MATHEMATISCH CENTRUM
 2e BOERHAAVESTRAAT 49
 AMSTERDAM
 STATISTISCHE AFDELING

Leiding: Prof. Dr D. van Dantzig
Chef van de Statistische Consultatie: Prof. Dr J. Hemelrijk

Report S 211 (VE 11)

Priority in waiting line problems
by
H. Kesten and J.Th. Runnenburg
(Prepublication)

1. Introduction 1)

The object of this paper is to give a more detailed account of the situation, discussed in the first part of Cobham's article [ג]. We shall consider here the situation where customers of different priorities arrive at one counter to be served.

2. Description of the system

We distinguish p priorities by the priority numbers $1,2, \ldots, p$, where 1 stands for the highest and p for the lowest priority. Customers of priority number k will be called $k-$ customers in the sequel. At time zero the counter is opened for servicing. At that moment, with probability $p_{0}\left(a_{1}, \ldots, a_{r}\right)$ a queue consisting of a_{1} 1-customers,.... $a_{r} \quad r$-customers is 2) present (with $\left.a_{1} \geqq 0, \ldots, a_{r} \geqq 0, p_{0}\left(a_{1}, \ldots, a_{r}\right) \geqq 0, \sum\left[a_{1} \geqq 0, \ldots, a_{r} \geqq 0\right\rfloor p_{0}\left(a_{1}, \ldots, a_{p}\right)=1\right)$. New k-customers arrive $(k \in\{1, \ldots, m\}$) according to the following law: the interval from time zero to the first arrival of a $k-$ customer, and the intervals between arrivals of successive $k-$ customers are mutually independent random variables with distributionfunction

$$
f_{k}(x)=\left\{\begin{array}{cl}
0 \text { for } & x<0 \tag{2.1}\\
1-e^{-\lambda_{k} x} & \text { for } \\
x \geqq 0
\end{array}\right.
$$

where we assume $\lambda_{k}>0$ for $k \in\{1, \ldots, r\}$. The servicetime is also stochastic and has the same distributionfunction $F_{k}(t)$ (continuous from the right) for all k-customers. All arrival intervals (including the intervals from time zero to the arrival of the first k-customer) and all servicetimes are mutually independent.

Servicing takes place for each priority in the order of arrival. If customers of different priorities are present when the counter becomes free to serve a new customer, that one with highest priority which came first to the counter, is the next to be served. If the counter becomes empty the next customer to be served is the first newly arriving customer. Servicing of a customer is never interrupted to make way for another customer.

Following D.G. Kendall [10] we consider the moments at which customers leave the counter at the end of their servicetime. The customers are numbered (1,2,...) in the order in which they leave the counter, and

1) Questions, put to us by the $N . V$. Philips' Gloeilampenfabrieken, Eindhoven, Holland, gave rise to the present investigation.
2) If a summation is extended over a rather involved set of indices this set is given in L brackets, directly after the \sum sign. Summation is always over non-negative integers.

$$
\begin{equation*}
p_{k, m}\left(a_{1}, \ldots, a_{p}\right) \tag{2.2}
\end{equation*}
$$

is defined as the probability that the $n^{\text {th }}$ departing customer is a k-customer and leaves a queue consisting of a_{1} 1-customers, $\ldots, a_{r} r$-customers at the counter $(k \in\{1, \ldots, r\}, n \in\{1,2, \ldots\}$
and $a_{j} \in\{0,1, \ldots\}$ for $j \in\{1, \ldots, r\}$).
We introduce the generating functions

$$
\begin{equation*}
f_{k, n}\left(X_{1}, \ldots, x_{r}\right) \stackrel{d e f}{=}\left[a_{1} \geqq 0, \ldots, a_{r} \geq 0 \mid p_{x_{0} n}\left(a_{1}, \ldots, a_{r}\right) X_{1}^{a_{1}} \ldots x_{r}^{a_{r}}\right. \tag{2.3}
\end{equation*}
$$ for $\left|X_{1}\right| \equiv 1, \ldots,\left|X_{p}\right| \equiv 1$, the functions $\varphi_{k}(\alpha)$ and the moments of $F_{k}(t)$, defined by 1)

$$
\begin{equation*}
\varphi_{k}(\alpha) \stackrel{\operatorname{det}}{=} \int_{0}^{\infty} e^{-\infty t} d F_{k}(t) \tag{2.4}
\end{equation*}
$$

for $R_{e} \alpha \geqq 0$ and

$$
\begin{equation*}
\mu_{k}^{(l)} \stackrel{\text { def }}{=} \int_{0}^{\infty} t^{\ell} d F_{k}(t) \tag{2.5}
\end{equation*}
$$

We exclude the case where $F_{k}(0)=1$ for some k, i.e. we have $\mu_{k}^{(\ell)}>0$ for all k and $k^{k} l$ and $\varphi_{k}(\alpha)<1$ for all k and all $\alpha>0$ 。

Finally let
(2.6)

$$
H_{k, n}(t)
$$

be the conditional distributionfunction of the waiting time of the $n^{\text {th }}$ departing customer, given that the $n^{\text {th }}$ departing customer is a k-customer, and

$$
\begin{equation*}
\psi_{k, n}(\alpha)=\int_{0-}^{\infty} e^{-\alpha t} d H_{k, n}(t) \tag{2.7}
\end{equation*}
$$

for $k \in\{1, \ldots, r\}$ and $n \in\{1,2, \ldots\}$.
We distinguish two cases:
the case of nonsaturation, defined by $\sum_{i}^{r i} \lambda_{i} \mu_{i}^{(1)}<1$
and
the case of saturation, defined by $\frac{\sum_{i}}{1} \lambda_{i} \mu_{i}^{(1)} \geqslant 1$.
For the case of nonsaturation we prove that the limits of $p_{k, n}\left(a_{1}, \ldots, a_{r}\right)$ and $f_{k, n}\left(X_{1}, \ldots, X_{r}\right)$ for $n \rightarrow \infty$ exist and that $H_{k, n}(t)$ tends to a distributionfunction $H_{k}(t)$ for $n \rightarrow \infty$. All these limits are independent of the initial situation, i.e. the probabilitydistribution $\left\{p_{0}\left(a_{1}, \ldots, a_{r}\right)\right\} . H_{k}(t)$ is the distributionfunction of the waiting time of an arbitrary k-customer in the stationary situation.

1) The integrals are Lebesque-Stieltjesintegrals over the interval $0 \leqq t<\infty$.

Using D. van Dantzig's "method of collective marks" ([5] , $[6]$ and $[7]$), we derive recurrence relations (3.42) between the generating functions $f_{k, n}\left(X_{1}, \ldots, X_{r}\right)$ together with relations (3.16) connecting the $f_{k, n}\left(x_{1}, \ldots, x_{p}\right), \psi_{k, n}(x)$ and $\varphi_{k}(\alpha)$. From these relations we derive the relations (5.2) for the

$$
f_{k}\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{ } \lim _{n \rightarrow \infty} f_{x, n}\left(x_{1}, \ldots, x_{r}\right) \text {, }
$$

which are then solved. From the relation (3.16) we derive (5.3), connecting $f_{k}\left(X_{1}, \ldots, X_{r}\right)$ and

$$
\psi_{k}(\alpha) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \psi_{k, n}(\alpha) .
$$

once the $f_{k}\left(X_{1}, \ldots, X_{r}\right)$ are solved, they are used, together with the last relation, to compute the first two moments of $H_{K}(t)$ and to derive an expression for $\psi_{k}(\alpha)$, for $k \in\{1, \ldots, r\}$. The first moment of $H_{k}(t)$ was given by Cobham [2], but we did not understand his proof.

For the case of saturation we only state some results without proof.

