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1. Introduction
The object of this paper is to give a more detailed account

of the situation, discussed in the first part of Cobham's article
Lz] . We shall consider here the situation where customers of
different priorities arrive at one counter to be served.

2. Description of the system

We distinguish r priorities by the priority numbers
1,25,...,F, where 1 stands for the highest and r for the lowest
priority. Customers of priority number k will be called K-
customers in the sequel. At time zero the counter is opened
for servicing. At that moment, with probability p (o, ...a.)

a dqueue consisting of a 1-customers,..., «, r-customers is o
present (with Q 20, ... ,a x0,p (o, -.a)z0 ,Zl_ajéoj‘.uapgolpo[aﬁ,,.A,a,r,),,y')"
New k -customers arrive (Ke{u‘_,h}> according to the following
law: the interval from time zero to the first arrival of a K-
customer, and the intervals between arrivals of successive K-
customers are mutually independent random variables with distri-
butionfunction

o for X £ 0

1 T )
(2.7) %k(y?_,\x

e * for X = 0

el

where we assume )\ _>o for Ke{ﬁ;...JP} . The servicetime is also
stochastic and has the same distributionfunction /i}(t)(continuous
from the right) for all k-customers. All arrival intervals
(including the intervals from time zero to the arrival of the
first k -customer) and all servicetimes are mutually independent.
Serviecing takes place for each priority in the order of
arrival. If customers of different priorities are present when
the counter becomes free to serve a new customer, that one with
highest priority which came first to the counter, is the next to
be served. If the counter becomes empty the next customer to be
served 1s the first newly arriving customer. Servicing of a
customer is never interrupted to make way for another customer,
Following D.G. Kendall [10] we consider the moments at which
customers leave the counter at the end of their servicetime. The
customers are numbered (1,2,... ) in the order in which they leave

the counter, and
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1) Questions, put to us by the N.V. Philips' Gloeilampenfabrieken,
Eindhoven, Holland, gave rise to the present investigation.

2) If a summation is extended over a rather involved set of indices,
this set is given in| [Jprackets, directly after the 2 sign.
Summation is always over non-negative integers.



(2‘2) Pﬁ:;ﬁ <a7"”)a;”)

. . . : h
is defined as the probability that the 77t departing customer
ls a Kk-customer and leaves a queue consisting of «a, “-customers,
«ees a, p-customers at the counter (ke{n.,vb}yvve{tl,”.}
8. d . é [ "’ i " * 1 L]
nd o e for, . ] for je {1 r] )

)
We introduce the generating functions

~ , ,_Ql‘:“ - G,_’ ./O‘h
(2.3) L, (X )= 2 a2, o 20lp (a0 )X " X

for [X|=1,. .,|X |=
f;(t), defined by

7 , Tthe functions Qg(cq and the moments of
1)

et
(2. gt [
for He « 20 and
(f}} o0 i
(2.5) A Lif ¢t Fo(E)

We exclude the case where 6}0):1 for some k, 1.e, we have
&) k=
M, >c for all k and 2ll ¢ and ¢ (x)=<1 for all K and all

A0,
Finally let
(2.6) H o ()

K, '
be the conditional distributionfunction of the waiting time of

the wth th departing customer

is a Kk -customer, and

departing customer, given that the »

O

(%) {:&—f/ c"“{fd H  (t)

K,

(2.7) v,

for Ke{m..\,w} and v;e{v,z,‘”}.
We distinguish two cases:
(1)

= |

r
the case of nonsaturation, defined by 2% AbﬁL
and

L
the case of saturation, defined by 2I A‘/A‘“’ -

For the case of nonsaturation we prove that the limits of

Pey (4> -sa,) and ﬂnﬂ(&"'” XP) for m_secoexist and that
Hmw(t) tends to a distributionfunction /7K(@) for msee . ALl

these limits are independent of the initial situation, i.e. the

probabilitydistribution {p, (2,.....0. )] « H (t) 15 the distribu-

tionfunction of the waiting time of an arbitrary K -customer in

the stationary situation.

- e s 0

1) The integrals are Lebesque-Stieltjesintegrals over the interval
0=t < co.
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Using D. van Dantzig's "method of collective marks" ( [5] 5
{‘6:}and [?J ), we derive recurrence relations (3.42) between the
generating functions F; (X, ..,X.) together with relations (3.16)

m
connecting the ﬂﬂq(x;,“.,xp) . Wi, (%) and ¢ («). From these
relations we derive the relations (5.2) for the

foox, x)el b £ (X....%.),

M .see  K,m 177 e/

which are then solved. From the relation (3.16) we derive (5.3),
connecting a,(xp..,,xw) and

W () & oy (=)

Once the ﬁ;(x;,”.,xr) are solved, they are used, together
with the last relation, to compute the first two moments of H(t)
and to derive an expression for y%(bg , for ke {m...,r} ., The
first moment of HK(Q) was given by Cobham [znl, but we did not
understand his proof.

