_,z
which is according to (4.3), a sum of strictly unimodal functions.

Theorem I: L possesses a unique maximum in T

Proof: This theorem will be proved by induction.

Let M.,M,,..., M, be an arbitrary set of subsets of the numbers
4 satisfying (4.4) and let

i, 2

Ry s e ey

(4.9) DN,S == D n GN 3

where s denotes the number of essential restrictions defining
D and where G, is defined by (4.6). ThenD,  1s convex and:

fortN=+ we have M, =%, (v=12.....M; thus G -Gand D =D
for s=o we have D =G tThus D = G-

Dy

We shall say that the function L' (z,,z.....,=z,) can be mono-
tonously traced to its maximum in p, _ 1f

1. U(z,,z.,...,z,) Dposcesies a unique maximum in

D

2, every point of' D _ can be connected with the point

MNye

(4 10) in I%lswhere U assumes its maximum by means of a
line in D__ such that [ Increases monotonously
along this line. (Such a line will be called a

trace)
For s=o L'(z,,2,....,z., has this property for every
set M., m,,..., M, satisfying (4,4) and everr N. This follows

from the fact that |' is the sum of strictly unimodal functions
and that DHmis the Cartesian product of the intervals

ﬁmv (v=t1,2,...,M) , 8o that the Lemma's I and II may be
applied,

Let us now supposc *hat it has been proved that ' can be
monotonously Gtraced to ite maximum for all values of s £ s,
for every set M,,M,,..., M, satisfying (%.4) and for every

N . We then prove that the same holde for s,+i essential
restrictions,

Consider, for a given set Mo My, My satisfying
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(4.4), a domain D
obtained by omitting ons of thz essential restrictions de-

and the domain Dy which 1is

o

fining Db . Let this be the restriction R . =z, < z,.
Then clearly
(4.’]1) ‘DN’S”_\ < Dy, .

Now L' has a unique maximum in D, . , attained in (say) the
point T . We first consider the case that T 1s outside
DH,s°+| . Then an arbitrary point P of DH‘50+‘ with

z,, <z; can be connected with T by means of a trace in

D and this trace must contain at least one border point

NSSO
of Dy e With =z ==z, , Pecause within D, .,  We have:

z. <z, and outside 1 oz s 2 The first of these
oY An N, S, =1 “3 ds

points when following the trace be denoted by W ; then L
assumes a larger value in Ll than in P . Now Wlies in a domain
where n'=p-, and s, £ s, and L' can thus mono-

J S

Nos,

tonously be traced from U to its unique maximum in Dy .
by meang of a trece within 33m\s; . The trace from P to tL in
Dy g4 and from Ll to the maximum of L oin TDHk%; together
form a “race from P to the maximum of L in D . . .

Consider next the case where T is a point of Dy ¢ .,
Then L attains a unique maximum in D, (. in T, If T is the

maximum of U in Gﬂ then, according to Lemma II, L' can be
monotonously traced to its maximum from ever; point of
ths““ by means of a straight line, connecting this point
with T . If T is rot the maximum of L in G  then it follows
from Lemma III that T is a berder point of D, .., where at
least two =z, from =,=z,....,z, corrvecponding to an egsential
restriction for T are equal, Let this pair be

R & B S

3 Va

(B, 12) N G

i
N

then we considsr the domain T which is obtained from
..+, Dy omitting the restriction R, : z,, % z;, from

the essential restricticns defining D, . . . The maximum
s P 7

of L' in D then exists and the point where 1t 1s attained

M. S,
is a point of D' with =z, = =z . The rest of the proof

M, S * [ f\ o

for this case is then the game as for the first case consi-

dered,
Thus U can be monotonously *racad to its maximum in every

D, . » cie of which is D.

-, Thus L attains

Remark 2: For s-o and N:=4 we have D

™M, e

a unigue maximum in G in a point which will be denoted

by vioavey, oL L v,

e
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Theorem IT: If t., t,, . .~ . %, are the values of Y. Y., .-.9% which
maximixe L in ¢ and under the restrictions R,,.. . Ry, Ruwyso - Re
then

1, ty =t (i=1.2,...,%) 1if <ﬂ\§ﬁkx
(4.13)

LE, t,;_}\ = t?,; j.f t;)\> t‘?A .
Proof: The R have not been arranged in a special order, thus
we may take without any loss of generality x=s. First consider
the case that t = ﬂ& : then t,t.,,. . ..ty satisfy all

restrictions ®,,®,,....R, ; thus in this case we have

&

(4.1%) t, =t (A=1,2,... , &Y.

