MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM
STATISTISCHE AFDELING

Leiding: Prof. Dr D. van Dantzig
Chef van de Statistische Consultatie: Prof. Dr J. Hemelrijk

Report S 207 (VP 9)

Maximum likelihood estimation of partially or completely ordered parameters

by
Constance van Eeden

September 1956

1. Introduction

The problem treated in this report concerns the maximum likelihood estimation of partially or completely ordered parameters of probability distributions. A special case of this problem, the maximum likelihood estimation of ordered probabiIities, has been treated in [2].

The problem will be formulated in section 2 ; in section 4 and 5 methods will be given by means of which the estimates may be found. For the proofs of the theorems we need some lemma's which will be proved in section 3 and in section 6 some examples will be given.

2. The problem

Consider k independent random variables $\underline{x}_{1}, \underline{x}_{2}, \ldots \underline{x}_{k}$ 1)
and n_{i} independent observations $x_{i, 1}, x_{i, 2}, \ldots, x_{i, n_{i}}$ of \underline{x}_{i} $(i=1,2, \ldots, k)$. The distribution of \underline{x}_{i} contains one unknown parameter $\theta_{i}(i=1,2 \ldots, k)$ and its distribution function is

$$
\begin{equation*}
F_{i}\left(x_{i} \mid \theta_{i}\right) \stackrel{\text { def }}{=} P\left[\underline{x}_{i} \leqq x_{i} \mid \theta_{i}\right] \quad(i=1,2, \ldots k) . \tag{2.1}
\end{equation*}
$$

Two types of restrictions are imposed on the parameters $\theta_{1}, \theta_{2}, \ldots \theta_{k}$. First let y_{i} be a closed interval such that $F_{i}\left(x_{i} \mid y_{i}\right)$ is a distributionfunction for each value of $y_{i} \in y_{i}$ ($i=1,2, \ldots, k$) . By meansof the choice of M_{i} restrictions of the type $c_{i} \leqq \theta_{i} \leqslant d_{i}$ may be imposed. The second type of restrictions consists of a partial or complete ordering of the parameters, which may be described as follows. Let $\alpha_{i, j}(i, j=1,2, \ldots, k)$ be numbers satisfying the conditions

$$
\left\{\begin{array}{l}
\text { 1. } \alpha_{i, j}=-\alpha_{i, i}, \tag{2,2}\\
\text { 2. } \alpha_{i, j}=0 \text { if the intersection } y_{i} \cap y_{j} \text { contains at most } \\
\text { one point, } \\
3 . \alpha_{i, j}=0,+1 \text { or }-1 \text { in all other cases }
\end{array}\right.
$$

and
(2.3) $\quad \alpha_{i, j}=1$ if $\quad \alpha_{i, h}=\alpha_{h, j}=1$ for any h.

The restrictions imposed on $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ are then

$$
\left\{\begin{array}{ll}
1 . & \alpha_{i, j}\left(\theta_{i}-\theta_{j}\right) \leqq 0 \tag{2.4}\\
2 . & \theta_{i} \in y_{i}
\end{array} \quad(i, j=1,2, \ldots, k)\right.
$$

1) Random variables will be distinguished from numbers (e.g. from the values they take in an experiment) by underlining their symbols.
and it will be supposed that the parameters $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ are numbered in such a way that
$\alpha_{i, j} \geqq 0$ for each pair of values (i,j).
No other restrictions on $\theta_{1}, \theta_{2}, \ldots, \theta_{p}$ are admitted, such that all points $y_{1}, y_{2}, \ldots, y_{k}$ of the cartesian product

$$
\begin{equation*}
G \stackrel{\text { def }}{=} \prod_{i=1}^{k} y_{i} \tag{2.6}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\alpha_{i, j}\left(y_{i}-y_{j}\right) \leqq 0 \quad(i, j=1, z, \ldots, k) \tag{2.7}
\end{equation*}
$$

belong to the parameterspace, which thus is a convex subdomain of G. This subdomain will be denoted by D.

Let
(2.8) $\left\{\begin{array}{l}\left.\text { 1. } \alpha_{i, j}=0 \text { for } r_{0} \text { pairs of values (} i, j\right) \text { with } i<j, \\ \left.\text { 2. } \alpha_{i, j}=1 \text { for } x_{1} \text { pairs of values (} i, j\right) \text { with } i<j,\end{array}\right.$
then
(2.9)

$$
r_{0}+r_{1}=\binom{k}{2} .
$$

Let further $f_{i}\left(x_{i} \mid \theta_{i}\right)$ denote the density function of x_{i} if x_{i} possesses a continuous probability distribution and $P\left[\underline{x}_{i}=x_{i} \mid \theta_{i}\right]$ if \underline{x}_{i} possesses a discrete probability distribution and let
(2.10) $\left\{\begin{array}{l}\text { 1. } L_{i}=L_{i}\left(y_{i}\right) \stackrel{\text { def }}{=} \sum_{\gamma=1}^{n_{i}} \lg f_{i}\left(x_{i, \gamma} \mid y_{i}\right) \quad(i=1,2, \ldots, k), \\ \text { 2. } L=L\left(y_{1}, y_{2}, \ldots, y_{k}\right) \stackrel{\text { def }}{=} \sum_{i=1}^{k} L_{i}\left(y_{i}\right) .\end{array}\right.$

Then the maximum likelihood estimates of $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ are the values of $y_{1}, y_{2}, \ldots, y_{k}$ which maximize L in the domain D. Unless explicitely stated otherwise L will only be considered
in this domain D: the maximum likelihood estimates will throughout this paper be denoted by $t_{1}, t_{2} \ldots . t_{k}$.
Further the restrictions $\theta_{i} \leqq \theta_{j}$ (i.e. $\alpha_{i, j}=1$) satisfying
$(2.11) \quad \alpha_{i, h} \cdot \alpha_{h, j}=0$ for each h between i and j
will be denoted by $R_{1}, R_{2}, \ldots, R_{6}$. Each R_{λ} thus corresponds with one pair (i, j) ; this pair will be denoted by (i_{λ}, j_{λ}). Because of the transitivisy relations (2.3) the system $R_{1}, R_{2}, \ldots, R_{5}$ is equivalent to (2.4.1) and uniquely determined by (2.4.1). The restrictions $R_{1}, R_{2} \ldots ., R_{s}$ will be called the essential restrictions.