For the case of saturation we only state some results without
proof,

We shall use some abbreviations to keep the formulae from
becoming awkwardly long. With the understanding that on both sides
of the equalitysign in (2.8) up to and including (2.1%) indices

may be added to the function symbols, we write 1)
(2.8) F(x)ekt £(x, . .x.),
L :
(2.9) g (x) 2t f (X)),
(2.10) {(uKXv'Z) abd {(u,...,u,xm_,, ...,Xmg REY RNV BN

i.e. the first Kk variables in (2.10) are equal to «, the last A
variables are equal to v and the remaining variables (if any)
are equal to the corresponding variables of £(X) (we shall always
have k. {= + ). In the same way

K)
(2.11) F(a( X)aee Flu,, o Lu X LX),
(2.12) AU ) (0L, U XX o),
(2.13) gy XDy oy X X )
(2.14) fly,, X ) ase (o oy XX oa),
1) agb 44 used, when on the left hand side of an equalitysign

an abbreviation is introduced for an expression on the right
hand side,



We use
gjm F(X) (1x]<1)

if we want to take

Lo Lo o F(X)

Xfa‘l Xy X,
where X}.“,X; must remain inside the unit circle. The order in

whiech the latter limits are taken is irrelevant unless otherwise
stated,

Finally 1)
(2.15) p X 2t 2; X s
and for all kKei1,. .., r}
K r
(2.16) P(MK:X)QBE;‘P;M " ;%-’DL Xé >
G k-1 r
(2.17) ,o(é[i/‘(/“:_*i—_‘i;pa(/(“ 25 p, X,
K.1 |
(2.‘18) P(f{(;d X)a_._.i_b Z;: P, 3K‘i + Zkg k. )(L .

3. Recurrence relations for the system

In order to apply the method of collectime marks of D, van
Dantzig [5] and [6] , we introduce an event E., which happens
with probability 7- X whenever a K -customer srrives, Lhus

(3.1) 0= XK:";T for each Keiv,...,r}.

The events E are independent for all customers. Any event £
is called a "catastrophe" in D. van Dantzig's papers, but its
nature is irrelevant. As only probabilities of other events,
together with non-occurence of any "catastrophe" are considered,
it is irrelevant whether under occurence of an event £ the
process continues or not.

We can now interprete ﬁw7(X) as a probability for

(3.2) /b (CL?‘,_.JQ'T) Xﬂa1‘._ X:’-r

®K,n

is the probability, that at the o departure, v:e{ni,”.}- , one

K ~customer leaves the counter, a, 1-customers,...,a, r-customers
remain at the counter and with respect to none of the remaining
customers the event £ happened, Therefore ‘, o

(‘3.3):‘ Tckm (X)=ZLQ4-*>'°.\~->@,'>‘°_\ Prm (%o ..,Qh) X; . ..Xr

ig thHe probability that at the mth departure wa=fgz,...} ak -cus
tomer leaves the counter and with respect to none of those remaining

at the counter the event E happencd, Further
=GP W R T e o= =

1) If k-7 the first sum on the right hand side of (2.17) and
(2.18) equals zero, if k.r the last sum of [2,16).



g

(3.4) P (o sosa, L a)X " X

i1s the probabllity, that at the pth departure, me {1,2,,.& } , an

¢-customer leaves the counter, @ chustomers,...,a% r-customers
remain at the counter and with respect to none of the customers
remaining at the counter the event £ nappened, Ifok>-0 the next
customer to be served is a K -customer, therefore for

K € { 1,...,r} 1) (using (2.10))

] — : a,
(3 .5) TC;),, (OK 7 X)_ {.ﬂ (o" X):ZLa,KE; 1, %1‘.1;_—?0, e .,O'.’EinJPCm(o,...,o,ak,..‘,o.,r’))g,__

is the probability, that at the »'0
the counter, service on a Kk -customer starts and with respect to

none of the customers left by the departing ¢ -customer@ the event

departure an ¢ -customer leaves

E happened.
Put

(3.6) Adef L

Now

¥

{‘m (Or) = Pl (0, -0)

is the probablility, that at the ﬂth departure an t-customer leave:

and the counter becomes empty, while

CLC’-‘{ /\

is the probability, that the first customer arriving after a given
moment is a & -customer, therefore (using (2.9) and (2.10))

(3.8) A X g, (07
1s the probability, that at the w " departure, me {12} , the
counter becomes empty and the next arriving customer is a k -

th

customer, with respect to which the event E does not happen.

a -xt, Q,.
(3.9) j 0T T O T F ey
a_! a_r'/ Kk

is the probability, that during the servicetime of a K-customer
exactly a, 1~customers,i.‘,ﬁp r-customers arrive, so (using
(2.15))

o

S PN R & ~Apt 3o
(3.10) //"((/\(1,}0/\’)):2_.[@%0,..»,apacj)\’.‘.Xr‘ e %zir) e ,(_;_f_l) o F (¢)
O
is the probability, that with respect to none of the customers,
arriving during the servicetime of a ¥ -customer, the event £
happened.
Analogously
(3.491) w (A (1-ptr ) X))

K
1) If X =r then F%ﬂ(oKX) stands for €ﬂ1(oﬁl



1s the probability, that with respect to none of the customers
with priority number = k, arriving during the servicetime of a
k ~customer, the event E happened.
Now the probability that at the LW+1)St departure a k =~
customer leaves and that neither to him nor to those remaining
at the counter the event E happened is equal to the probability
that at the wth departure either an ¢ -customer leaves the
counter (for ¢ equal to 1,2,..,. or r ), service on a K-customer
starts and to those remaining at the counter (the Kk -customer
under service included) the event £ did not happen or the counter
becomes empty and the first customer arriving is a K -customer,
with respect to whom the event £ did not happen and (in any case)
during the servicetime of that Kk -customer no customers, with
respect to whom the event E happened, arrive. This equality can
be written in the following way, using (3.3), (3.5), (3.8) and
{(3.10) with their interpretations
(3.12) X;« {KMI (X {9 (0" X) g (o /\’)+ng g (o)}ﬁ;}’( 7_/0)())
This relation is valid for Kefs,..., r{ ;ne{ﬁﬁq.”} and all real
,XK satisfying o= X;é;7 , because of the arbitrariness of the
event £ . If at the moment the counter is opened for service,
with probability f%(d7r--,&%) 2 gueue consisting of , 1=
cUsStomers, ..., a, r-customers is present and
a

(3.13) g (X)4 Zlazo, Lazolp (e, a)X " X",

’p 1 r

then (3.12) is true for w_.o as well.
For o<=X'<1 , L+ k and o<)% =7 we can solve (3.12) for
kn+'(X) once g (X) is known for those values of X . But then
we can find ﬁ: (Y)\and 9. (X) ) ) for all X satisfying
X, X2
Ké{ﬁa..-,P} . Therefore (3.12) holds generally for each
K e {t...JP},176§ 0,152,...} and [}ﬂfﬁ'h | X'}< 7.