We shall use some abbreviations to keep the formulae from becoming awkwardly long. With the understanding that on both sides of the equalitysign in (2.8) up to and including (2.14) indices may be added to the function symbols, we write ${ }^{1}$)

$$
\begin{equation*}
f(x) \stackrel{a b b}{=} f\left(x_{1}, \ldots, x_{r}\right), \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
g(x) \stackrel{a b b}{=} \sum_{i}^{r} f_{i}(x), \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
f\left(u^{k} x v^{\ell}\right) \stackrel{\text { abb }}{=} f\left(u, \ldots, u, x_{k+1}, \ldots, x_{r_{-\ell}}, v, \ldots, v\right), \tag{2.10}
\end{equation*}
$$

i.e. the first k variables in (2.10) are equal to u, the last l variables are equal to v and the remaining variables (if any) are equal to the corresponding variables of $f(X)$ (we shall always have $k+l \leqq r$). In the same way

$$
\begin{equation*}
f\left(u^{(k)} X\right) \stackrel{a b b}{=} f\left(u_{1}, \ldots, u_{k-1}, x_{k}, \ldots, x_{k}\right) \tag{2.11}
\end{equation*}
$$

$$
\text { (2.12) } \quad f\left(U^{(k)} \times v^{\ell}\right) \stackrel{a b b}{=} f\left(U_{1}, \ldots, u_{k-1}, X_{k}, \ldots, X_{r-\ell}, v, \ldots, v\right) \text {, }
$$

(2.13) $\quad f\left(y_{(k)} x\right) \stackrel{\text { ab } b}{=} f\left(y_{k, 1}, \ldots, y_{k, k-1}, x_{k}, \ldots, x_{k}\right)$,

$$
\begin{equation*}
f\left(y_{(k)} x v^{l}\right) \stackrel{a b b}{=} f\left(y_{k, 1}, \ldots, y_{k, k-1}, x_{k}, \ldots, x_{r-\ell}, v, \ldots, v\right) . \tag{2.14}
\end{equation*}
$$

1) $\stackrel{a b}{ }=$ is used, when on the left hand side of an equalitysign an abbreviation is introduced for an expression on the right hand side.

We use

$$
\lim _{x \rightarrow 1} f(x) \quad(|x|<1)
$$

if we want to take

$$
\lim _{x_{1} \rightarrow 1} \lim _{x_{2} \rightarrow 1} \ldots \lim _{x_{r} \rightarrow 1} f(x)
$$

where X_{1}, \ldots, X_{r} must remain inside the unit circle. The order in which the latter limits are taken is irrelevant unless otherwise stated.

Finally 1)
(2.15)

$$
p \times \underset{=}{\underline{a b b}} \sum_{i}^{n} p_{i} X_{i},
$$

and for all $k \in\{1, \ldots, r\}$

$$
\begin{equation*}
p\left(u^{k}, X\right) \stackrel{a b b}{=} \sum_{1}^{\frac{k}{i}} p_{i} u+\sum_{k+1}^{r} p_{i} X_{i} \text {, } \tag{2.16}
\end{equation*}
$$

$$
\begin{equation*}
A\left(U^{(k)}, X\right) \xlongequal{a b b} \sum_{i}^{k-1} p_{i} U_{i}+\sum_{k}^{r} p_{i} X_{i}, \tag{2.17}
\end{equation*}
$$

$$
\begin{equation*}
p\left(y_{(k)} x\right) \stackrel{a b b}{=} \sum_{T}^{k-1} p_{i} y_{k, i}+\sum_{k}^{r} p_{i} X_{i} . \tag{2.18}
\end{equation*}
$$

3 Recurrence relations for the system

In order to apply the method of collectime marks of D. van $\operatorname{pantzig}[5]$ and $[6]$, we introduce an event E, which happens with probability $1-X_{k}$ whenever a k-customer axrives, thus (3.1) $0 \leqq X_{k} \leqq 1$ for each $k \in\{1, \ldots, r\}$.

The events E are independent for all customers. Any event E is called a "catastrophe" in D. van Dantzig"s papers, but its nature is irrelevant. As only probabilities of other events, together with non-occurence of any "catastrophe" are considered. it is irrelevant whether under occurence of an event E the process continues or not.

We can now interprete $f_{k_{2} n}(X)$ as a probability for

$$
\begin{equation*}
P_{k, n}\left(a_{1}, \ldots, a_{r}\right) X_{1}^{a_{1}} \ldots X_{r}^{a_{r}} \tag{3.2}
\end{equation*}
$$

is the probability, that at the $n^{\text {th }}$ departure, $n \in\{1,2, \ldots\}$, one k-customer leaves the counter, $a_{1} 1$-customers,.... a_{r} r-customers remain at the counter and with respect to none of the remaining customers the event E happened. Therefore
(3.3) $\quad f_{k, n}(X)=\sum\left[a_{1} \geqq 0, \ldots, a_{r} \geq 0\right\rfloor p_{k, n}\left(a_{1}, \ldots, a_{n}\right) X_{1}^{a_{1}} \ldots X_{r}^{a_{r}}$
is the probability that at the $n^{\text {th }}$ departure $n=\{1,2, \ldots\}$ ak-cus tomer leaves the counter and with respect to none of those remaining at the counter the event E happensd. Further

- - - - - - - - - -

1) If $k=1$ the first sum on the right hand side of (2.17) and (2.18) equals zero, if $k=r$ the last $s u m$ of (2.16).

$$
\begin{equation*}
p_{i, n}\left(0, \ldots, 0, a_{k}, \ldots, a_{r}\right) x_{k}^{a_{k}} \ldots x_{r}^{a_{r}} \tag{3.4}
\end{equation*}
$$

is the probability, that at the $n^{\text {th }}$ departure, $n \in\{1,2, \ldots\}$, an i-customer leaves the counter, $a_{k} k$-customers,.... $a_{r} r$-customers remain at the counter and with respect to none of the customers remaining at the counter the event E happened. If $a_{k}>0$ the next customer to be served is a k-customer, therefore for $x \in\{1, \ldots, r\}^{1)}$ (using (2.10))

$$
\begin{equation*}
f_{i, n}\left(0^{k-1} X\right)-f_{i, n}\left(0^{k} X\right)=\sum\left[a_{k} \geqq 1, a_{k+1} \geqq 0, \ldots, a_{k} \equiv n \mid p_{i, n}\left(0, \ldots, 0, a_{k}, \ldots, a_{r}\right) X_{1}^{a_{1}}\right. \tag{3.5}
\end{equation*}
$$

is the probability, that at the $n^{\text {th }}$ departure an i-customer leaves the counter, service on a k-customer starts and with respect to none of the customers left by the departing i-customer the event E happened.

Put

$$
\begin{equation*}
\lambda \stackrel{\text { def }}{=} \lambda_{1}+\cdots+\lambda_{r} . \tag{3.6}
\end{equation*}
$$

Now

$$
f_{i, n}\left(0^{r}\right)=p_{i, n}(0, \ldots, 0)
$$

is the probability, that at the $n^{\text {th }}$ departure an i-customer leave: and the counter becomes empty, while

$$
\begin{equation*}
P_{K} \stackrel{\text { def }}{=} \frac{\lambda_{k}}{\lambda} \tag{3.7}
\end{equation*}
$$

is the probability, that the first customer arriving after a given moment is a k-customer, therefore (using (2.9) and (2.10))

$$
\begin{equation*}
p_{k} Y_{k} g_{n}\left(0^{r}\right) \tag{3.8}
\end{equation*}
$$

is the probability, that at the $n^{\text {th }}$ departure, $n \in\{1,2, \ldots\}$, the counter becomes empty and the next arriving customer is a k customer, with respect to which the event E does not happen.

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\lambda_{1} t} \frac{\left(\lambda_{1} t\right)^{a_{1}}}{a_{1}!} \ldots e^{-\lambda_{n} t} \frac{\left(\lambda_{r} t\right)^{a_{r}}}{a_{r}!} d F_{k}(t) \tag{3.9}
\end{equation*}
$$

is the probability, that during the servicetime of a k-customer exactly a_{1} 1-customers,.... a_{r} r-customers arrive, so (using (2.15))
(3.10) $\varphi_{k}(\lambda(1-p x))=\sum\left[a_{1} \geqq 0, \ldots, a_{r} \geq 0\right] x_{1}^{a_{t}} \ldots x_{r}^{a_{r}} \int_{0}^{\infty} e^{-\lambda_{1} t} \frac{\left(\lambda_{1} t\right)^{a_{r}}}{a_{1}!} \ldots e^{-\lambda_{r} t} \frac{\left(\lambda_{r} t\right)^{a_{r}}}{a_{r}!} d F_{k}(t)$
is the probability, that with respect to none of the customers, arriving during the servicetime of a k-customer, the event E happened.