Remark 1: H.D. BRTNK [1] described a method by means of which the estimates of $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ may be found if the distribution of \underline{x}_{4} belongs to the "exponential family" ($\left.i=1,2, \ldots, k\right)$ and if moreover y_{i} is the set of all values of y_{i} for which $F_{i}\left(x_{i} \mid y_{i}\right)$ is a distribution function ($i=1,2, \ldots k$).
His method however leads to much more complicated computatior than ours.

3. Lemma's

Definition: A function $\varphi(y)$ of a variable y will be called strictly unimodal in an interval y if there exists a value y^{*} ey such that
(3.1) $\quad \varphi(y)<\varphi(z)<\varphi\left(y^{*}\right)$
for each pair of values $(y, z) \in \mathcal{Y}$ with

$$
\begin{equation*}
y<x<y^{*} \tag{3.2}
\end{equation*}
$$

and for each pair of values $(y, z) \varepsilon y$ with

$$
\begin{equation*}
y^{*}<z<y \tag{3.3}
\end{equation*}
$$

It follows at once from this definition that a strictly unimodal function $\varphi(y)$ is bounded in every closed subdomain of y not containing y^{*}.

Now let $\varphi_{x}\left(y_{x}\right)$ be a strictly unimodal function of y_{x} in the interval $y_{x}(x=1,2, \ldots, k)$ and let further

$$
\begin{equation*}
\Phi\left(y_{1}, y_{2}, \ldots, y_{k}\right) \stackrel{d_{10} f}{=} \sum_{k=1}^{k} \varphi_{k}\left(y_{k}\right), \tag{3.4}
\end{equation*}
$$

then
Lemma I: $\Phi\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ possesses a unique maximum in

$$
\begin{equation*}
\Gamma \stackrel{\text { def }}{=} \prod_{x=1}^{k} y_{x} . \tag{3.5}
\end{equation*}
$$

Proof: Let $\varphi_{x}\left(y_{x}\right)$ attain its maximum in y for $y_{x}=y_{x}^{*}$ $(x=1,2, \ldots, k)$. Then it follows from the fact that $\Phi\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ is the sum of the k functions $\varphi_{x}\left(y_{x}\right)$ and that Γ is the Cartesian product of the k intervals y_{x}, that $\Phi\left(y_{1}, y_{2} \ldots . y_{k}\right)$ possesses a unique maxinum in Γ and attain this maximum for $y_{x}=y_{x}^{*} \quad(x=1,2, \ldots, k)$.

We now define a function V as follows.

Let $y_{1}^{\circ}, y_{2}^{\circ} \ldots . y_{k}^{\circ}$ be a given point in Γ with $y_{x}^{\circ} \neq y_{x}^{*}$ for at least one value of x and let

$$
\left\{\begin{array}{l}
y_{k}(\beta) \stackrel{\text { def }}{=}(1-\beta) y_{k}^{\circ}+\beta y_{x}^{*} \quad(x=1,2, \ldots, k), \tag{3.6}\\
0 \leqq \beta \leqq 1 .
\end{array}\right.
$$

Then $\left\{y_{1}(\beta), y_{2}(\beta), \ldots, y_{k}(\beta)\right\}$ is a point in Γ and V is defined by

$$
\begin{equation*}
V(\beta) \stackrel{\text { def }}{=} \Phi\left\{y_{1}(\beta), y_{2}(\beta), \ldots, y_{k}(\beta)\right\} \tag{3.7}
\end{equation*}
$$

Lemma II: $V(\beta)$ is a monotone increasing function of β in the
interval $0 \leqq \beta \leqq 1$.
Proof: Consider a value of k with

$$
\begin{equation*}
y_{x}^{0}=y_{x}^{*} \tag{3.8}
\end{equation*}
$$

then
(3.9) $\quad y_{x}(\beta)=y_{x}^{*} \quad$ for each β with $0 \leq \beta \leq 1$.

Thus in this case we have
(3.10) $\varphi_{x}\left(y_{x}^{0}\right)=\varphi_{x}\left\{y_{x}(\beta)\right\}=\varphi_{x}\left(y_{x}^{*}\right)$ for each β with $0 \leqq \beta \leqq 1$.

Now consider a value of x with

$$
\begin{equation*}
y_{x}^{0} \neq y_{x}^{*}, \tag{3.11}
\end{equation*}
$$

then it follows from the fact that $\varphi_{x}\left(y_{x}\right)$ is, in the interval y_{x}, a strictly unimodal function of y_{x} and attain its
maximum in y_{x} for $y_{x}=y_{x}^{*}$ that
(3.12) $\varphi_{x}\left(y_{x}^{\circ}\right)<\varphi_{x}\left\{y_{x}\left(\beta_{1}\right)\right\}<\varphi_{x}\left\{y_{x}\left(\beta_{2}\right)\right\}<\varphi_{x}\left(y_{x}^{*}\right)$
for each pair of values $\left(\beta_{1}, \beta_{2}\right)$ with $0<\beta_{1}<\beta_{2}<1$.
From (3.4) and the fact that there exists at least one value of x with (3.11) it follows then that
(3.13) $\quad V(0)<V\left(\beta_{1}\right)<V\left(\beta_{2}\right)<V(1)$
for each pair of values $\left(\beta_{1}, \beta_{2}\right)$ with $0<\beta_{1}<\beta_{2}<1$.
Lemma III: If C is a closed convex subdomain of T, not containing the point $\left(y_{1}^{*}, y_{2}^{*}, \ldots, y_{k}^{*}\right)$, then $\Phi\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ attains its maximum in C only in one or more points on its border.
Proof: Consider any inner point $y_{i}^{\circ}, y_{z}^{\circ}, \ldots, y_{k}^{\circ}$ of C and let $y_{x}(\beta)$ be defined by $(3.6)(x=1,2, \ldots, k)$. Then, C being a closed convex domain not containing the point ($y_{1}^{*}, y_{2}^{*}, \ldots, y_{k}^{*}$) there exists a value of β in the interval $0<\beta<1$, say β_{0},
such that $\left\{y_{1}\left(\beta_{0}\right), y_{2}\left(\beta_{0}\right), \ldots, y_{k}\left(\beta_{0}\right)\right\} \quad$ is a border point of C. Further it follows from Lemma II that (3.14) $\Phi\left\{y_{1}\left(\beta_{0}\right), y_{2}\left(\beta_{0}\right), \ldots, y_{k}\left(\beta_{0}\right)\right\}>\Phi\left(y_{1}^{0}, y_{2}^{0} \ldots . y_{k}^{0}\right)$.