We might try to express F o (X) as a function offa(X)
only, by repeated application of (3.12) and so eliminating g(kﬂ
With {21, This is however not practiecable, the more so as £

M” (X) for X =0 can be found from (3.12) only by dividing
both sides by XK for 'Xk:,g o and taking the limits for XK*”"-
which leads to partial differential quotients in the expression

for i (X) for X;:o .

T+
= by analytic continuation for each




Analogous to (3,11) and its interpretation we have

(3.14) W (Ak(u/\’k))

is the probability, that if at the mth departure a «k-customer
leaves the counter, with respect to none of the customers with
priority number k arriving during his wailting time, the event
E happened, Finally

(3.15) Fo( X am)

K m
is the probebility, that at the nt>

leaves the counter and with respect to none of the customers

departure a k-customer

with priority number k which remain at the counter the event
E happened. Now this is equal to the probability that at the
th departure a k-customer leaves and that with respect to
none of the customers with priority number k arriving either
during his waiting time or during his service time the event

F happened.

Therefore we have

(3.16) fm«. (XN )y (4 (X )) v (4, (1-X) )

for xe{1ju.3r})ne{nzw}and for all X; satisfying os X s 1.
This may again be generalized by analytic continuation. Therefore
(3.16) holds for all )@ satisfying {Xk{é 1.
We can now summarize our results. From (3.16) we have, that
Fem (%) is a function of f (’X) and gi () . The functions
ﬁam('X) are known to qatisfy (3.12), but cannot be solved
explicitly from those relations in terms of 9. (X). However,
as we are interested in the behaviour of the system in the long
run, we will use (3.12) and (3.16) to find 7{;”00 ¥ (%)
The relations (3.12) and (3.16) can also be derived in a
more formal way than it has been done here.

Lk, Convergence to a stationary distribution
Before making use of the relations (3.12) and (3.16) we
shall prove some results connected with the convergence of the

pm SR a) for msoo , which justify the method of the
next section,

Let us say that the system is in the state (K; o ,“.,a%)

th th

at the departure of the w customer if the » departing

customer is a K -austomer and if he leaves for every ée{n.A,w}
a ¢ -customers at the counter. Then all transition probabili-
ties from a state at the ﬂth departure to any state at the

st '
(vi+1) departure are independent I » ond can easily be cal-
culated.



By considering only the moments, at which a customer leaves the
system, we thus obtain a Markof chaln, with a denumerable number
of states. Let us denote this Markof chain by ™. For every state
there is a positive probability to reach in a finite number of
steps a state where a departing customer leaves an empty counter,
and from this situation any state can agaln be reached in any
number of steps, We conclude that /¥ is an irreducible and ape-
riodic Markof chain (cf. Feller | & ] for the terminology and
classification of states in Markof chains). From Corcollary 1
in Feller [ & J(p. 328) it follows immediately, that fom p (@, .a.)
exists and is independent of the 1nit1al dlstrlbutlon.

In the case of nonsaturation ( Z: A e < ) all states
are ergodic, To prove this, we need a theorem of Foster [ 9]
whieh was given by Moustafa [12] in the following slightly
generalized form:
Theorem 4,1. An irreducible, aperiodic Markof chain represented
by the Markof matrix | pé)j;'{ (¢,j = 1,2,... ) is ergodic if for
some &£>0 and some integer ., , there exists a non-negative solu-
tion fg | of the inequalities

{#.1) F’A-blj‘i‘ﬂé—-ﬁ for D

(9]

(4.2)

Yy, < o for C = LQ

We note that 2? Py, can be regarded as the expectation
[N J

after one step, if we start in the éth state, of a random

variable 1)g s Taking values y, with probabilities Py

r

Theorem 4.2, If S¢ ) , all states in the Markof
7 /LL
chain M are ergodic,

Proof, This theorem 1s an application of Th. 4.1. The states of

M can be characterized by (kia,, o ), 1.e. the priority

number of the leaving customer and the*;umber of customers of
each priorlty left by him. With each state we associate a number
y . By definltion y- Eiiqh/éﬂ for the state (k;ay,___,a?) s l.e.
Y 1s the expectation of the time needed to serve the remaining
customers and as such non-negative, If we start in the situation
(k303-~90>ép--A,a%2 wlth a,>0 for an gﬁéP, the next customer

4
to be served is an ~customer and the expectation of y affer one
step is then

=7 R 1) (1) :” 1) 1)

‘%Z )‘L/“a/u{’ +(aé'*kf’/l[ - 7)/(4{, ! gv (ac +AL/“5 )/ub -

. (1) ) <L (1) S (1)
=%ﬁab_/ub_ +/U£ {Zl_/\\L/JL “1}§ %,ac_/u{ - &,

1) Rendom variables are denoted by underlined symbols,



where

.
e def P G
£ == g<r/A 3'—‘{7;&/& )

In fact the expected number of ¢ ~customers arriving during the
servicetime of an ¢ -customer is ) /M;” , and one ¢ -customer
leaves the system at the end of this step. Therefore (4.1) is
satisfied in this case., If we start in the state (k;, o,..., 0 ),
the expectation of y after one step is finite, so (4.2) is
satisfied for the » states with @ -a «...=a -o0.