If ~d&>-%£ then (4.13.2) may be proved as follows, The domain
defined by the - ssential restrictions ®R,,R,. . .,R., will be
denoted by D' ., Then for each point (y,.y,,...,y,y in D with

Yo < Yy, there exists a trace in D from the point
(Y,\Yss---.u,) to the point (4,t,....,%) and this trace
contains a point (u .y,....,yy) with

- A

/]' E’l’:. = K‘jr,é'gs

St

(4.15) )\
20 LCulyle o u) s Ll ta - - -y

Thus, if 1, >t'1. , then L CYs Yane- Yy attains its
‘e dg ~
maximum in © for u, =y, . (4.13.2) then follows from the
s “de
uniqueness of uLhie maximum

Remark 3:

Ir

()“lg/l6) ?[ A :i] :64 3 ?{_—ZS{ 7‘0]7;‘“8; (/L:l.'l,.,.,'?t)
and "y

(4.47) C“ld"ig gﬁxé:k > b,;d;% My = Do (';v"“sﬂ‘--')'ﬂﬁﬁ
then .

(3.18)  L(goys - vouy) = 2 gy dg (-9l

A=

In [2] it has been proved that, if U, is the interval
(0,1), this function L satisfies the following cond i~
tion.

(4.19) Condition: If (Y.sWa,. - «sue) aNd{ZZay-: %%
are any two points in G with Y:#z: for at least one

value of + and 1if




Y. (p) =F O-®yy vz, Gh=uz,....%
then L{Y(®.Ua(®),. . ..Uy (M} 45 a strictly unimodal
function of P in the interval o< B £
This condition is stronger than condition (4.3) and the
theorems I and II of this report have been proved in {2]

by using condition (4.19),

Further if condition (4.19) is satisfied then theorem I
of this report may be proved in a more simple way than
we did in f2] as follows, Consider any ftwo points
(YsYpeo - o ny,) and (z,,2,, .. .,2,) inD with y, 2z,
for at least one value of i and

(4,20) LCynyga, o uyg) =z 20000 sz,

Then it follows from condition (4.19) that there exists
a point (Y,,Y,,....4,) inDd with

(4.21) L(‘ﬁ’.:‘gjz,...,g&“}>L(g‘,g”.,_,yﬂ,{).
Thus L possesses a unique maximum in D.

The meximum likelihood estimates of 8,,6,, .. . 6, may
always be found by repeatedly applying theorem II, This fol-
lows from the fact that L (z,,z,....,z,) is a sum of strictly
unimodal functions and thatD, is a convex subdomain of the
Cartesian product of the intervals @Hv(v:a\z“..,w) for each set
M., M,,..., ™M, and each n.

Thils leads however to a rather complicated procedure which
may often be simplified by using one of the theorems of fhe
following section,

5. Some special theorems
The theorems III-VI in this section may be proved in
precisely the same way as the theorems II-V in [2].

Theorem ITT: If o4,y (v, -v,) =co for each pair of values {+.4) then

(5.1) v, o= vy, (A =v,2,...,4).

) 3
Theorem IV: If-@,%21...,ﬁwt is a set of values satisfying
(5'2) ‘x,i:,{’,, = DLAL,@,L = F Q{L,Qm: < for each i # "g‘t > 2’2,9 ) /ﬁ,m
then the maximum likelihood estimates offﬂﬂgh,--wﬂ&w are the
values of Yz,092,,---.4; which maximize by ~Lg +.. . +L, ~ in the

domain
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Theorem V: If for some pair of values (£:1) with 4<%

(5.4 e g e
and
e = ey =o for each h between i and 4,
(5_5) 2. athzcxhi for each h <4,
3oy = oy for each h>+4.

Theorem VI: If (*.)1s a pair of valnes satlsfying

(5.7) Vi vy o

and
R
(5.8) 2o n e, for each W <x,
, ¥ 1 . N
2oy g, for each h >4,

then
(5.9) T, Sty

Theorem VII: If (4vi)ig a pei- of values with
(5.10) oy, =0,
if D' is the subdoma

is the point where L agsume ifs maminy

O

1. -t' = ‘t: N ‘t'lh =t ;) v e e e N —L‘r-,“ = "\'}r?n ’t:v S -t.’;! N
(5.11) S
2. h. o2 U T, =71, .
e ps "' B
Proof: The proof of this theoram differs from the one given

for theorem VI in {2} only in the form of the trace from a
point in D to the maximum in D . This trace which is a straight 1
line in @}, need not be straight nowlaf. the proof of theorem

5

IT of the present report),

6, Examples
In this section the pooled samples of %, and xiwill be

4+

denoted by XLX(X:!;%... cg) s WheTe =g vy
6.1 X, possesses a normal distribution with mean €: and known

variance (4 =1.2,...,4d,

Without any loss of geaerality we may suppose that
o*{%:;} =« for all i : then




(6.1.1)  Li(un) = -vmudgomw - T (op-y,)  (d=na. ook

From (6,1,1) it follows that

M

A

CLL;(‘CJL) N
(6.1.2) ——J—QT* = g(xa.;{”&h\) (L =1,2,. .., &),
thus, 1if
e b -
(6'1'3) my s "YLL:', ;:: iy L=tz "g‘)-
then
>o 1if Yo <,
dLL(UL)
(6.1.4) BETR 10 Yy =mg, (At s o)
<0 if HL)’W‘L;‘.