Analogously

$$
\text { 1) If } k=r \quad \text { then }
$$

$$
\begin{align*}
& \left.\varphi_{k}\left(\lambda\left(1-p l 1^{k-1}, X\right)\right)\right) \tag{3.11}\\
& f_{i, n}\left(o^{k} X\right) \quad \text { stands for } f_{i, n}\left(o^{r}\right) .
\end{align*}
$$

is the probability, that with respect to none of the customers with priority number $\geqq k$, arriving during the servicetime of a k-customer, the event E happened.

Now the probability that at the $(n+1)^{\text {st }}$ departure a $k-$ customer leaves and that neither to him nor to those remaining at the counter the event E happened is equal to the probability that at the $n^{\text {th }}$ departure \in tither an i-customer leaves the counter (for i equal to $1,2, \ldots$ or r), service on a k-customer starts and to those remaining at the counter (the k-customer under service included) the event E did not happen or the counter becomes empty and the first customer arriving is a k-customer, with respect to whom the event E did not happen and (in any case) during the servicetime of that k-customer no customers, with respect to whom the event E happened, arrive. This equality can be written in the following way, using (3.3), (3.5), (3.8) and (3.10) with their interpretations
(3.12) $\quad X_{k} f_{k, n+1}(X)=\left\{g_{n}\left(0^{k-1} X\right)-g_{n}\left(0^{k} X\right)+p_{k} X_{k} g_{n}\left(0^{n}\right)\right\} \varphi_{k}(\lambda(1-p X))$.

This relation is valid for $k \in\{1, \ldots, r\}, n \in\{1,2, \ldots\}$ and all real X_{k} satisfying $0 \leqq X_{k} \leqq 1$, because of the arbitrariness of the event E. If at the moment the counter is opened for service, with probability $p_{0}\left(a_{1}, \ldots, a_{r}\right)$ a queue consisting of a_{1} 1customers,.... $a_{r} r$-customers is present and

$$
\begin{equation*}
g_{0}(x) \stackrel{\text { def }}{=} \sum\left[a_{1} \geqq 0, \ldots, a_{r} \geqq 0\right\rfloor p_{0}\left(a_{1}, \ldots, a_{r}\right) X_{1}^{a_{1}} \ldots X_{r}^{a_{r}}, \tag{3.13}
\end{equation*}
$$

then (3.12) is true for $n=0$ as well.
For $0 \leqq X_{i} \leqq 1, i \neq k$ and $0<X_{k} \leqq 1$ we can solve (3.12) for $f_{k, n+1}(X)$ once $g_{n}(X)$ is known for those values of X. But then we can find $f_{k, n+1}(X)$ (and $g_{n}(X)$)) for all X satisfying $\left|X_{1}\right| \leqq 1, \ldots,\left|X_{p}\right| \equiv 1$ by analytic continuation for each $K \in\{1, \ldots, r\}$. Therefore (3.12) holds generally for each
$k \in\{1, \ldots, r\}, n \in\{0,1,2, \ldots\}$ and $\left|x_{1}\right| \leqq 1, \ldots,\left|x_{r}\right| \leqq 1$.
We might try to express $f_{k, n+1}(x)$ as a function of $g_{0}(X)$ only, by repeated application of (3.12) and so eliminating $g_{l}(X)$ with $\ell \geqq 1$. This is however not practicable, the more so as
$f_{k, n+1}(X)$ for $X_{k}=0$ can be found from (3.12) only by dividing both sides by X_{k} for $X_{k} \neq 0$ and taking the limits for $X_{k} \rightarrow 0$, which leads to partial differential quotients in the expression for $f_{k}(X)$ for $X_{k}=0$.

Analogous to (3.11) and its interpretation we have
(3.14)

$$
\psi_{k, n}\left(\lambda_{k}\left(1-x_{k}\right)\right)
$$

is the probability, that if at the $n^{\text {th }}$ departure a k-customer leaves the counter, with respect to none of the customers with priority numberk arriving during his waiting time, the event E happened. Finally

$$
\begin{equation*}
f_{k, n}\left(1^{k-1} \times 1^{r-k}\right) \tag{3.15}
\end{equation*}
$$

is the probability, that at the $n^{\text {th }}$ departure a k-customer leaves the counter and with respect to none of the customers with priority number k which remain at the counter the event E happened. Now this is equal to the probability that at the $n^{\text {th }}$ departure a k-customer leaves and that with respect to none of the customers with priority number k arriving either during his waiting time or during his service time the event E happened.

Therefore we have

$$
\begin{equation*}
f_{k, n}\left(\tau^{k-1} x^{r-k}\right)=f_{k, n}\left(1^{r}\right) \psi_{k, n}\left(\lambda_{k}\left(1-x_{k}\right)\right) \varphi_{k}\left(\lambda_{k}\left(1-x_{k}\right)\right), \tag{3.16}
\end{equation*}
$$

for $k \in\{1, \ldots, r\}, n \in\{1,2, \ldots\}$ and for all X_{k} satisfying $o \leq X_{k} \leqq 1$. This may again be generalized by analytic continuation. Therefore (3.16) holds for all X_{k} satisfying $\left|X_{k}\right| \leqq 1$.

We can now summarize our results. From (3.16) we have, that $\psi_{k, n}(\alpha)$ is a function of $f_{k, n}(X)$ and $\varphi_{k}(\alpha)$. The functions
$f_{k, n}^{\prime n}(X)$ are known to satisfy (3.12), but cannot be solved explicitly from those relations in terms of $g_{0}(x)$. However, as we are interested in the behaviour of the system in the long run, we will use (3.12) and (3.16) to find $\lim _{n \rightarrow \infty} \psi_{k, n}(\alpha)$. The relations (3.12) and (3.16) can also be derived in a more formal way than it has been done here.
4. Convergence to a stationary distribution

Before making use of the relations (3.12) and (3.16) we shall prove some results connected with the convergence of the
$P_{k, n}\left(a_{1}, \ldots, a_{n}\right)$ for $n \rightarrow \infty$, which justify the method of the next section.

Let us say that the system is in the state $\left(k ; a_{1}, \ldots, a_{r}\right)$ at the departure of the $n^{\text {th }}$ customer if the $n^{\text {th }}$ departing customer is a k-oustomer and if he leaves for every $i \in\{1, \ldots, r\}$ $a_{i} i$-customers at the counter. Then all transition probabilities from a state at the $n^{\text {th }}$ departure to any state at the $(n+1)^{\text {st }}$ departure are independent of n and can easily be cal. culated.

By considering only the moments, at which a customer leaves the system, we thus obtain a Markof chain, with a denumerable number of states. Let us denote this Markof chain by M. For every state there is a positive probability to reach in a finite number of steps a state where a departing customer leaves an empty counter, and from this situation any state can again be reached in any number of steps. We conclude that M is an irreducible and aperiodic Markof chain (cf. Feller [8] for the terminology and classification of states in Markof chains). From Corollary 1 in Feller $[8](p .328)$ it follows immediately, that $\lim _{n \rightarrow \infty} p_{k, n}\left(a_{1}, \ldots, a_{r}\right)$ exists and is independent of the initial distribution

In the case of nonsaturation ($\sum_{i}^{r} \lambda_{i} \mu_{i}^{(1)}<1$) all states are ergodic. To prove this, we need a theorem of Foster [g], which was given by Moustafa [12] in the following slightly generalized form:
Theorem 4.1. An irreducible, aperiodic Markof chain represented by the Markof matrix $\left\|p_{i, j}\right\| \quad(i, j=1,2, \ldots)$ is ergodic if for some $\varepsilon>0$ and some integer i_{0}, there exists a non-negative solution $\left\{y_{i}\right\}$ of the inequalitios

$$
\begin{array}{lll}
(4.1) & \sum_{T}^{\infty} P_{i, j} y_{j} \leq y_{i}-\varepsilon \text { for } & i>i_{0}, \tag{4.1}\\
(4.2) & \sum_{T}^{\infty} P_{i, j} y_{j}<\infty & \text { for } \\
i \leq i_{0}
\end{array}
$$

We note that $\sum_{T}^{\infty} p_{i, j} y_{j}$ can be regarded as the expectation after one step, if we start in the $i^{\text {th }}$ state, of a random variable 1) \underline{y}, taking values y_{j} with probabilities $p_{i, j}$. Theorem 4.2. If $\sum_{i}^{r} \lambda_{i} \mu_{i}^{(1)}<1$, all states in the Markof chain M are ergodic.