Thus Th. 4.2 follows. )

Corollary. If we define g (ai ) é@ﬁm P (% 2,)
we have:

g (0, )ofor all Ke{vj,u)r} and a,20,..-,Q %0,

Z‘I:Zfa_-o azolp (o, .,a) =

and the g((ay,_.,ak) form a stationary distribution for the
Markof chain M , This is an immediate consequence of Th, 4.2
and Th. 2, p. 325 in Feller [ & 1.

To prove also the convergence of . L j_p eay,)
where the summation is over an arbitrary set S of otﬂtes, and
the convergence of moments of the queue length, we need the
following theorem,

Theorem 4,3, Let an irreducible, aperiodic and ergodic Markof

chain be represented by the Merkof matrix |/p ‘H (i,j=1,2,...).

If T ief%@g; p‘j , where p() are the » step transition
probablllties (these limits exist , are positive and independent
of ¢ (cf. Feller[ & ], p. 325) then we have for any non-negative

state function G

(4.3) ﬁ}4<1 p F = 2L F for every (.
N-»co ! J o J

Proof, As Lim ;qhvz T, and ﬁ >y we have for all posiltive
—— . o Maea T,y J E
integers ¢

i . & () S

- 3 = A{_',J,. . . K

() ’n{/l_.::.o H/ < Fij f..) = 51 6 ’
beoause if ¢>o0 and N is such that 1)

2: T F22l mF _ e,

1 b g 4

=2
1) If 4476 F. = 00 , only some obvious changes are necessary.
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we have

N oo
L%% EZ ™ F é3;M¢/2iF> F = ??/E 2 1J/ ;-

for every &>o0, whence (4.4) holds. -

The proof of (4.3) is completed, if 25 E‘/?_-ca.
Ir gf R}f}<:ca we proceed as follows, We know, that ﬁa is
always positive, 2; u and 2} T, F’ " for all
positive integers m (cf Feller[_@] s Do 325) Therefore we
have for a fixed N= i and everyw

o0 cO ca s () 22 ¢ )F
: S =g L S (m 51 oF
17, - 505 RE s Slimta . eatin By e TR
S0
Y =f= ; ¢ 17T 0‘0 ™ ‘:ﬁ )
Z{E)TJ FJ J/,;?«;JCI{J{‘{Z(‘7=LT—N‘€¢£J1L£E1: P, f}+1714;_ P F'J}

2 Z 15 I N o i Tpllm ind S0 F o 1T i s0p ST F 2

N ~-p OO

o

+ TZ [m)«ﬂwpzp(’”) F ®

M O J

= ZlhiefanNn at)n {.E:f

(_.

Now take N —ca

Zoj: (1_./7')§LIZF+ T__/&rn diefo 4_}::('“)/:.
1 1 3 J

(4 "n—-—,cn

‘...

-+

As ﬂ% >0 this leads to

co oo

<4c5) {f:ﬂ—"' difs o7 ('“) F Z T F
M Ly vo ‘1 ,_' 1 1 1

for all ¢ .
From (4,5) together with (4,4%) we have (%4.3).

Remark 4. The theorem remains true for arbitrary stage functlons
F. with Eg'nalfﬁ«cco as can be seen by writing
F o F _F

J J J 7’
where

!

R~
LT

Fraef [Fil+F; |
J 2.

T def x'Fil—-E;_ .

T

. T
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Remark 2. If the Markof chain we consider has a probability'ﬁ@
of being in the state ¢ in the initial situation ( p@)a o and
=2 (o ‘
> p”. 1), then by Th. 4.3
=2 2 () (n) - =
‘ L2 = 2 T F
J@ZL %Z < PP ﬁj TR
provided f} is bounded.
From the convergence of p (1 L, a ) follows only the
')1
existence of ﬁ;w Xy, i [X. ]<7 for Le;{1 }.
(= K,
We may now conclude, that even for / /< 7 for Le{%,.u,w}
Q e
- / 1 \V [ g
n%m (/() 2 L ) .A.)CZ_PE.:()JPK(Q_’,...,Q’“)).] A
This follows 1f we take the state function
@* .,
XX i (= K
F(L3a1,...)%): V
0 if Lo ko
a1 Xa"‘
c{n{ g 4 S
Thus X) tel M&;m . (A):Z.L@g 0, .azolp (a,...) X; A

18 a power series with positive coefficients, which converges if

r‘-
[XJ§1 for all ae{ﬂ“yﬁand as .Zﬁ EZJfg;o,_.ﬂkzxgrkhw.w)g):v,

we conclude that

(4.6) L fm T - f(m) (WJM}-

X—~>l
Remark 3. From Th., 4.3 we alsc conclude that

&m Z.. Z_}_a» 0, .0 = oJ a,x' Pk.'n (a.ﬂ:u. ) Z[ z0,. .,ap‘; 0_\0:j ;ok(aly...po,h:

l.e. the expected length of the gqueue of | -customers at the nth

departure tends to the expected length of the queue of j =customers
derived from the stationary distribution, and analogously for the
nigher moments of the queue length, provided the iritial state is
fixed, i.e. p (b, .. q) = 7 for a given initial state (bh,...,b5 ).

Theorem 4,4, If 2: /\_/A.,"’)< 1, the conditicnal distribution-
functions of the walt:mr times H (¢ (ke . ‘,r}> converge
to a non-degenerated dlstrlbutionfunctlon H_(t) with \

o<

satisfylng

() At ) E Ty for [1oxsn
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Proof, A distributionfunction of a non-negative random variable 1s
uniquely determined if 1ts Laplace transform is given on an inter-
val which 1lies in the right healf plane, because the Laplace trans-
form of such a distributionfunction is analytic for all arguments
with pesitive real part, and can thus be determined uniquely by
analytic continuation, so that the uniqueness theorem for the
inverse of a Laplace transform may be applied (cf. Widder
L1741 Th. 54, p. 57 and Th. 6.3, p. 63).