Thus for each inner point ($y_{1}^{0}, y_{2}^{\circ}, \ldots, y_{k}^{\circ}$) of c there exists a border point ($y_{1}, y_{2}, \ldots, y_{k}$) of c with a larger value of Φ. Moreover Φ is bounded in C, because the point $\left(y_{1}^{*}, y_{2}^{*}, \ldots, y_{k}^{*}\right)$ is not contained in C. Thus Φ has a maximum in C, which can evidently only be attained in border points.
4. The maximum likelihood estimates of $\theta_{1}, \theta_{2} \ldots, \theta_{8}$ θ_{k}
Let M be a subset of the numbers $1,2, \ldots, k ;$ let further

$$
\begin{equation*}
y_{M} \stackrel{\operatorname{def}}{=} \prod_{i \in M} Y_{i} \tag{4.1}
\end{equation*}
$$

and if $M_{M} \neq 0$

$$
\begin{equation*}
L_{M}(z) \stackrel{\text { dig f }}{=} \sum_{i \in M} L_{i}(z) \tag{4.2}
\end{equation*}
$$

$$
z \in \mathcal{J}_{M} .
$$

Throughout this report it will be supposed that the following condition is satisfied

(4.3) Condition: For each M with $Y_{M} \neq 0$ the function $L_{M}(2)$ is

 strictly unimodal in the interval \mathcal{H}_{M}.> Now let $M_{\nu}(\nu=1,2, \ldots, N)$ be subsets of the numbers $1,2, \ldots, k$ with
> (4.4) $\left\{\begin{array}{l}1 . \bigcup_{\nu=1}^{N} M_{\nu}=\{1,2, \ldots, k\}, \\ 2 . M_{\nu,} \cap M_{\nu_{2}}=0 \text { for each pair of values } \nu_{1}, \nu_{2}=1,2, \ldots, N \\ 3 Y_{M_{\nu} \neq 0} \neq \text { for each } \nu=1,2, \ldots, N,\end{array}\right.$
where

$$
\begin{equation*}
\mathcal{U}_{M_{\nu}} \stackrel{\text { def }}{=} \cap_{i \in M_{\nu}} Y_{i} \quad(\nu=1,2, \ldots, N) . \tag{4.5}
\end{equation*}
$$

Let further

$$
\begin{equation*}
G_{N} \stackrel{\text { def }}{=} \prod_{\nu=1}^{N} Y_{M_{\nu}} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{M_{\nu}}\left(z_{\nu}\right) \stackrel{\text { def }}{=} \sum_{i \in M_{\nu}} L_{i}\left(z_{\nu}\right) \quad z_{\nu} \in M_{M_{\nu}}(\nu=1,2, \ldots, N) . \tag{4.7}
\end{equation*}
$$

Then for all points in $G_{M} L\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ reduces to a function of N variables $z_{1}, z_{2}, \ldots, z_{N}$; we denote this function by $L^{\prime}\left(z_{1}, z_{2}, \ldots, z_{N}\right)$ and thus have

$$
\begin{equation*}
L^{\prime}\left(z_{1}, z_{2}, \ldots, z_{N}\right)=\sum_{\nu=1}^{N} L_{M_{\nu}}\left(z_{\nu}\right) . \tag{4.8}
\end{equation*}
$$

which is according to (4.3), a sum of strictly unimodal functions.

Theorem I: Lpossesses a unique maximum in D Proof: This theorem will be proved by induction. Let $M_{1}, M_{2}, \ldots, M_{N}$ be an arbitrary set of subsets of the numbers $1,2, \ldots, k$ satisfying (4.4) and let

$$
\begin{equation*}
D_{\mathrm{M}, \mathrm{~S}} \stackrel{\text { dof }}{=} D \cap G_{\mathrm{N}} \text {. } \tag{4.9}
\end{equation*}
$$

where s denotes the number of essential restrictions defining D and where G_{N} is defined by (4.6). Then $D_{H_{2}, ~}$ is convex and:

$$
\text { for } N=k \text { we have } Y_{M_{\nu}}=Y_{\nu}(\nu=1,2, \ldots, M) \text {, thus } G_{M}=G \text { and } D_{M, S}=D
$$

$$
\text { for } s=0 \text { we have } D=G \text { thus } D_{H_{0}}=G_{N} \text {. }
$$

We shall say that the function $L^{\prime}\left(z_{1}, z_{2}, \ldots, z_{N}\right)$ can be monotonously traced to its maximum in $D_{N, s}$ if

1. $L^{\prime}\left(z_{1}, z_{2}, \ldots, z_{w}\right)$ posioszes a unique maximum in $D_{N, S}$.
2. every point of $D_{M, s}$ can be connected with the point
(4.10) in $D_{M, S}$ where L'assumes its maximum by means of a Iine in $D_{\text {H.s }}$ such that L increases monotonously along this line. (Such a line will be called a trace)
For $s=0 \quad L^{\prime}\left(z_{1}, z_{2}, \ldots, z_{1}\right)$ has this property for every set $M_{1}, M_{2}, \ldots, M_{M}$ satisfying (4.4) and ever. N. This follows from the fact that L is the sum of strictly unimodal functions and that $D_{M, 0}$ is the cartesian product of the intervals $Y_{M_{\nu}}(\nu=1,2, \ldots, N)$, so that the Lemma's I and II may be applied.