Proof. This theorem is an application of Th. 4.1. The states of M can be characterized by ($k ; a_{1}, \ldots, a_{r}$), 1.e. the priority number of the leaving customer and the number of customers of each priority left by him. With each state we associate a number y. By definition $y=\frac{\sum_{i}^{r}}{i} a_{i} \mu_{i}^{(1)}$ for the state $\left(k ; a_{1}, \ldots, a_{r}\right)$, i.e. y is the expectation of the time needed to serve the remaining customers and as such non-negative. If we start in the situation $\left(k ; 0, \ldots, 0, a_{\ell}, \ldots, a_{r}\right)$ with $a_{\ell}>0$ for an $\ell \leqq r$, the next customer to be served is an l-customer and the expectation of \underline{y} after one step is then

$$
\begin{aligned}
& \sum_{i}^{l} 1 \\
i & \mu_{i}^{(1)} \mu_{l}^{(1)}+\left(a_{l}+\lambda_{l} \mu_{l}^{(1)}-1\right) \mu_{l}^{(1)}+\sum_{l+1}^{r}\left(a_{i}+\lambda_{i} \mu_{l}^{(1)}\right) \mu_{i}^{(1)}= \\
= & \sum_{l}^{r} a_{i} \mu_{i}^{(1)}+\mu_{l}^{(1)}\left\{\sum_{i}^{r} \lambda_{i} \mu_{i}^{(1)}-1\right\} \leqq \sum_{l}^{r} a_{i} \mu_{i}^{(1)}-\varepsilon,
\end{aligned}
$$

[^0]where
$$
\varepsilon \stackrel{\text { def }}{=} \min _{1 \leq h} \mu_{\ell}^{(1)}\left\{1-\sum_{T}^{\frac{r}{i}} \lambda_{i} \mu_{i}^{(1)}\right\} .
$$

In fact the expected number of i-customers arriving during the servicetime of an ℓ-customer is $\lambda_{i} \mu_{l}^{(1)}$, and one ℓ-customer leaves the system at the end of this step. Therefore (4.1) is satisfied in this case. If we start in the state ($k ; 0, \ldots, 0$), the expectation of y after one step is finite, so (4.2) is satisfied for the p states with $a_{1}=a_{2}=\ldots=a_{r}=0$.
Thus Th. 4.2 follows.
Corollary. If we define $p_{k}\left(a_{1}, \ldots, a_{r}\right)=\lim _{n \rightarrow \infty} p_{k, n}\left(a_{p}, \ldots, a_{n}\right)$ we have:

$$
\begin{gathered}
P_{k}\left(a_{1}, \ldots, a_{r}\right)>\text { for all } k \in\{1, \ldots, r\} \quad \text { and } a_{1} \geqq 0, \ldots, a_{r} \geqslant 0, \\
\sum_{1}^{r} \sum\left[a_{1} \geqq 0, \ldots, a_{r} \geqq 0 \mid p_{k}\left(a_{1}, \ldots, a_{r}\right)=1\right.
\end{gathered}
$$

and the $p_{k}\left(a_{1}, \ldots, a_{r}\right)$ form a stationary distribution for the Markof chain M. This is an immediate consequence of Th. 4.2 and Th. 2, p. 325 in Fellex [8].

To prove also the convergence of $\sum\lfloor s\rfloor p_{k, n}\left(a_{1}, \ldots, a_{n}\right)$ where the summation is over an arbitrary set S of states, and the convergence of moments of the queue length, we need the following theorem.

Theorem 4.3. Let an irreducible, aperiodic and ergodic Markof chain be represented by the Markof matrix $\left\|p_{i, j}\right\|(i, j=1,2, \ldots)$. If $\pi_{j} \xlongequal{\text { def }} \lim _{n \rightarrow \infty} p_{i, j}^{(n)}$, where $p_{i, j}^{(n)}$ are the n step transition probabilities (these limits exist, are positive and independent of i (cf. Feller $[8], p, 325$) then we have for any non-negative state function F_{j}

$$
\lim _{n \rightarrow \infty} \sum_{1}^{\infty} p_{i, j}^{(n)} F_{j}=\sum_{i}^{\infty} \pi_{j} F_{j} \quad \text { for every } i .
$$

Proof. As $\lim _{n \rightarrow \infty} p_{i, j}^{(n)}=\pi_{j}$ and $F_{j} \geqq 0$ we have for all positive integers i
(4.4)

$$
\lim _{n \rightarrow \infty} \operatorname{im} / \sum_{i}^{\infty} p_{i, j}^{(n)} F_{j} \geqq \sum_{i}^{\infty} \pi_{j} F_{j},
$$

beoause if $\varepsilon>0$ and N is such that 1)

$$
\sum_{i}^{N} \pi_{j} F_{j} \geq \sum_{i}^{\infty} \pi_{j} F_{j}-\varepsilon,
$$

1) If $\sum_{j} \pi_{j} F_{j}=\infty$, only some obvious changes are necessary.
we have

$$
\lim _{n \rightarrow \infty} \operatorname{imf} \sum_{i}^{\infty} p_{i, j}^{(n)} F_{j} \geqq \lim _{n \rightarrow \infty} \inf \frac{\sum_{1}^{N}}{1} p_{i, j}^{(n)} F_{j}=\sum_{1}^{N} \pi_{j} F_{j} \geqq \sum_{1}^{\infty} \pi_{j} F_{j}-\varepsilon
$$

for every $\varepsilon>0$, whence (4.4) holds.
The proof of (4.3) is completed, if $\sum_{i}^{\infty} \pi_{j} F_{j}=\infty$.
If $\frac{\infty}{i} \pi_{j} F_{j}<\infty \quad$ we proceed as follows. We know that π_{j} is always positive, $\sum_{i}^{\infty} \pi_{j}=1$ and $\pi_{j}=\sum_{7}^{\infty} \pi_{\varepsilon} p_{i, j}^{(n)}$ for all positive integers n (cf. Feller $[8]^{3}, p .325$). Therefore we have for a flxed $N \geqq i$ and every n

$$
\begin{aligned}
& \left.\sum_{1}^{\infty} \pi_{j} F_{j}=\sum_{1}^{\infty} \pi_{\ell} \sum_{1}^{\infty} p_{l, j}^{(n)} F_{j} \geqq \sum L 1 \leqq \ell \leqq N, \ell \neq i\right] \pi_{\ell} \sum_{i}^{\infty} p_{\ell, j}^{(n)} F_{j}+\pi_{i} \sum_{1}^{\infty} p_{i, j}^{(n)} F_{j} \\
& \left.\sum_{i}^{\infty} \pi_{j} F_{j} \geqq \lim _{n \rightarrow \infty} \sup _{n \rightarrow \infty}\left\{\sum_{1} \equiv i \leqq N_{i} \ell \neq i\right] \pi_{\ell} \sum_{i}^{\infty} p_{l, j}^{(n)} F_{j}+\pi_{l} \sum_{t}^{\infty} p_{i, j}^{(n)} F_{j}\right\} \geqq \\
& \left.\geqq \sum L 1 \leqq l \leqq N, \ell \neq i\right] \pi_{l} \liminf _{n \rightarrow \infty} \frac{\sum_{1}^{\infty} p_{\ell, j}^{(n)} F_{j}+\pi_{i} \lim _{n \rightarrow \infty} \sup \sum_{i}^{\infty} p_{i, j}^{(n)} F_{j} \geqq}{} \\
& \geqq \sum\left[1 \leqq \ell \leqq N_{0} \ell \neq \ell\right] \pi_{i} \sum_{i}^{\infty} \pi_{j} F_{j}+\pi_{i} \lim _{m \rightarrow \infty} \sup \sum_{1}^{\infty} p_{i, j}^{(n)} F_{j} .
\end{aligned}
$$