From (6.1.4) 1t follows that L.(y,) is a stricitly unimadal

function of y, in the interval (-« , +av), thus L, (y,) is a

strictly unimodal function of y; in each elosed subinterval
Y. of the interval (~m , 4+ ) (i=12,...,%)

Further 1f y.=y, then L, (y)) +L; (y;) reduces to one term of

the form n

(6.1.5)  Litya v Ly = -saidgam -3 T Ohyru

and analogous relatlions hold 1f more than two of the y, are

equal, Thus L satisfies condition (4.3).

From {6.1.5) it follows further that if L attain its maximum
for y; =y; then the two samples of x,and x; are to be pooled.
The procedure will now be illustrated by means of the

following example,

Suppose k=4, x, =2,~ =4 and
(6.1.6) g = 8., = o,
It further

’,1::\.




1 1 2 3 b i
-0, 40 1,43 | =0,70 0,29
2,56 1,86 2,61 0

0,25 0,06 0,79 1,31
2,87 0,07 0,86 0,15

‘*\‘h-—__‘____\

Xiy 1,14 0,14 2,53
0,29 1,86
(6.1.7) 2,57
0,85
l 1,21
g 5,28 9,48 3,70 6,14
", b g ‘ 5 6

o 1,32 1,05 | 0,7k 1,02

and let M, ,4,,%,,%, be the intervals

- 1 2 3 4
(6.18) Ui [ Geo,t) | (oo ve) | (015 00) | (-eoved)

Then it follows from (6.1.7) and (6.1.8) that the coordinates
of the maxlmum in G are

i 1 2 3 4
(6.’1.9) v, 1 1,05 0,74 1,02

From (6,4,6) and (6.1.9) it then follows that the pairs i=s,
4=2 and i=4,4=2 satisfy (5.7) and (5.,8). Thus according to
theorenVI L attains its maximum in D for

(6.1.10) Yo E U, S U, T Y,
From (6.1.9), (6.1,10) and theorem V then follaws
(6.1.11) T = ta

In this way the problem is reduced to the case of 3 samples
With N’(") = 01




i 1{+3)

4 2
( -0,40 0,29 1,43
2,56 0 1,86
0,25 1,31 0,06
2,87 0,15 0,07
. -0,70 2,53 1,14
X,
(6.1.12) s 2,61 1,86 0,29
0,79 2,57
0,86 0,85
0,14 1,21
i, o, 8,08 6,14 9,48
m; 9 6 9
i 0,998 1,02 1,05
"Ul (0,5 ,4) {~oo,+v0c0) | (~oo, +oa)
v 0,998 | 1,02 1,05
and
(6.1.13) Gy o= Ayl =1

From (6.1,11),(6.1.12) and (6.1.13) then follows

(6.1.14)

%s:t:g:@,gg&,_ts:f,ﬂf\‘ 3%43'.0%.

3=

6.2, x, possesses a normal distribution with known mean and

variance 0, (L=1,2,..., 4&).

We suppose without loss of generality Ex,=0(iat,z,...,&);

then
(6.2.1) L«',(UL):”E’{’”L’E@ =zt “%’”’ifﬁﬁm"f{ £z ,z,...}&_).
From (6.2.1) it follows, if
def e
% ce ¥ 2
(6.2.2) 8 = 7 §§;X«x (4 =12,
that
( >0 1f o=y, < S, ,
(6‘2.3) MQ {26 if H{.:Si (_L:},Z,...,f?ﬁ);
=
(ato if y, > s;

thus L.¢y,) is a strictly unimodal function of y, in the in-
terval (o, <o).
Further 1if Y=Y, then Léi5;3*‘Lg(Bi> reduces to




-

i
"y
PARYY

§=t iy
H

(6-204) LL(‘:!-J * Lg‘(‘ﬂﬂ = ”%%\4&527" ";‘Z”ic‘[‘} Yy = E

and analogously for more than two of the y, equal.