Let us now supposc that it has been proved that L' can be monotonously traced to its maximum for all values of $s \leqq s$ for every set $M_{1}, M_{2}, \ldots, M_{M}$ satisfying (4.4) and for every
N. We then prove that the same holds for $s_{0}+1$ essential restrictions.

Consider, for a given $s \in t M_{1}, M_{2}, \ldots, M_{M}$, satisfying
(4.4), a domain $D_{N, s_{0}+1}$ and the domain $D_{M, s_{0}}$ which is obtained by omitting one of the essential restrictions defining $D_{M, s_{0}+1}$. Let this be the restriction $R_{\lambda}: z_{i_{\lambda}} \leqq z_{j_{\lambda}}$. Then clearly

$$
\begin{equation*}
D_{N, s_{0}+1} \subset D_{M, s_{0}} . \tag{4.11}
\end{equation*}
$$

Now L ' has a unique maximum in $D_{N} s_{0}$, attained in (say) the point T. We first consider the case that T is outside $D_{M, s_{0}+1}$. Then an arbitrary point P of $D_{M, s_{0}+1}$ with $z_{i_{\lambda}}<z_{j_{\lambda}}$ can be connected with T by means of a trace in $D_{N, s_{0}}$ and this trace must contain at least one border point of $D_{N, s_{0}+1}$ with $z_{i_{\lambda}}=z_{j_{\lambda}}$, because within $D_{N, s_{0}+1}$ we have: $z_{i_{\lambda}}<z_{i_{\lambda}}$ and outside $D_{M, s_{0}+1}: z_{i_{\lambda}}>z_{i_{\lambda}}$. The first of these points when following the trace be denoted $b_{u}^{-\prime} u_{\text {i }}$; then L assumes a larger value in U than in P. Now Ulies in a domain
$D_{N^{\prime} s_{0}^{\prime}}$, where $N^{\prime}=N-1$ and $s_{0}^{\prime} \leqq s_{0}$ and L^{\prime} can thus monotonously be traced from U to its unique maximum in $D_{m, ~ s o ~}^{c}$ by means of a trece within $D_{r i, s:}$. The trace from P to U in $D_{M, S_{0}+1}$ and from U to the maximum of L in $D_{M^{\prime}, s_{0}^{\prime}}$ together form a trace from P to the maximum of L in $D_{N_{1}, s_{0}+1}$.

Consider next the case where T is a point of $D_{N, s_{o}+1}$. Then L 'attains a unique maximum in $D_{M, s_{0}+1}$ in T. If T is the maximum of L in G_{M} then, according to Lemma II, L can be monotonously traced to its maximum from every point of $D_{M, s_{0}+1}$ by means of a straight line, connecting this point with T. If T is rot the maximum of L^{\prime} in G_{M} then it follows from Lemma IIf that T is a bowere point of $D_{H, s_{0}+1}$ where at least two $z_{\text {, }}$ from $z_{1}, z_{2}, \ldots, z_{N}$ correcponding to an essential restriction for $D_{M, s_{0}+1}$ are equal. Let this pair be

$$
\begin{equation*}
z_{i_{\mu}}=z_{j_{\mu \mu}}, \tag{4,12}
\end{equation*}
$$

then we consider the domain $\mathrm{J}_{\mathrm{H}, \mathrm{s}_{0}}^{\prime}$ which is obtained from $D_{N, S_{0}+1}$ by omitting the restriction $R_{\mu}: z_{i_{\mu}} \leqq z_{j_{\mu}}$ from the essential restrictions defining $D_{M_{,}} s_{0}+1$. The maximum of L^{\prime} in $D_{N, s_{0}}^{\prime}$ then exists and the point where it is attained is a point of $D_{M, s_{0}}^{\prime}$ with $z_{i_{\mu}} \geqq z_{j_{\mu}}$. The rest of the proof for this case is then the same as for the first case considered.
Thus L' can be monotonously traced to its maximum in every $D_{\text {M.s }}$, cie of which is D.

Remark 2: For $s=0$ and $N=k$ we have $D_{M, 5}=G$. Thus L attains a unique maximum in G in a point which will be denoted by $v_{1}, v_{2}, \ldots, v_{k}$.

Theorem II: If $t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{k}^{\prime}$ are the values of $y_{1}, y_{2}, \ldots, y_{2}$ which maximixe L in G and under the restrictions $R_{1}, \ldots, R_{1}, R_{1}, \ldots, R_{s}$ then
(4.13) $\left\{\begin{array}{l}\text { 1. } t_{i}=t_{i}^{\prime} \quad(i=1,2, \ldots, k) \text { if } t_{i_{\lambda}}^{\prime} \leqq t_{j_{\lambda}}^{\prime}, \\ \text { 2. } t_{i_{\lambda}}=t_{j_{\lambda}} \text { if } t_{i_{\lambda}}^{\prime}>t_{i \lambda \lambda}^{\prime} .\end{array}\right.$

Proof: The R_{λ} have not been arranged in a special order, thus we may take without any loss of generality $\lambda=s$. First consider the case that $t_{i_{5}}^{\prime} \leqq t_{j_{5}}^{\prime}$; then $t_{1}^{\prime}, t_{2}^{\prime}, . ., t_{k}^{\prime}$ satisfy all restrictions $R_{1}, R_{2}, \ldots, R_{s}$; thus in this case we have
$t_{i}=t_{i} \quad(i=1,2, \ldots, k)$.
If $t_{i_{s}}^{\prime}>t_{j=}^{\prime}$ then (4.13.2) may be proved as follows. The domain defined by the ssential restrictions R_{1}, R_{z}. . . , R_{s-1} will be denoted by D^{\prime}. Then for each point $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ in D with
$y_{i_{s}}<y_{j_{s}}$ there exists a trace in D^{\prime} from the point $\left(y_{1}, y_{2}, \ldots y_{k}\right)$ to the point $\left(t_{i}^{\prime}, t_{2}^{\prime}, \ldots, t_{k}\right)$ and this trace contains a point ($y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{k}^{\prime}$) with
(4.15) $\begin{cases}1, & y_{i_{s}}^{\prime}=y_{i_{s}}^{\prime}, \\ 2, L\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{k}^{\prime}\right)>L\left(y_{1}, y_{2}, \ldots, y_{k}\right) .\end{cases}$