Now take $N \rightarrow \infty$

$$
\sum_{i}^{\infty} \pi_{j} F_{j} \geqq\left(1-\pi_{i}\right) \sum_{1}^{\infty} \pi_{j} F_{j}+\pi_{i} \lim _{n \rightarrow \infty} \sum_{7}^{\infty} p_{i, j}^{(n)} F_{j} .
$$

As $\pi_{i}>0$ this leads to
(4.5)

$$
\lim _{n \rightarrow \infty} \sup \sum_{1}^{\infty} p_{i j}^{\infty} F_{j} \leqq \sum_{i}^{\infty} \pi_{j} F_{j}
$$

for all i .
From (4.5) together with (4.4) we have (4.3).
Remark 1. The theorem remains true for arbitrary state functions F_{j} with $\sum_{i}^{\infty} \pi_{j}\left|F_{j}\right|<\infty$ as can be seen by writing

$$
F_{j}=F_{j}^{+}-F_{j}^{-}
$$

where

$$
\begin{aligned}
& F_{j}^{+} \text {def } \frac{\left|F_{j}\right|+F_{j}}{2} \\
& F_{j}^{-} \xlongequal[=]{\left.\frac{\text { def }}{} \right\rvert\,-F_{j}}
\end{aligned}
$$

Remark 2. If the Markof chain we consider has a probability $p_{i}^{(0)}$ of being in the state i in the inftial situation $\left(p_{i}^{(0)} \geq 0\right.$ and $\sum_{i}^{\infty} p_{i}^{(0)}=1$), then by Th. 4.3

$$
\lim _{n \rightarrow \infty} \sum_{i}^{\infty} \sum_{i}^{\infty} p_{i}^{(0)} P_{i, j}^{(n)} F_{j}=\sum_{i}^{\infty} \pi_{j} F_{j},
$$

provided F_{j} is bounded.
From the convergence of $P_{r, n}\left(a_{1}, \ldots, a_{r}\right)$ follows only the existence of $\lim _{n \rightarrow \infty} f_{k, n}(x)$, if $\left|x_{i}\right|<1$ for $i \in\{1, \ldots, r\}$. We may now conclude, that even for $\left|X_{i}\right| \leqq 1$ for $i \in\{1, \ldots, r\}$

$$
\lim _{n \rightarrow \infty} f_{k, n}(x)=\sum\left\lfloor a_{1} \geqq 0, \ldots, a_{r} \geqq 0\right\rfloor p_{k}\left(a_{1}, \ldots, a_{r}\right) x_{1}^{a_{1}} \ldots x_{r}^{a_{r}} .
$$

This follows if we take the state function

$$
F\left(i ; a_{1}, \ldots, a_{r}\right)=\left\{\begin{array}{cc}
x_{1}^{a_{1}} \ldots X_{r}^{a_{r}} \text { if } & i=k \\
0 & \text { if } \\
i \neq k
\end{array}\right.
$$

Thus $f_{k}(X) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} f_{k, n}(X)=\sum\left[a_{1} \geqq 0, \ldots, a_{r} \geqq 0\right] p_{k}\left(a_{1}, \ldots, a_{r}\right) X_{1}^{a_{1}} \ldots X_{r}^{a_{r}}$
is a power series with positive coefficients, which converges if $\left|X_{i}\right| \leqq 1$ for all $i \in\{1, \ldots, r\}$ and as $\sum_{1}^{\frac{r}{k}} \sum\left[a_{1} \geqq 0, \ldots, a_{r} \geqq 0\right] p_{k}\left(a_{1}, \ldots, a_{n}\right)=1$. we conclude that

$$
\begin{equation*}
\lim _{x_{k} \rightarrow 1} f_{k}\left(1^{k-1} \times 1^{r-k}\right)=f_{k}\left(1^{r}\right) \quad\left(\left|x_{k}\right|<1\right) \tag{4.6}
\end{equation*}
$$

Remark 3. From Th. 4.3 we also conclude that

$$
\lim _{n \rightarrow \infty} \frac{\sum_{r}^{k}}{i} \sum\left\lfloor a_{1} \geqslant 0, \ldots, a_{r} \geqslant 0\right\rfloor a_{j} p_{k, n}\left(a_{1}, \ldots, a_{r}\right)=\frac{\sum_{T}}{\frac{r}{1}} \sum\left\lfloor a_{1} \geqslant 0, \ldots, a_{r} \geqslant 0\right\rfloor a_{j} p_{k}\left(a_{1}, \ldots, a_{r},\right.
$$

1.e. the expected length of the queve of j-customers at the $n^{\text {th }}$ departure tends to the expected length of the queue of j-customers derived from the stationary distribution, and analogously for the higher moments of the queue length, provided the intial state is fixed, i.e. $p_{0}\left(b_{1}, \ldots, b_{r}\right)=1$ for a given initial state $\left(b_{1}, \ldots, b_{r}\right)$. Theorem 4.4. If $\sum_{T}^{\infty} \lambda_{i} \mu_{i}^{(1)}<1$, the conditional distributionfunctions of the waiting times $H_{k, n}(t) \quad(k \in\{1, \ldots, r\})$ converge to a non-degenerated distributionfunction $H_{k}(t)$ with

$$
\psi_{k}(\alpha) \stackrel{d \Delta f}{=} \int_{0}^{\infty} e^{-\alpha t} d H_{k}(t)
$$

satisfying

$$
\begin{equation*}
f_{k}\left(1, \ldots, 1,1-\frac{\alpha}{\lambda_{k}}, 1, \ldots, 1\right)=f_{k}\left(1^{r}\right) \psi_{k}(\alpha) \psi_{k}(\alpha) \text { for } \tag{4.7}
\end{equation*}
$$

$\left|1-\frac{x}{x_{k}}\right| \leqq 1$.

Proof. A distributionfunction of a non-negative random variable is uniquely determined if 1 ts Laplace transform is given on an interval which lies in the right half plane, because the Laplace transform of such a distributionfunction is analytic for all arguments with positive real part, and can thus be determined uniquely by analytic continuation, so that the uniqueness theorem for the inverse of a Laplace transform may be applied (cf. Widder [14] Th. 5A, p. 57 and $\mathrm{Th} .6 .3, \mathrm{p} .63$).

From (3.16) follows the convergence of $\psi_{\kappa, n}(\alpha)$ for
$\left|1-\frac{\alpha}{\lambda_{k}}\right| \equiv 1$ as $\lim _{n \rightarrow \infty} f_{k, n}\left(1^{r}\right)>0$.
We can now follow a standard method (compare e. E. Lévy [11] p. 49, proof of $\mathrm{Th} .17^{2}$) to prove that $H_{k, n}(t)$ converges to a function $H_{k}(t)$ with $\psi_{k}(\alpha)=\lim _{h \rightarrow \infty} \psi_{k, n}(\alpha)$ satisfying (4.7).
$H_{k}(t)$ is a monotonic non-decreasing function, continuous from the right and satisfies $H_{k}(t)=0$ for $t<0$ and $\lim _{t \rightarrow \infty} H_{k}(t)=1$, as from $(4,7) \lim _{\alpha \rightarrow 0} \psi_{k}(\alpha)=^{k}$. This proves Th. 4.4.