Thus L satisfies condition (4.3) and if L attains its maximum
for Yy, =Y, then the two samples of x, and x, are to be pooled,
Numerically the method is thus precisely the same as in 6,1,
with s! in stead of m, .,

6.3 x, possesses a Poisson distribution with parameter 0, (i=r.z....,4)

In this case we have '
(6.3.1) L.y = -my Y, +g_‘ iy 2% Y, —K{:‘/&é Xppt (B=12,. CL ).

From (6,3.1) it follows that, if

(6.3 o2) /Y‘l"l,;d_—-f—j '}'“Lx; X:| L'K

then

dli(yy

Ay, =o 1if Yo o= My, (v=h2 ..., )

(6.3.3)

<o 1if Yo> oMy

thus L, (y) is a strictly unimodal function of vy, the inter-
val (o, co) (L =1.2,... ,4’«;)
Further 1f y, -y, then Licyy +Ljy) reduces to

41‘; me
(6'3‘4) LL(HL\) +L'§{HL) = *’”:L’U’L +£XL,&./2‘§ Y- 3::1 x"“-k! :
thus L satisfies condition (4.3) and if L attains 1ts maximum

. are to be pooled,

for Yo =y, then the two samples of x, and x,

The theoremsof the foregoing sections may e.g. also be applied
in the following case.

6.4, %, possesses a normal distribution with mean 8; and known
variance for +={.%,....,44 and a Poisson distribution with

parameter 6. forizd &, ... 4,

Taking U){EL}:| for i=4,,4,....,4, we have

{LL(L5L> ::~’%' o, /f.:(zI 277 ~—'2~ g_; (\‘xé,x “'Lﬂg)z (,L:: f&,ﬁz,. . .A*K%) .
(6.4.1)




-5
From the sections 6.1 and 6.3 it follows that L (y,) is a
strictly unimodal function of 4y, in the interval (-co,+oo)
for A,:Xﬁ‘lz“..,lg and in the interval(o,eo) fOori 4, 4., ..., 2
Further, if y, =y, , where x, possesses a normal and‘gka
Poisson distribution then iﬂL(SQ_yL%Q%)reduces to

g

M
S

2
Loty "‘“L.A"\“J'D =~ %L/?’%ET( -7 L (XL,\“HJ T Ma Yy ¥

Y= °
(6 -)4'.3) T ) s
+ L. y‘g't,g'(@‘:h, -k{: é‘%'{‘é'};! .

P

It may be proved as follows that iwhﬁ(%k)ﬁigti(ggw+L?(gd
is a strictly unimodal function of 4y, in the interval (o,co).
We have

i " .
(6.4.4) ALag (U Lo oy —uy oy - T
ey, A i ¢ Y,
Thus 1f mm, -l scand an, -o then
L
(6.4%.5) dL*&{@£“<ofbr each y, s o
Ay
and in all other cases
%
. v def My My Ty
(}0 if o = Y, < Ay == -;{ﬁnrm (fm,‘H a%)»}«i«.-—?tzi}a
. ‘, *
(6,1‘;‘,6) w {:Q if L.;L == f)’r'l,‘:_ s
Ay, | )
t((\) 1y, > », .
Analogous relations hold if more than two of the y, are equal

Thus L satisfies condition (4.3).

This case will be 1llustrated by means of the following example.
Suppose k=4, w, =, =5,

(6.4.7) o, , = o, = oly, =

and £ -+, L =2, a =2. Further




! ,
1 - L2 3 b
5,38 L, 84 4 o
3,88 3,56 5 7
iy I, 14 4,40 3 5
5,36 b, 77 3 4
5,48 I
v (6.4.8) g | 24 2 147,57 1 19 18
Ty 5 4 5 L
M 4385 4939 338 495
4, (~e0,8) | (-oo,vo0)| (O, 00) (e, 4)
Vi L 85 4,39 | 3,8 L
Then the pairs i=3, {=2

§

A=4,4 =2 and A =3,4 =1
(5.7) and (5.8). Thus the problem is reduced to the case of
the 4 samples (6.4.8) with ~, =c and
(6.4.9)

satisfy
O(,sl, = ol
(6.4.10)

O

ey ’X’m% =14

From (6.4.3), (6.4.9) and theorem V then follows
t, :.’tl‘.

the function

le

In this way the problem is reduced to the problem of maximlzing
(6.%.11)

i’:(lﬂrJ\f)[szjg,\)c
in the domain

L(ljl*!’.jzzt:)g,s"d\)

Qékﬂa;\:ﬁué’:ﬁz,
S

From (6,4%.5) and (6.4.6) it follows that

(6.4,12)

i 3 1 o |
(6.4.13) | 3,8 | %8 | H,39
/\j:; {0, 00) ('O,L.) (—co,fc:o‘)
Vi 3,0 h L, 39
Thus |
(6.4.14) Vst =4, b, =
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