Thus, if $t_{i_{s}}^{\prime}>t_{i_{s}}^{\prime}$, then $L\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ attains its maximum in D for $y_{i_{5}}=y_{i_{5}} ;(4.13 .2)$ then follows from the uniqueness of this maximum

Remark 3:
If
(4.16) $\quad P\left[x_{i}=1\right]=\theta_{i} \quad, \quad P\left[x_{i}=0\right]=1-\theta_{i} \quad(i=1,2, \ldots, k)$
and
(4.17) $\quad a_{i} \stackrel{\text { def }}{=} \sum_{j=1}^{m_{2}} x_{i, k}, b_{i} \stackrel{\text { dep }}{=} n_{i}-a_{i}(i=1,2 \ldots, k)$
then
(4.18)
$L\left(y_{1}, y_{2}, \ldots, y_{k}\right)=\sum_{i=1}^{k}\left\{a_{i} \lg y_{i}+b_{i} \lg \left(1-y_{i}\right)\right.$.

In [2] it has been proved that, if y_{i} is the interval $(0,1)$, this function L satisfies the following condition.
(4.19) Condition: If $\left(y_{1}, y_{2}, \ldots, y_{2}\right)$ and $\left(z_{1}, z_{2}, \ldots, z_{k}\right)$ are any two points in G with $y_{i} \neq z_{i}$ for at least one value of i and if

$$
y_{i}(\beta) \stackrel{d_{e f}}{=}(1-\beta) y_{i}+\beta z_{i} \quad(i=1,2, \ldots, k)
$$

then $L\left\{y_{1}(\beta), y_{2}(\beta), \ldots, y_{k}(\beta)\right\}$ is a strictly unimodal
function of β in the interval $0 \leq \beta \leq 1$.
This condition is stronger than condition (4.3) and the theorems I and II of this report have been proved in [2] by using condition (4.19).
Further if condition (4.19) is satisfied then theorem I of this report may be proved in a more simple way than we did in [2] as follows. Consider any two points $\left(y_{1}, y_{2} \ldots, y_{k}\right)$ and $\left(z_{1}, z_{2}, \ldots, z_{k}\right)$ in D with $y_{i} \neq z_{i}$ for at least one value of i and
(4.20) $L\left(y_{1}, y_{2}, \ldots, y_{k}\right)=L\left(z_{1}, z_{2}, \ldots, z_{k}\right)$.

Then it follows from condition (4.19) that there exists a point $\left(y_{1}, y_{2}, \ldots, y_{h}\right)$ in I with
(4.21) $L\left(y_{1}, y_{2}, \ldots, y_{k}\right)>L\left(y_{1}, y_{2}, \ldots, y_{k}\right)$.

Thus L possesses a unique maximum in D.

The maximum likelihood estimates of $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ may always be found by repeatedly applying theorem II. This follows from the fact that $L^{\prime}\left(z_{1}, z_{2}, \ldots, z_{N}\right)$ is a sum of strictly unimodal functions and that $D_{N, S}$ is a convex subdomain of the Cartesian product of the intervals $Y_{M_{\nu}}(\nu=1,2, \ldots, N)$ for each set $M_{1}, M_{2}, \ldots, M_{M}$ and each M.
This leads however to a rather complicated procedure which may often be simplified by using one of the theorems of the following section.
5. Some special theorems

The theorems III-VI in this section may be proved in precisely the same way as the theorems II-V in [2].

Theorem III: If $\alpha_{i, j}\left(v_{i}-v_{i}\right) \leqslant 0$ for each pair of values (i, j) then (5.1) $\quad t_{i}=v_{i} \quad(i=1,2, \ldots, k)$.

Theorem IV: If $l_{1}, l_{2}, \ldots, l_{m}$ is a set of values satisfying (5.2) $\quad \alpha_{i, \ell_{1}}=\alpha_{i, \ell_{2}}=\ldots=\alpha_{i, l_{m}}=0$ for each $i \neq \ell_{1}, \ell_{2}, \ldots, \ell_{m}$ then the maximum likelihood estimates of $\theta_{2}, \theta_{2}, \ldots, B_{2 m}$ are the values of $y_{\ell_{1}}, y_{\ell_{2}} \ldots, y_{\ell_{2}, \ldots}$ which maximize $L_{\ell_{1}}+L_{\ell_{2}}+\ldots+L_{\ell_{m}}$ in the domain

$$
D_{1}\left\{\begin{array}{l}
\alpha_{i, j}\left(y_{i}-y_{j}\right) \leqq 0 \tag{5.3}\\
y_{i} \in y_{i}
\end{array} \quad\left(i, j=l_{i}, l_{i}, \ldots, l_{m i}\right) .\right.
$$

Theorem V : If for some pair of values (i, j) with $i<j$ (5.4) $\alpha_{i, j}\left(v_{i}-v_{j}\right)>0$
and
(5.5) $\left\{\begin{array}{l}1 . \alpha_{i, h}=\alpha_{h, j}=0 \text { for each } h \text { between } i \text { and } i, \\ 2 . \alpha_{h, i}=\alpha_{h, j} \text { for each } h<i, \\ 3 . \alpha_{i, h}=\alpha_{j, h} \text { for each } h 2 j,\end{array}\right.$
then
(5.6)
$t_{i}=t_{j}$.

Theorem VI: If (i, j)Is a pair of values satisfying (5.7) $v_{i} \leqq V_{j}$
and
(5.8) $\quad \begin{cases}1 . \alpha_{i, j}=0, \\ 2 . \alpha_{h, i} \leqq \alpha_{h, j} & \text { for each } h<i . \\ 3 . \alpha_{i, h \geqq} \geq \alpha_{j, h} & \text { for each } h>j,\end{cases}$
then
(5.9) $\quad t_{i} \leqq t_{j}$.