All the foregoing theorems concerning the queuing problem are valid only if $\sum_{T}^{r} \lambda_{i} \mu_{i}^{(1)}<1$. In the case of saturation ($\sum_{i}^{\frac{r}{i}} \lambda_{i} \mu_{i}^{(1)} \geqq 1$) analogous theorems can be proved, although we did not succeed in finding simple proofs so far. In fact one can prove: If $\sum_{i=}^{s i} \lambda_{i} \mu_{i}^{(1)}<1$ and $\sum_{i}^{\frac{s+1}{i}} \lambda_{i} \mu_{i}^{(1)} \geqq 1$ we have

$$
\lim _{n \rightarrow \infty} \sum\left[a_{s+2} \geqq 0, \ldots, a_{r} \geqq 0 \int p_{r, n}\left(a_{1}, \ldots, a_{r}\right)=0\right.
$$

and

$$
\lim _{n \rightarrow \infty} \sum\left[a_{s+1} \geqq 0, \ldots, a_{r} \geqq 0\right\rfloor p_{k, n}\left(a_{1}, \ldots, a_{r}\right)
$$

exists and is positive.
If we define

$$
\bar{P}_{k}\left(a_{1}, \ldots, a_{s}\right) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \sum\left[a_{s+1} \geqslant 0, \ldots, a_{r} \geqslant 0 \mid p_{k, n}\left(a_{1}, \ldots, a_{r}\right)\right.
$$

we have for each $k \in\{1, \ldots, r\}$

$$
\lim _{n \rightarrow \infty} f_{k, n}\left(x 1^{n-s}\right)=\sum\left[a_{1} \geqq 0, \ldots, a_{s} \geqq 0\right\rfloor \bar{p}_{k}\left(a_{1}, \ldots, a_{s}\right) x_{1}^{a_{1}} \ldots x_{s}^{a_{s}},
$$

whereas

$$
\lim _{X \rightarrow 1} \sum_{1}^{\frac{s+1}{k}} f_{k \cdot n}\left(X_{1}^{p-s}\right)=\sum_{T}^{\frac{s+1}{k}} \sum\left[a_{1} \geqq 0, \ldots, a_{s} \geqq 0\right\rfloor \bar{p}_{k}\left(a_{1}, \ldots, a_{5}\right)=1 \quad(|X|<1)
$$

$k \leqslant s$ and $\lim _{n \rightarrow \infty} H_{k, n}(t)=0$ for every finite t if $k \geqq s+1$. If $k \leqq s$ the moments of $H_{k, n}(t)$ do not necessarily converge to those of $H_{k}(t)$, i.e. We cannot conclude

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{\infty} t^{j} d H_{k, n}(t)=\int_{0}^{\infty} t^{j} d H_{k}(t) \quad \text { for } k \leqq s \text {. } \tag{4.8}
\end{equation*}
$$

An example will show, that in some cases (4.8) does not hold. Take $s+2 \leqq r$ and $\mu_{s+2}^{(1)}=\infty$. If we start from an initial situation with $a_{1}=\cdots=a_{s+1}=0, a_{s+2}>0$ it is clear that
$\int_{0}^{\infty} t d H_{k, n}(t)=\infty(n \in\{1,2, \ldots\})$ whereas $\int_{0}^{\infty} t d H_{k}(t) \quad$ is not necessarily infinite for $k \leqq s$.

5. The case of nonsaturation

In section 4 we proved that in the case of nonsaturation, i.e. if

$$
\begin{equation*}
\sum_{i}^{r} \lambda_{i} \mu_{i}^{(1)}<1 \tag{5.1}
\end{equation*}
$$

for $k \in\{1, \ldots, r\}$ and all X with $\left|X_{1}\right| \leqq 1, \ldots,\left|X_{r}\right| \leqq 1$ $f_{k}(x) \stackrel{\text { tef }}{=} \lim _{n \rightarrow \infty} f_{k, n}(x)$
exists.
According to Theorem 4.4 in this case the Iimits

$$
H_{k}(t) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} H_{k, n}(t)
$$

for all real t and

$$
\psi_{k}(\alpha) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \psi_{k, n}(\alpha)
$$

for $R_{c} \alpha \geqq 0$ also exist and $\psi_{k}(\alpha)$ satisfies

$$
\Psi_{k}(\alpha)=\int_{0-\infty}^{\infty} c^{-\alpha t} d H_{k}(t)
$$

For $k \in\{1, \ldots, r\}$ and $\left|x_{1}\right| \leqq 1, \ldots,\left|x_{r}\right| \leqq 1$ we have from $\{3.12$)

$$
\begin{equation*}
X_{k} f_{k}(x)=\left\{g\left(0^{k-1} x\right)-g\left(0^{k} x\right)+p_{k} X_{k} g\left(0^{k}\right)\right\} \varphi_{k}(\lambda(1-p x)) \tag{5.2}
\end{equation*}
$$

while (3.16) leads to

$$
\begin{equation*}
f_{k}\left(1^{k-1} X_{1}^{r-k}\right)=f_{k}\left(1^{r}\right) \psi_{k}\left(\lambda_{k}-\lambda_{k} X_{k}\right) \varphi_{k}\left(\lambda_{k}-\lambda_{k} X_{k}\right) . \tag{5.3}
\end{equation*}
$$

From (5.2) we conclude (for $\left|x_{1}\right| \leqq 1, \ldots,\left|x_{r}\right| \leqq 1$ and arbitrary U_{j} satisfying $\left.\left|U_{1}\right| \equiv 1, \ldots,\left|U_{k-1}\right| \equiv 1\right)$

$$
\begin{equation*}
\frac{f_{k}(x)}{\varphi_{k}(\lambda(1-p x))}=\frac{f_{k}\left(u^{(k)} x\right)}{\varphi_{k}\left(\lambda\left(1-p\left(u_{0}^{(k)} x\right)\right)\right)}, \tag{5.4}
\end{equation*}
$$

for $X_{k} \neq 0$ (and by analytic continuation for $X_{k}=0$ as well) and also
(5.5) $\sum_{1}^{r} \frac{X_{i} f_{i}(x)}{\varphi_{i}(\lambda(1-p x))}=\sum_{1}^{r}\left\{g\left(0^{i-1} x\right)-g\left(0^{i} X\right)+p X g\left(0^{r}\right)\right\}$.

Formula (5.5) simplifies to

$$
\begin{equation*}
\sum_{i}^{r} f_{i}(x) \frac{x_{i}-\varphi_{i}(\lambda(1-p x))}{\varphi_{i}(\lambda(1-p x))}=g\left(0^{r}\right)(p X-1) \tag{5.6}
\end{equation*}
$$

To determine $f_{k}(X)$ we introduce $y_{k, 1}, \ldots, y_{k, k-1}$, defined (for $k \in\{2, \ldots, r\}$) by

$$
\begin{equation*}
y_{k, i}-\varphi_{i}\left(\lambda\left(1-\sum_{i}^{\frac{k}{i} 1} p_{j} y_{k, j}-\frac{\sum_{k}^{r}}{k} p_{j} x_{j}\right)\right)=0 \tag{5.7}
\end{equation*}
$$

for $i \in\{1, \ldots, k-1\}$. The $y_{k, i}$ are thus functions of X_{k}, \ldots, X_{k}. We shall prove (always assuming (5.1)):
Lemma 5.1. Equations (5.7) have for every set of complex numbers X_{k}, \ldots, X_{r}, satisfying $\sum_{k}^{\frac{r}{k}} \lambda_{i} R_{e} X_{i}<\sum_{k}^{r} \lambda_{i} \quad$ exactly one solution for $y_{k, 1}, \ldots, y_{k, k-1}$, with $\left|y_{k, 1}\right|<1, \ldots,\left|y_{k, k-1}\right|<1$.
Proof: Consider the equation

$$
\begin{equation*}
z-\sum_{i}^{k-1} \lambda_{i} \varphi_{i}\left(\lambda-z-\sum_{k}^{r} \lambda_{j} x_{j}\right)=0 . \tag{5.8}
\end{equation*}
$$