From (3.16) follows the convergence of Y, () for

s4 as  tom © (1")>0.

" .3c0  Kn

72
-5

We can now follow a standard method (compare e.g, Lévy E41j,
p. 49, proof of Th. 172) to prove that Han(t) converges to a
function (t) with Y (%) = ;@ZL Y. (&) satisfying (4.7).
H;(t) 1s a monotonic non~-decreasing function, continucus from
the right and satisfies H’(t/ =0 for ¢ <o and «&Wn H’ﬁ/--7
as from (4,7) Lim v (o) = . This proves Th. 4 7
All the fore501ng theorems concerning the gqueuing problem are

v .
valid only if 2? Au/f”-<7 . In the case of saturation

i/- »
(Ef A/u“) 7) analogous theorems can be proved, although we did
not succeed in finding 51mple proofp so far, In fact one can prove:

If Eiﬂk/y(ﬁ and 2L,A/u g we have

and

'Kﬁn 2 [ J+130, ...Jclhé()_jpkm ((L1)...Ja_”)

M —>co

exists and is positive,
If we define

fi(qﬂ.“ga_)iﬁ%ém Zﬂa:&éo).h,a zolp (o, ..,

K,m

we have for each "Gg7:~-:“}

~ e 0'1 /(’1&.5
&3;£M(X 5)_ L%;OJH.J%inthgwu)%)xvu_Asj
whereas
S+1 e S+1 — . )
@ ; F (\/ ) 21,‘1 Z.La1§o)...,as?=(>l P (a,1,...ja_s) =7 (/X/<'1)

&(f)conver zes to a non-degenercte distributionfunction if
s s and 1iw7/f (t) =0 for every finite € if k=2s5+7 . IF
M >0

k=3 the momenté of H (t) do not necessarily converge to
those of H;(t) , i.e. we cannot conclude

cQ

(4.8) Lirn tJd}an(t);:j/éJafH;(t) for k3

N —» 6o
o

i
o
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An example will show, that in some cases (4.8) does not hold.
Take s+2=r and /u;ﬂl=co , If we start from an initial situ-

atlon with a - . -a _=o0,a >0 it is clear that
+

fé o H_(t) = o (nef12,.})whereas j/trif/(t) is not necessarily
1nf1nite for k= 5,

5. The case of nonsaturation

In section 4 we proved that in the case of nonsaturation,

i.e, if
r
(5,’1) 1’: Ac‘/%iﬂ
for Ke{"ﬂv»-;’&g and all /\/ with /X}f'f ”‘J/>\/)n/§7
(‘() ’1""{1{%;14 I[k (X)
1 L] f
exists.

According to Theorem 4.4 in this case the limits

H_(t) def &4w H (t)

K. i

for all real + and

%(a)_é Lo CY

M s CO

for Ko « 2 0 also exist and y, () satisfies

o<

gﬂ[q):f ““tocH (t).

For ;<e§7’,,.,w} and [)ng-g,‘.,/x

"

|= 1 we have from [3.12)

(5.2) XA (%)= {q(7X) = (")« p X g (o)} p (A(1-p X))
while (3.16) leads to

530 LA L0 04K ) ().

From (5.2) we conclude (fOPI)ﬁjéﬂ)”j!XhJ§1 and arbitrary Cij
satisfying [U |=1,. |U }; 1)
! K.

(5.%) £ (x) ) £ u™x)
4 (A1-pX) v (A(o-rUX)

for X;¢o (and by analytic continuation for sz o as well) and
also

(5.5) i X () =i{g(o“’k’)»—3(0°'X)+/<>X3(0”)}-
% (/\ ('/../OXJ)
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Formula (5.5) simplifies to

(5-6) zi 7[(/\/) X' «%(/\(7—/{)/\()) :9(OP)(PX--7)
T ¥ (A= pX))
To determine ﬂ {X) we introduce 5?4""’3 , defined

<, 1 W, k-1
(for «ke {2,,..,p}
L7 g N
(5.7) 4, - 90({\(1 pa R Y s 2 P )) 0
for (e {L,“,k-1} . The y__ are thus functions of Xk,...,xp,

We shall prove (always assuming (5.1)):

Lemma 5.1, Equations (5.7) have for every set of complex numbe¥s

X oo X , satisfyhg 2L A Ke X. < 2; A exactly one solu-~
il = I<4..
tion for 5&7" s Yy with /%KM‘ Ty g, Kﬂ’

Proof: Consider the equation

K1

(5.8) z _2Ed g (dox 2DA X )=

By Rouché's Theorem (see litchmar%h{} |, p. 148): MIfp(z) and
?(1) are analytic inside and on a closed contour C? and

[9(%)|< [p(z)| on C , then p(z) and p(z)+ 9 (z) have the samg numbe:
of zeros inside C ", takinc[%z)iﬁ.z, ?[z)JEF 2:) w(l Z = Z:)\<)
and for C the circle (7] = z A, we have that

k;-r g_’: ,
Z Eyj/\a%()\’z'%'xj}\j)

K1

has exactly one zero 7 ooz (X .., X,) with | }< 2L A for a
K i< K r K T ¢

fixed set of complex numbers Ao X. , satisfying

QA N i\ (J:—‘
25 A Re, X < 2% /\_ .
IS I [N 2 s

If we now take

J
3}((—:%(/\.-2‘{_, P '\JXJ()
equations (5,7) are solved and
!u ¥<1
because Re (A- zZ, EL.A X, )>o and [ ()] <1 for Re o >0,
% LS
A second solution 3 1eaduytk z[ b 20 4 g, where z.
satisfies (5.8) and “ Z {<: Z: AL . But then z = xk
and therefore (4*.2 g -
4 K, L KoL