Theorem VII: If $(i, j) I S$ a poi" of values with (5.10) $\quad \alpha_{i, j}=0$:

If D^{\prime} is the subdomas of D whe \leq and if $\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{2}^{\prime}\right)$
is the point where L assume its maximu in D'then
(5.11) $\left\{\begin{array}{l}1 . t_{1}=t_{1}^{\prime}, t_{2}=t_{2}^{\prime}, \ldots, t_{2}=t_{1}^{\prime} \\ 2 . t_{i} \geq t_{j .} \quad t_{i}^{\prime}=t_{i}^{\prime} .\end{array} \quad t_{i}^{\prime}<t_{i}^{\prime}\right.$,

Proof: The proof of this theorem differs from the one given for theorem VI in [2] only in the form of the trace from a point in D^{\prime} to the maximum in D. This trace which is a straight 1 Ine in [2], need not be straight now (of. the proof of theorem II of the present report).

6. Examples

In this section the pooled samples of \underline{x}_{i} and \underline{x}_{j} will be denoted by $x_{i, \gamma}^{\prime}\left(\gamma=1,2, \ldots, n_{i}^{\prime}\right)$, where $n_{i}^{\prime}=n_{i}+n_{j}$. $6.1 \underline{x_{i}}$ possesses a normal distribution with mean θ_{i} and known variance ($i=1,2, \ldots, k)$.

Without any loss of generality we may suppose that $\sigma^{2}\left\{\underline{\varkappa}_{i}\right\}=1$ for allis; then

$$
(6.1 .1) \quad L_{i}\left(y_{i}\right)=-\frac{1}{2} n_{i} \lg 2 \pi-\frac{1}{2} \sum_{\gamma=1}^{n_{i}}\left(x_{i, \gamma}-y_{i}\right)^{2} \quad(i=1,2 \ldots, k) .
$$

From (6.1.1) it follows that

$$
\begin{equation*}
\frac{d L_{i}\left(y_{i}\right)}{d y_{i}}=\sum_{y=1}^{m_{i}}\left(x_{i, y}-y_{i}\right) \quad(i=1,2 \ldots, k), \tag{6.1.2}
\end{equation*}
$$

thus, if

$$
\begin{equation*}
m_{i} \stackrel{\text { dep }}{=} \frac{1}{n_{i}} \sum_{\gamma=1}^{m_{i}} x_{i, \gamma} \quad(i * 1,2 \ldots, k) . \tag{6.1.3}
\end{equation*}
$$

then
$(6.1 .4) \quad \frac{d L_{i}\left(y_{i}\right)}{d y_{i}}\left\{\begin{array}{lll}>0 & \text { if } & y_{i}<m_{i}, \\ =0 & \text { if } & y_{i}=m_{i} \\ <0 & \text { if } & y_{i}>m_{i} .\end{array} \quad(i=1,2 \ldots, k)_{0}\right.$
From (6.1.4) It follows that $L_{i}\left(y_{2}\right)$ is a strictiy unimodal function of y_{i} in the interval (- ow, $+\infty$), thus $L_{i}\left(y_{i}\right)$ is a strictly unimodal function of y_{i} in each losed subinterval
Y_{i} of the intarval $(-\infty,+\cos)(i=1,2, \ldots, k)$.
Further if $y_{i}=y_{i}$ then $L_{i}\left(y_{i}\right)+L_{j}\left(y_{j}\right)$ reduces to one term of the form
(6.1.5) $\quad L_{i}\left(y_{i}\right)+L_{i}\left(y_{i}\right)=-\frac{1}{2} n_{i}^{\prime} \lg 2 \pi-\frac{1}{2} \sum_{i=1}^{m_{i}}\left(x_{i, \gamma}-y_{i}\right)^{2}$
and analogous relations hold if more than two of the y_{i} are equal. Thus L satisfies condition (4.3).
From (6.1.5) it follows further that if L attain its maximum for $y_{i}=y_{j}$ then the two samples of \underline{x}_{i} and \underline{x}_{j} are to be pooled. The procedure will now be illustrated by means of the following example.
Suppose $k=4, r_{0}=2, r_{1}=4$ and
(6.1.6)
$\alpha_{1,2}=\alpha_{1,3}=\alpha_{3,4}=1$.
Lat further

$(6.1 .7)$	1	1	2	3	4
	$x_{i, \gamma}$	$\begin{array}{r} -0,40 \\ 2,56 \\ 0,25 \\ 2,87 \end{array}$	$\begin{aligned} & 1,43 \\ & 1,86 \\ & 0,06 \\ & 0,07 \\ & 1,14 \\ & 0,29 \\ & 2,57 \\ & 0,85 \\ & 1,21 \end{aligned}$	$\begin{array}{r} -0,70 \\ 2,61 \\ 0,79 \\ 0,86 \\ 0,14 \end{array}$	$\begin{aligned} & 0,29 \\ & 0 \\ & 1,31 \\ & 0,15 \\ & 2,53 \\ & 1,86 \end{aligned}$
	$n_{i} m_{i}$	5,28	9,48	3.70	6,14
	n_{i}	4	9	5	6
	m_{i}	1,32	1.05	0,74	1,02

and let $Y_{1}, M_{2}, Y_{3}, Y_{4}$ be the intervals

i	1	2	3	4
y_{i}	$(-\infty, 1)$	$(-\infty,+\infty)$	$(0,5, \infty)$	$(-\infty,+\infty)$

Then it follows from $(6.1 .7)$ and $(6.1 .8)$ that the coordinates of the maximum in G are

i	1	2	3	4
v_{i}	1	1,05	0,74	1,02

From (6.1.6) and $(6.1 .9)$ it then follows that the pairs $i=3$, $j=2$ and $i=4, j=2$ satisfy (5.7) and (5.8). Thus according to theoremVI L attains its maximum in D for
(6.1.10) $\quad y_{1} \leqq y_{3} \leqq y_{4} \leqq y_{2}$.