By Rouché's Theorem (see Titchmarsh [13], p, 116): "If $p(x)$ and $q(z)$ are analytic inside and on a closed contour C, and $|q(z)|<|p(x)|$ on C, then $p(z)$ and $p(x)+q(z)$ have the same number: of zeros inside C ", taking $p(x) \stackrel{\text { def }}{=} z, q(z) \stackrel{\text { def }}{=}-\sum_{i}^{k-1} \lambda_{i} \varphi_{i}\left(\lambda-z-\frac{\sum_{j}^{k}}{k} \lambda_{j} X_{j}\right)$) and for C the circle $|z|=\frac{\sum_{i}^{k} \lambda_{i}}{}$ we have that

$$
z-\sum_{i}^{\frac{k-1}{i}} \lambda_{i} \varphi_{i}\left(\lambda-z-\sum_{k}^{r} \lambda_{j} x_{j}\right)
$$

has exactly one zero $\quad z_{k}=z_{k}\left(x_{k}, \ldots, x_{r}^{\prime}\right)$ with $\left|z_{k}\right|=\sum_{i}^{k-1} \lambda_{i}$ for a fixed set of complex numbers x_{k}, \ldots, x_{r}, satisfying

$$
\sum_{k}^{n} \lambda_{i} \operatorname{Re} \hat{X}_{i}<\sum_{k}^{n} \sum_{i}^{r} \lambda_{i}^{\prime} .
$$

If we now take

$$
y_{k, i}=\varphi_{i}\left(\lambda-z_{k}-\sum_{k}^{r} \lambda_{j} x_{j}\right)
$$

equations (5.7) are solved and

$$
\left|y_{k, i}\right|<1
$$

because $\operatorname{Re}\left(\lambda-z_{k}-\frac{\sum_{j}^{k}}{k_{k}} \lambda_{j} X_{j}\right)>0$ and $\left|\varphi_{i_{k}}(\alpha)\right|_{\substack{<=1}}$ for $\operatorname{Re} \alpha>0$.
 satisfies (5.8) and $\left|z_{k}^{*}\right|<\sum_{i}^{k-1} \lambda_{i}$. But then $z_{k}^{*}=z_{k}^{k}$ and therefore $y_{k, i}^{*}=y_{k, i}$
Lemma 5.2. The solution z_{k} of (5.8) is an analytic function of the variables X_{k}, \ldots, X_{r} for all $X_{k}^{\prime} \ldots, X_{r}$ satisfying $\sum_{k}^{r} \lambda_{i} \operatorname{Re} X_{i}<\frac{\sum_{k}^{k}}{k} \lambda_{i}$.

Remark (cf Bochner and Martin [l], p. 30). A function $f\left(z_{1}, \ldots, z_{l}\right)$ is ananalytic function of the l complex variables z_{1}, \ldots, z_{l} in a certain region, if in some neighbourhood of every point $\left(z_{1}{ }^{0}, \ldots, z_{l}^{0}\right)$ of that region it is the sum of an absolutely convergent powerseries in $z_{1}-z_{1}{ }^{\circ}, \ldots, z_{t}-z_{l}{ }^{\circ}$.
Proof: Consider the point $X_{k}=c_{k}, \ldots, X_{r}=c_{r}$, with
$\sum_{k}^{r} \lambda_{i} \operatorname{Re} c_{i}<\sum_{k}^{r} \lambda_{i}$, By using theorem 9 from Bochner and $\operatorname{Martin}[1], p .39$ (for the special case $k=1$ in their notation) we prove that x_{k} is analytic in the point $\left(c_{k}, \ldots, c_{k}\right)$. The theorem reads in our notation:

If the function $F\left(z, X_{k}, \ldots, X_{r}\right)$ is an analytic function of $r-k+7$ (complex) variables in the neighbourhood of the point $\left(a, c_{k}, \ldots, c_{r}\right)$, if $F\left(a, c_{k}, \ldots, c_{r}\right)=0$ and if $\frac{\partial F}{\partial z} \neq 0$ for $z=a, X_{k}=c_{k}, \ldots, X_{r}=c_{r}$ then the equation

$$
F\left(z, X_{k}, \ldots, x_{r}\right)=0
$$

has a unique solution

$$
x_{k}=z_{k}\left(X_{k}, \ldots, x_{k}\right)
$$

equal to a for $X_{k}=c_{k}, \ldots, X_{r}=c_{r}$ and analytic in the neighbourhood of the point $\left(c_{k}, \ldots, c_{r}\right)$.

We take

$$
F\left(z, X_{k}, \ldots, x_{r}\right) \stackrel{\text { def }}{=} z-\sum_{i}^{k-1} \lambda_{i} \varphi_{i}\left(\lambda-z-\sum_{k}^{r} \lambda_{j} x_{j}\right)
$$

with z, X_{k}, \ldots, x_{r} as (functionally) independent complex variabies This function is analytic in the neighbourhood of $\left(a, c_{k}, \ldots, c_{r}\right)$, if $\operatorname{Re} a+\frac{\sum_{k}}{k} \lambda_{j} \operatorname{Re} c_{j}<\lambda \quad$. This holds in particular for $a_{=}=$ $=z_{k}\left(c_{k}, \ldots, c_{k}\right)$, where z_{k} is the only zero of $F\left(z_{,} x_{k}, \ldots, x_{r}\right)$ with $\left|x_{k}\right|<\sum_{i}^{k i} \lambda_{i} \quad$ (see proof of lemma 5.1), because

$$
\left|\frac{\partial F}{\partial z}\right|=\left|1-\sum_{1}^{k-1} \lambda_{i} \frac{\partial \varphi_{i}}{\partial z}\right| \geqq 1-\sum_{1}^{k-1} \lambda_{i} \mu_{i}^{(1)}>0,
$$

for $Z=a, X_{k}=c_{k}, \ldots, X_{r}=c_{r}$, because

$$
\left|\frac{\partial \varphi_{i}}{\partial z}\right|=\left|\int_{0}^{\infty} t \exp \left\{-t\left(\lambda-z-\frac{\sum_{j}^{k}}{k} \lambda_{j} X_{j}\right)\right\} d F_{i}(t)\right| \leqslant \int_{0}^{\infty} t d F_{i}(t)=\mu_{i}
$$

and (5.1) holds. Therefore the equation (5.8) has a unique solum tion $z_{k}=x_{k}\left(X_{k}, \ldots, X_{k}\right)$ equal to $x_{k}\left(c_{k}, \ldots, c_{r}\right)$ for $x_{k}=c_{k}$, $\cdots, X_{r}=c_{r}$, which is analytic (only this is new) in the neighbourhood of $\left(c_{k}, \ldots, c_{r}\right)$.
Lemma 5.3. If we keep $\sum_{k}^{r} \lambda_{i} \operatorname{Re} X_{i}<\sum_{k}^{r} \lambda_{i}$, we have

$$
\begin{equation*}
\lim x_{k}\left(x_{k}, \ldots, x_{k}\right)=1 \text { for. } \quad x_{i}^{n} x_{i}\left(x_{i}-1\right) \rightarrow 0 . \tag{5.9}
\end{equation*}
$$

Proof: Again we apply Rouché's Theorem (see proof of lemma 5.1), this time with

$$
\begin{aligned}
& p(z) \stackrel{\text { def }}{=} z-\sum_{T}^{\frac{k-1}{i}} \lambda_{i}+\varepsilon \\
& q(x) \stackrel{\text { def }}{=}-\sum_{i}^{\frac{k-1}{i}} \lambda_{i}\left\{\varphi_{i}\left(\lambda-z-\frac{\sum_{j}^{k}}{k} \lambda_{j} X_{j}\right)-1\right\}-\varepsilon
\end{aligned}
$$

where ε is a (small) positive number. For C we take the circle with radius ε and centre $\sum_{i}^{k-1} \lambda_{i}-\varepsilon$. If we take $\sum_{k}^{\frac{k}{k}} \lambda_{i} X_{i}$ sufficiently close to $\sum_{k}^{r} \hat{\lambda}_{i}$, it turns out that $|p(z)|=\varepsilon$ and $|q(x)|<\varepsilon$ for all points of C. Thus

$$
p(z)+q(z)=z-\sum_{i}^{\frac{k-1}{i}} \lambda_{i} \varphi_{i}\left(\lambda-z-\sum_{n}^{r} \lambda_{j} x_{j}\right)
$$

has a zero inside C. As x_{k} is the only zero of this function for $|z|<\sum_{i}^{k-1} \lambda_{i}$, the zero we have found must be z_{k}, i.e. given $\varepsilon>0$ we have proved

$$
\left|z_{k}-\sum_{i}^{\frac{k-1}{i}} \lambda_{i}+\varepsilon\right|<\varepsilon
$$

and thus

$$
\left|z_{k}-\sum_{i}^{\sum_{i} 1} \lambda_{i}\right|<2 \varepsilon
$$

if $\sum_{k}^{r} \lambda_{i}\left(X_{i}-1\right)$ is sufficiently near 0 , provided $\sum_{k}^{\frac{r}{i}} \lambda_{i}\left(\operatorname{Re} X_{i}-1\right)=c$ Remark. We also have $\operatorname{Re}\left(\lambda-x_{k}-\sum_{k}^{r} \lambda_{j} x_{j}\right)>0$. Lemma 5.4.