Lemma 5.2, The solution 2 of (5.8) is an analytic function of
the variables X , . .., X for all X

3 .., X satisfying
EZ.A Re X = 5— X
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Remark (cf Bochner and Martin[] J» p. 30). A function F(%,.“,%ﬁ
is ananalytic function of the £ complex variables 21,“.,23
in a certain region, if in some neighbourhood .of every polnt

(zf,.,., zgo ) of that region it is the sum of an absolutely
convergent powerseries in 7 _xz” .. ., z, - %{1
Proof: Consider the point )&: c, .. X_ =c_ , with .

r r

28 ) Ree <2f ) . By using theorem 9 from Bochner and

X3 [ k L o
Martin L / j s DP. 39 (for the special case k-7 1in their notation).
we prove that z is analytic in the point (q(,,,,aaw). The

theorem reads in our notation:

If the function F"(zJX;DH,JXr)is an analytic function of
r- k+7 {(complex) variables in the neighbourhood of the point
(a,c , ..,¢,), if F’(aﬂ(%,.,.,ch) = 0 and if %{?#30 for

z=a,X zc ,..,X -c_then the equation
k K [ n

4
F(Z,Xk).,., Xh)___o
has a unidque solution
z =z (X _,. . .,X.)
equal to q for X?:ck X.-c,_ and analytic in the nelghbourhood
of the point (ck,._u cr).
We take

PR ]

K -

ef ST . 7
,...,Xp)‘}—_——__ Z - %. /\L_Q?(A..L-.Z/\_XJ>

Kk J

Flz,X

Kk

with 2, X X —as (functionally) independent complex variables

kT2 e

This funcf%pn is analytic in the neighbourhood of (avck,”.,cg,
if Koo +2l ) Re c; <A . This holds in particular for a-
=% (e, ..,c), where #, 1is the only zerc of F(z,x%,,.” X, ) with

|z | = éz A (see proof of lemma 5.1), because

g K- sl
Re 2+ by ,\‘_ Re ¢, < 27:?/\_ . 20 /\j% = A\ . Furthermore

i &

K
F('Zk ( CosinCp)sCo o )=0 a8 Z_ satisfles (5.11) and

"
K.

. K1 v
[2E[ -1 o200 2% 20 280 >0,
? z 7 . a.z X 4 [
for z-a, X -c ... . ,X . ¢ , because f
k K 1<l [

| %i;/ - )[? excpf_ t(h z_ 2:1% Xﬂ}df(l—)}éﬁ/?df;(t):/x‘,

and (5.1) holds. Therefore the equation {5.8) has a unigue solu-
tion L ZK(XK,...) X ) equal to Z (e o

> X, =¢, which 1s analytic (only this is new) in the neigh-
bourhood of (c_, ..., e, ).

/
5 ¢,) for X e,

r I
Lemma 5.3. If we keep 20 A Re X <= >¢ )
b s . K [ t K i
we have

(5.9) Lo z, (XK ..X )=t for %? AC(X£p7).ﬁ& 0.

3

3 cra Dy
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Proof: Again we apply Rouché'!s Theorem (see proof of lemma 5.1),
this time with .
plz)tef 2 - 20 +¢

K V’
e f i
i = 200 [p(a_z 350 X))o} e
where ¢ is a (small) p051tive number. For C we take the circle
with radius ¢ and centre Z:.A _E . If we take Ef ), X
sufficlently close to Z: A , it turns out that jp(zﬂ

and |g(z)[<e for all points of . Thus

plz)+ 9 (%)= 2 ~zkif1)éz/£(/\_.z_ %‘IA‘X,.)

has a zero inside C , As z 1is the only zero of this functilon
K-

for }Z[-< Z;f A. , the zero we have found must be z s l.e.

ziven e>0 we have proved

K-
}zk EEPTED Y +£{.< £
and thus
'_(__;'1
o2 o 2: A.) < 2&
K 1 <

.
if %S A (X, .1) 1s sufficiently near O, provided,%:)&ﬁ&”{_ﬂ,)cc

Remark, We algo have Re (A _ 2; \ X’) >0,
Lemma 5,4,
AT 200 r ,
o (2 ) .X)  for 28 X (X 1) 50

exists, if we keep Z:) Re X =< Z: \2% , for every
e {O, 1,...,m},if /M(m)<co for every <,k G{‘1,<,_,r}
and m z 7.

) > , i . . )
Proof s (DA )z (X_,....X,) can be ohtained by partial diffe
rntiation of

z Z} A P (A - Z, ) X )

with respect to X , Tor 2; Aél&aké = %; Aaéa and solving for
5% + We obtain a fraction, from which we find the higher par-
tial derivatives by ordinary partial differentiation, applying
the chaln rule and substituting for those derivatives already
obfained, Remembering'that /u?w<cm implies that ¥ (<) 1s an
- m Ulmes continuously differentiable function for Roe «« & 0
which may be differentiated under the integralsign, that (5.1)
holds and lemma 5.3, we can easily verify the statement of the

lemma,
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It .
w73t St
A, Lt (5%1) Z WX, ....X ) for ZEA(X.7) o0
we find
k-7
(5"40) A = ’)\k >1" X /M 3
K1 ant
7 . _/_;___ \/u
,\Z. é—-—v A (1)
(5.41) — P
f ) (4}
(7—_ 2t ) 4 ) i
K7 Ko
2 --:w (3 . 3 g-‘.— (2}
(5412) A A ‘1“)'/"’ + 3/\'<(4f')5/* )
ka W1 1

(hz,,\/ﬁ”)" (- 52 u")

From (5.6) we obtain, substituting X'm Jw for

L e gﬁ,H.JK~4§

(5.:13) Xy tp (M (1= P(gm3XD { (g“) X) =
% (’\ (7-p ‘i’(wpx)))
el 5 K w OO PO oy X} (ply,X)-1)9(07)

Koot
2O Py %)
and by using [5.4) we have

50y e B Ol-rlug D) £ (x)
b (A7 = p X))

s X g (M1 PGy W A(X) + (plypyn%)-1) 5 (0")
£ (Mr-p )

for all X, satisfying [X;|S 1 for jxk and |X |<1.