From (6.1.9), (6.1.10) and theorem V then follews (6.1.11)
$t_{1}=t_{3}$.
In this way the problem is reduced to the case of 3 samples with $r_{0}=0$,
(6.1.12)

i	$1(+3 i$	4	2
	$-0,40$	0,29	1,43
	2,56	0	1,86
	0,25	1,31	0,06
	2,87	0,15	0,07
	$-0,70$	2,53	1,14
	2,61	1,86	0,29
	0,79		2,57
	0,86		0,85
	0,14		1,21
$\dot{n}_{i}^{\prime} m_{i}^{\prime}$	8,98	6,14	9,48
\dot{n}_{i}^{\prime}	9	6	9
m_{i}^{\prime}	0,998	1,02	1,05
y_{i}^{\prime}	$(0,5,1)$	$(-\infty,+\infty)$	$(-\infty,+\infty)$
v_{i}^{\prime}	0,998	1,02	1,05

and
$(6.1 .13) \quad \quad \alpha_{1,4}=\alpha_{4.2}^{1}=1$.
From $(6.1 .11),(6.1 .12)$ and $(6.1 .13)$ then follows
(6.1.14) $\quad t_{1}=t_{3}=0,998, t_{3}=1,05, t_{4}=1,02$.
6.2. \underline{x}_{i} possesses a normal distribution with known mean and variance $\theta_{i}(i=1,2, \ldots, k)$.

We suppose without loss of generality $\varepsilon \underline{x}_{i}=0(i=1,2, \ldots, k)$;
then
$(6.2 .1) \quad L_{i}\left(y_{i}\right)=-\frac{1}{2} n_{i} \lg 2 \pi-\frac{1}{2} n_{i} \lg y_{i}-\frac{1}{2} \frac{\sum_{k=1}^{m_{i}} x_{i, \gamma}^{2}}{y_{i}} \quad(i=1,2, \ldots, k)$.
From (6.2.1) it follows, if
(6.2.2) $\quad S_{i}^{2} \stackrel{\text { deq }}{=} \frac{1}{m_{i}} \sum_{\gamma=1}^{m_{i}} x_{i, \gamma}^{2} \quad(i=1,2, \ldots, k)$,
that
(6.2.3) $\quad \frac{d L_{i}\left(y_{i}\right)}{d y_{i}} \quad\left\{\begin{array}{ccc}>0 & \text { if } & 0 \leqq y_{i}<s_{i}^{2}, \\ =0 & \text { if } & y_{i}=s_{i}^{2} \\ <0 & \text { if } & y_{i}>s_{i}^{2}\end{array} \quad(i=1,2 \ldots, k) ;\right.$
thus $L_{i}\left(y_{i}\right)$ is a strictily unimodal function of y_{i} in the interval $(0, \infty)$.
Further if $y_{i}=y_{i}$ then $L_{i}\left(y_{i}\right)+L_{i}\left(y_{i}\right)$ reduces to
(6.2.4) $\quad L_{i}\left(y_{i}\right)+L_{j}\left(y_{i}\right)=-\frac{1}{2} r_{i}^{\prime} \lg 2 \pi-\frac{1}{2} \dot{r i}_{i} \lg y_{i}-\frac{1}{2} \frac{\sum_{i=1}^{i_{i}^{\prime}} x_{i, k}^{\prime 2}}{y_{i}}$
and analogously for more than two of the y_{i} equal.
Thus L satisfies condition (4.3) and if L attains its maximum for $y_{i}=y_{j}$ then the two samples of \underline{x}_{i} and \underline{x}_{i} are to be pooled. Numerically the method is thus precisely the same as in 6.1 , With s_{i}^{2} in stead of m_{i}.
6.3 ․ possesses a Poisson distribution with parameter $\theta_{i}(i=1,2, \ldots, k)$

In this case we have
(6.3.1) $L_{i}\left(y_{i}\right)=-n_{i} y_{i}+\sum_{j=1}^{n_{i}} x_{i, \gamma} \lg y_{i}-\sum_{\gamma=1}^{n_{i}} \lg x_{i, \gamma}!\quad(i=1,2, \ldots, k)$.

From (6.3.1) it follows that, if
(6.3.2) $\quad m_{i} \stackrel{\text { def }}{=} \frac{1}{m_{i}} \sum_{j=1}^{n_{i}} x_{i, \gamma} \quad(i=1,2, \ldots, k)$,
then

$$
\frac{d L_{i}\left(y_{i}\right)}{d y_{i}}\left\{\begin{array}{l}
>0
\end{array} \quad \text { if } \quad 0 \leqq y_{i}<m_{i}, \quad 1 \quad \begin{array}{ll}
=0 & \text { if } \quad y_{i}=m_{i}, \tag{6.3.3}\\
<0 & \text { if } \quad y_{i}>m_{i} ;
\end{array} \quad(i=1,2, \ldots, k)\right.
$$

thus $L_{i}\left(y_{i}\right)$ is a strictly unimodal function of y_{i} the interval $(0, \infty)(i=1,2, \ldots, k)$.
Further if $y_{i}=y_{i}$ then $L_{i}\left(y_{i}\right)+L_{j}\left(y_{j}\right)$ reduces to

$$
\begin{equation*}
L_{i}\left(y_{i}\right)+L_{j}\left(y_{i}\right)=-n_{i}^{\prime} y_{i}+\sum_{\gamma=1}^{n_{i}^{\prime}} x_{i, \gamma}^{\prime} \lg y_{i}-\sum_{\gamma=1}^{i_{i}^{\prime}} x_{i, \gamma}^{\prime}!; \tag{6.3.4}
\end{equation*}
$$

thus L satisfies condition (4.3) and if L attains its maximum for $y_{i}=y_{j}$ then the two samples of x_{i} and \underline{x}_{i} are to be pooled.