= ‘ﬁ( (A('1*P(.ﬁ’(x)>x)))

We have

only for

Xk = yk”m (Xk+4""’/\/r‘)

and therefore the £ (X) can be obtained successtvel; for all
X“...)X; satlsfying X =1 for jex and [X |<1 (elther
directly or else by analytlc continuation) from (5,14), starting
with (Xx) ir 9(0") is knewn, We shall not try to obtain
the f (X) explicitly, but uve (5.1%) in the sequel,

Thc constent g (o”) is determined by the condition

(5475) g(1") = 1



- 18 -

If we take X -1 1in (5.14) for (x« and, keeping |X |<1,
take X .1 , we have from lemma 5.3. that both sides of (5.14)

K ) K.1 Poi
tend to zero, It can be seen, that X, = %;(A(v—p[%w,1 X 175

K
for XK = 1 , therefore, always keeping |[X |< 1 and
using 1'Hopitals' rule
r ] Koo e
(5.16) Fe(17) = o £ (1"7X47)

K

L SE ) o - RO Pl Y
Keq & X 1 X _ %{(A(1-P(£/(K))1K~"/\/7P_k)))

K

(v}

-1 Ve 3 r 1)y | i
19007 fomy Pl T X - B ey A0 P) 8 e e
Xt Ao (g, N T R N R A P
or with (5,10) .

- r (1) r
(5.17) TCK (ﬂ'n)z 25 [‘[1}/(1 /\K+3(o}pk

5 é’;’__ Ai/ochj
Solving (5417) for £07)  leads to

(5.18) Q(dr): H;?éo) - for Ke{t.“,r}.
I - 25 Au/ﬁ

Because

(5‘,19) q(?P): 1 5

we finally have

(5.20) ﬁ((fﬁ = P,

and

(5.21) (0"« 1- 25 4 uY

® 9 = — 5 L,//(l_ .

We thus proved

Theorem 5.4. The functions f; (X) satisfy the equations
M1-pX
(5.22) —FK (X) - /f;( [ (1 = ))
/\/K“ LIﬂK (/\(_,CPL':{(F\)JX}))

L (o X - bt { i '

ez fen S0l O 9 ]
! (A= pt” X)) A 7

for ‘Xilé" (= k) «‘lxxl<1’sz#gkwk(xmf*""x")

and all ke {1,...,r}. 3
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They can be obtained successlvely from these equations starting
from k=vr.

The derivation of (5.20) and (5,21) here given is unnegess-
arily long and complicated, but the same method leads us to the
moments of the waiting time distribution as we shall now show,

In section 4 we proved that in the nonsaturated case the
-Q(x)are powerseries with non-negative coefficients, absolutely
convergent for {X1[§<u.‘.,}XP]§a1 and ke{#,,”,w}. If we diffe-
rentiate a function of this kind » times ( » e { 044 } ) with
respect to one of its arguments and take the limits (in any order)

Xfuat,,“,x‘_g keeping |Xjs1 for all L ¢ {,..r} then etther
the vresulting expression is finite and the powerseries for this
derivative converges forl>ﬂlé7>-~u,{¥4}§ 1 or the limit is +oo .

Moreover iIn all cases we have

(5.23) {(7 (X)} =L () (1X1=1).

4= "=Xr~=1 X'—>1

From (5,22) we see, that

(5.24) (ax) f (x) (I%]<1)

X1

exists 1f ¢/ (AM(1-pX)) 1is (n+1) ~times differentiable with
respect to X, for je {4,. .,r} and keft,...,r] , This is
certainly the case 1f the(M+ﬂSt moments of all F;(X) (Lefs,..,r])
exist., If (as the only alternative) at least one of these moments
is+o0 , then we find from (5,22)

(5.25) f%gy (E%Q)m ﬁ;(X)::+-oo (1%)=1).

If we take X = 71 for (+k in (5,22), differentiate with
respect to X, , then let X »+ and use (5.10), (5.411) and (5.20)
the result is

2 () 2 'Z (2)
(5.26) (“[) SNV VR
. &=t D) . 1)
X = Xet D(1-280 w1230 W)
whilst we find in the same way from the second partial derlvatlve
of (5.22) with respect to X,
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3 5 ) 5 ) ;., (2)
(5.21) (2 2 C A e PR
D X':X X A /\(1__ E /}f‘))(1« 20 A ("i’))
o = ( =1 1 3 % L
1"
> o £ t 5o {2) (2
N A 2k A, AL DA g 2::)‘1 !

1 /u'L :
3}(7_21__:'-!3_ (.'!))1(7_2!_5:/\ /,LU)) + 2)‘(1 2_—:‘1 /1)) (1 FA /LL(v))
A LA/")Z ,\/u‘“
2A(7- 2:) ”’)( z:,\/ﬂ)

From {5,3) we have by differentiating with respect toX;

(5,28) (DX ) ‘fw(77('%;%(}“(7)‘/0)%[’\x“‘xw))}) =

X =1
= c(ﬁ){/\r\/u‘:% A, Egk} ,

=X =

3 f p{,\z (2 W+AIEW2_)
(5,29) <~:)‘Xz) K(1) "/MK . ""/LK g"‘k K Ww}

if E~gk and gggi are the first and second moment of the station-~
ary waiting time distribution H _(t) respectively.