The theoremsof the foregoing sections may e.g. also be applied in the following case.
6.4. x_{i} possesses a normal distribution with mean θ_{i} and known variance for $i=l_{1}, l_{2}, \ldots, l_{g}$ and a Poisson distribution with parameter θ_{i} for $i \neq l_{1}, l_{2}, \ldots, l_{q}$.
Taking $\sigma^{2}\left\{\underline{x}_{i}\right\}=1$ for $i=\ell_{1}, l_{2}, \ldots, l_{g}$ we have
$(6.4 .1)\left\{\begin{array}{l}L_{i}\left(y_{i}\right)=-\frac{1}{2} n_{i} \lg 2 \pi-\frac{1}{2} \sum_{\gamma=1}^{n_{i}}\left(x_{i, \gamma}-y_{i}\right)^{2} \quad\left(i=l_{1}, l_{2}, \ldots, \ell_{g}\right) . \\ L_{i}\left(y_{2}\right)=-n_{i} y_{i}+\sum_{i=1}^{n_{2}} x_{i, \gamma} \log _{\delta} y_{i}-\sum_{\gamma=1}^{m_{i}} \lg x_{i, \gamma}!\left(i \neq l_{1}, l_{2}, \ldots, l_{g}\right) .\end{array}\right.$

From the sections 6.1 and 6.3 it follows that $L_{i}\left(y_{i}\right)$ is a strictly unimodal function of y_{i} in the interval ($-\infty,+\infty$) for $i=l_{1}, l_{2}, \ldots, l_{8}$ and in the interval $(0, \infty)$ for $i \neq l_{1}, l_{2}, \ldots, l_{8}$. Further, if $y_{i}=y_{j}$, where x_{i} possesses a normal and x_{j} a Poisson distribution then $L_{i}\left(y_{i}\right)+L_{j}\left(y_{j}\right)$ reduces to

$$
\begin{aligned}
(6.4 .3) \quad L_{i}\left(y_{i}\right)+L_{i}\left(y_{i}\right)=-\frac{1}{2} n_{i} \lg 2 \pi & -\frac{1}{2} \sum_{j=1}^{n_{i}}\left(x_{i, \gamma}-y_{i}\right)^{2}-n_{i j} y_{i}+ \\
& +\sum_{\gamma=1}^{n_{j}} x_{i, \gamma} \lg y_{i}-\sum_{\gamma=1}^{n_{j}} \lg x_{j, y}!
\end{aligned}
$$

It may be proved as follows that $L_{i, j}\left(y_{i}\right) \stackrel{\text { def }}{=} L_{i}\left(y_{i}\right)+L_{j}\left(y_{i}\right)$ is a strictly unimodal function of y_{i} in the interval ($0, \infty$). we have
(6.4.4) $\quad \frac{d L_{i, j}\left(y_{i}\right)}{d y_{i}}=n_{i}\left(m_{i}-y_{i}\right)-n_{j}+\frac{n_{j} n_{i j}}{y_{i}}$.

Thus if $m_{i}-\frac{n_{j}}{n_{i}} \leqq 0$ and $m_{j}=0$ then (6.4.5) $\frac{d L_{i, j}\left(y_{i}\right)}{d y_{i}}<0$ for each $y_{i}>0$ and in all other cases
$(6.4 .6) \frac{d L_{i j}\left(y_{i}\right)}{d y_{i}}\left\{\begin{array}{l}>0 \text { if } 0 \leqq y_{i}<m_{i}^{\prime} \frac{d_{e f}}{2}\left\{m_{i}-\frac{n_{i}}{m_{i}}+\sqrt{\left(m_{i}-\frac{n_{i}}{n_{i}}\right)^{2}+4 \frac{n_{j} m_{j}}{n_{i}}}\right\} . \\ =0 \text { if } y_{i}=m_{i}^{\prime}, \\ <0 \text { if } y_{i}>m_{i}^{\prime} .\end{array}\right.$ Analogous relations hold if more than two of the y_{i} are equal. Thus L satisfies condition (4.3).

This case will be illustrated by means of the following example. Suppose $k=4, r_{a}=r_{1}=3$,
(6.4.7) $\quad \alpha_{1,2}=\alpha_{1,4}=\alpha_{3,4}=1$
and $l_{1}=1, l_{2}=2, q=2$. Further
(6.4.8)

1	1	2	3	4
$x_{i, \gamma}$	5,38	4,84	4	2
	3,88	3,56	5	7
	4,14	4,40	3	5
	5,36	4,77	3	4
	5,48		4	
$m_{i} m_{i}$	24,24	17,57	19	18
m_{i}	5	4	5	4
m_{i}	4,85	4,39	3,8	4,5
r_{i}	$(-\infty, 5)$	$(-\infty,+\infty)$	$(0, \infty)$	$(0,4)$
v_{i}	4,85	4,39	3,8	4

Then the pairs $i=3, j=2: i=4, j=2$ and $i=3, j=1$ satisfy (5.7) and (5.8). Thus the problem is reduced to the case of the 4 samples $(6.4 .8)$ with $\mu_{0}=0$ and (6.4.9) $\quad \alpha_{3,1}^{\prime}=\alpha_{4,4}^{\prime}=\alpha_{4,2}^{\prime}=1$.

From (6.4.3), (6.4.9) and theorem V then follows $(6.4 .10) \quad t_{1}=t_{4}$.
In this way the problem is reduced to the problem of maximizing the function

$$
(6.4 .11) \quad L^{\prime}\left(y_{1}, y_{2}, y_{3}\right) \stackrel{\text { def }}{=} L\left(y_{1}, y_{2}, y_{3}, y_{1}\right)
$$

in the domain
$(6.4 .12) \quad D^{\prime}\left\{\begin{array}{l}0 \leqq y_{3} \leqq y_{1} \leqq y_{2}, \\ y_{1} \leqq 4 .\end{array}\right.$
From (6.4.5) and (6.4.6) it follows that
(6.4.13)

i	3	1	2
m_{i}^{\prime}	3,8	4,8	4,39
y_{i}^{\prime}	$(0, \infty)$	$(0,4)$	$(-\infty,+\infty)$
v_{i}^{\prime}	3,8	4	4,39

Thus

$$
(6.4 .14) \quad t_{1}=t_{4}=4, t_{2}=4.39, t_{3}=3,8 .
$$

References

[1] BRINK, H.D., Maximum likelihood estimates of monotone parameters, Ann. Math. Stat. 26 (1955), 607-615.
[2] van Eeden, Constance, Maximum likelihood estimation of ordered probabilities, Proc. Kon. Ned. Akad. v. Wet. A 59 (1956), Indagationes Mathematicae 18 (1956)