On combining (5.20), {5.27), {5.28) and (5.29) we obgain:
Theorem 5 2, The flrst and second moment of the stationary o

waltlng time distribution H_(t) , for Ke{g.”,r} s are
respectively

i (1)
(5.30) g \L/W = K%,—F— )(Lﬁ/uL e tt)
2(1“ Td /\;/U"L >(-/‘ Zf‘ Ac/’( )
and
£ (2)
(5.37) Ewl - EOR

- BT AT 29/»“”)( >/‘(”) |

aur (5.30) 1s Cobham's formula (3) (see [3&
’ TTe function ¢ (=) can be found from
1.2 =7,

K

)
(5.3), at least for

(5032) (,I/K(et);- /\{';(4"".‘414"?\‘;3'1,...,7>
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which, if combined with (5.22), leads to

(5.39) (0 < L1230 ) E b (7))
R N N £ Sy

W 3 *
where % = o and z:= z_(=) satisfies (5.8) for Xk:1~§. X =1
K
(i« and k22 ) 1.e,

(5.34) 20 S g (ST xle)- .

Therefore w,(A) is explicitly given by

r

’ ! (1) < ‘
{5.35) W, (ot) = — (7~ Z—ﬁ A, )0< + % /\l, (7- . ()
A —o A ()

while ¥, (o) for Ke-{zJ,,_J r} contains the Zi
As an 1llustration we give the following example:
Take r-2 ,F (x)=F,(x)=1- exp (- ﬁ%) , then

(5;3\6) tp, (04) = (791(,,4) = N
rf(/u+1
(5037) "(/1(0()5 7-)1//( + X4 +O</\/uz s
1 - /\1/(1 +c>(/u
(5.38) W) (o() ('j—’\/“)( ’\ + z 04)1((/\1-. Z‘:-ko()//,(,t'?}

(Afﬂoq{(\1_ Z:+a)/x+1}_.)z
which leads to the following waiting time distributions (¢ 2 o)

(5.39) Ho(£) = 73 enp __(_1___5\..&)_*_}
SRl R
(5¢40) /—/l(t);v-,\/u+:\xﬁ(1_w,p(,_A;(ﬂ;\(ﬂ)t})Jr
&M)jkﬁ / l‘(za\éﬁ 4m#{_Ath5 u}du
o 2bL A/M Wy
where IV (x) is the modifiled Besselfunctien of the first

order and of the first kind.



- 22 -

The result (5.40) contradicts equation (27) as given by
R.E, Cox [4 ].

6. The case of saturation
If (5.1) is not satisfied, we can find a positive integer S,

0=s=r , such that

1) 17 )

S 1
/\i/uc<1,%“_/\£/u¢ =z 1.

N

(6.1)
In section 4 we stated already without proof, that

(6.2) fox) & b f(X)

K.n

exists for ke{i,.“, r} and that
(6'3) TC“ ()u/) = O

if at least one X& satisfies L&{<~1for j e{5+1,...,r}.
As a consequence of (6.3), 1t cannot be true that

(6.4) b (57) = o £, (),

as the right hand side in (6.4) equals O and
(6.5) g(1") =1

The functions ﬁ;()() thus cannot be powerseries with positive

coefficients and the method of section 4 cannot be applied.
But if instead of f (X) only f (x77°) 1is considered,

we can repeat the argument of section 5 with some alterations.
From (5.,2) and (6.3) we have at once

(6.6) Fo(X)-o

for “f{ShA.“JP} and | X|=1 , for all ( « {u.ujr}.
If for « e{i,...Jri

}

(6.7) gt £ (xd7)

one can prove that for ‘Ké{ﬂ.“,s+1}; ?;(X) again is a powerseries
with non-negative coefficients, absolutely convergent for

[4,[s1, . |X|=+1 end setisfying

S0
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1 "

@or L Ey- B e L)

From (5.2) we have for ke{ig‘“’s} and X ..o X o

‘%(%%&(LXJ>

and for K= 35+

{6.9) EM(X): ff(or) ‘/S_,,(%‘SZ)‘;("“X(D'

From (6,8) and (6,9)

PR AT 1A S AT

K k

Equation (6,10) is the analopue of (5.2), while the analogue
of (5.4) 1s (for [X,|=+, ¢ef4,.. 5] and (uj_]@ , je{u...,w}
and K e{z,.u,s})

7 = (k) ,
res W eS
‘6*,}1} fK(Xj ) _ FK(M )(f )

(A 1-HX ") e (1,pza§“’x,7”)))
and (5.3) can be written

(6.12) £ (X)) O (-4 ) 4.0, (- £,)

for wefq,. . ., S} . Therefore the moments of the waiting time
distribution can be found as in section 5 for K'6{1,“.JS}. One
obtains

— (1) .
(6.13) F (). M Moos for K efn...s),
K P i,\ ) ) = 3
T g/"‘c S+7 7
_ : Sy
‘6.’14) 1(47}0): - Zq‘ S
= o3y e 0 SE
-7 /L +/ S+7 1 .
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S+1 = ? \ (1)
(6.‘15) ;; F (Or) = 7~ = "\5 /4;_ ' R
¢ o ) S
7- 2_1— )\Ll/‘(t. +/uS b ‘Zi: )\C

(6.16) Ew, . T

which is Cobham's formula (cf [2 7).
In addition one can prove,,that

£ w = oo for K e§ S+7,‘..,r}.

« =

The authors wish to thank Prof,Dr D. van Dantzig for
suggesting the use of his "method of collective marks" and for
his valuable advice and criticism, which helped to give the

paper its final form,
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