$$
\lim \left(\frac{\partial}{\partial x_{k}}\right)_{r}^{l} z_{k}\left(x_{k}, \ldots, x_{r}\right) \text { for } \quad \sum_{k}^{r} \lambda_{i}\left(x_{i}-1\right) \rightarrow 0
$$

exists, if we keep $\sum_{k}^{r} \lambda_{i} \operatorname{Re} X_{i}<\sum_{k}^{r} \lambda_{i}$ 为 r, for every
$l \in\{0,1, \ldots, m\}$, if $\mu_{i}^{k}(m)^{i}<\infty$ for every $i, k \in\{1, \ldots, r\}$
and $m \geqq 1$.
Proof: $\left(\frac{\partial}{\partial x_{k}}\right) x_{k}\left(x_{k}, \ldots, x_{r}\right)$ can be obtained by partial differentiation of

$$
z_{k}=\sum_{i}^{k-1} \lambda_{i} \varphi_{i}\left(\lambda-z_{k}-\frac{\sum_{k}^{j}}{k} \lambda_{j} x_{j}\right)
$$

with respect to X_{k}, for $\frac{\sum_{i}^{k}}{k} \lambda_{i} \operatorname{Re} X_{i}<\sum_{k}^{r} \lambda_{i}$ and solving for $\frac{\partial z_{k}}{\partial x_{k}}$. We obtain a fraction, from which we find the higher partia derivatives by ordinary partial differentiation, applying the chain rule and substituting for those derivatives already obtained. Remembering that $\mu_{i}^{(m)}<\infty$ implies that $\varphi_{i}(\alpha)$ is an m times continuously differentiable function for $R_{e} \alpha \geqq 0$, which may be differentiated under the integralsign, that (5.1) holds and lemma 5.3, we can easily verify the statement of the lemma.

If

$$
A_{k \ell} \stackrel{0 \text { 最 }}{=} \lim \left(\frac{\partial}{\partial x_{k}}\right)^{l} z_{k}\left(x_{k}, \ldots, x_{n}\right) \text { for } \sum_{k}^{i} \lambda_{i}\left(x_{i}-1\right) \rightarrow 0 \text {, }
$$

we find

$$
\begin{equation*}
A_{k, 1}=\frac{\lambda_{k} \frac{\sum_{i}^{k-1}}{i} \lambda_{i} \mu_{i}^{(1)}}{1-\frac{\sum_{i}-1}{T} \lambda_{i} \mu_{i}^{(1)}}, \tag{5.10}
\end{equation*}
$$

$$
A_{k 2}=\frac{\lambda_{k}^{2} \sum_{i}^{\frac{k}{i} 1} \lambda_{i} \mu_{i}^{(2)}}{\left(1-\sum_{i}^{k i} \lambda_{i} \mu_{i}^{(1)}\right)^{3}},
$$

$$
\begin{align*}
& A_{k 3}=\frac{\lambda_{k}^{3} \sum_{i}^{\frac{k_{i}}{i}} \lambda_{i} \mu_{i}^{(3)}}{\left(1-\sum_{i}^{K-1} \lambda_{i} \mu_{i}^{(1)}\right)^{4}}+\frac{3 \lambda_{k}^{3}\left(\sum_{i}^{K_{i}} \lambda_{i} \mu_{i}^{(2)}\right)^{2}}{\left(1-\sum_{i}^{\frac{k}{i} i} \lambda_{i} \mu_{i}^{(1)}\right)^{5}} \tag{5.12}\\
& \text { we obtain, substituting } x_{i}^{T}=y_{k, i} \text { for }
\end{align*}
$$

$i \in\{1, \ldots, k-1\}$
(5.13) $\frac{x_{k}-\varphi_{k}\left(\lambda\left(1-p\left(\varphi_{(k)}, x^{\prime}\right)\right)\right)}{\varphi_{k}\left(\lambda\left(1-p\left(\varphi_{(k)}, x\right)\right)\right)} f_{k}\left(y_{(k)}, x\right)=$
$=-\sum_{k+1}^{r} \frac{x_{i}-\varphi_{i}\left(\lambda\left(1 \ldots p\left(y_{(k)}, x\right)\right)\right)}{\varphi_{i}\left(\lambda\left(1-p\left(y_{(x)}, x\right)\right)\right)} f_{i}\left(y_{(k)}, x\right)+\left(p\left(y_{(k)}, x\right)-1\right) g\left(0^{r}\right)$
and by using (5.4) we have

$$
\begin{aligned}
& (5.14) \quad \frac{X_{k}-\varphi_{k}(\lambda(1-p(y(k), x)))}{\varphi_{k}(\lambda(1-p x))} f_{k}(x)= \\
& =-\frac{\sum_{k+1}^{r}}{} \frac{X_{i}-\varphi_{i}(\lambda(1-p(y(k), x)))}{\varphi_{i}(\lambda(1-p x))} f_{i}(x)+\left(p\left(y_{(x)}, x\right)-1\right) g\left(0^{r}\right)
\end{aligned}
$$

for all X_{j} satisfying $\left|X_{j}\right| \leqq 1$ for $j \neq k$ and $\left|X_{k}\right|<1$.
We have

$$
x_{k}=\varphi_{k}\left(\lambda\left(1-p\left(y_{(k)}, x\right)\right)\right)
$$

only for

$$
x_{k}=y_{k+1, k}\left(x_{k+1}, \ldots, x_{k}\right)
$$

and therefore the $f_{k}(X)$ can be obtained successund for all X_{1}, \ldots, X_{r} satisfying $\left|X_{j}\right| \leqq 1$ for $j \neq k$ and $\left|X_{k}\right|<1$ (either directly or else by analytic continuation) from (5.14), starting with $f_{r}(X)$ if $g\left(0^{r}\right)$ is known. We shall not try to obtain the $f_{k}(x)$ explicitly, but wee (5.14) in the sequel.

The constant $g\left(0^{r}\right)$ is determined by the condition

$$
g\left(1^{r}\right)=1
$$

If we take $X_{i}=1$ in (5.14) for $i \neq k$ and, keeping $\left|X_{k}\right|<1$, take $X_{k} \rightarrow 1$, we have from lemma 5.3 . that both sides of (5.14) tend to zero. It can be seen, that $X_{k} \neq \varphi_{k}\left(\lambda\left(1-p\left(y_{(k)}, 1^{k-1} X_{k} 1^{r-k}\right)\right)\right.$ for $\quad X_{k} \neq 1$, therefore, always keeping $\left|X_{k}\right|<1$ and using l'Hopitals' rule

$$
\begin{align*}
& f_{k}\left(1^{r}\right)=\lim _{x_{k} \rightarrow 1} f_{k}\left(1^{k-1} X 1^{r-k}\right)= \tag{5.16}\\
= & -\sum_{k+1}^{n i} f_{i}\left(1^{r}\right) \lim _{x_{k} \rightarrow 1} \frac{\left.1-\varphi_{i}\left(\lambda\left(1-p\left(y_{(k)}\right)^{k-1} \lambda_{1}^{r-k}\right)\right)\right)}{x_{k}-\varphi_{k}\left(\lambda\left(1-p\left(y_{(k))^{1}}^{k-1} \lambda^{p-k}\right)\right)\right.}+
\end{align*}
$$

 or with (5.10)
(5.17) $\quad f_{k}\left(1^{r}\right)=\frac{\sum_{k+1}^{r} f_{i}\left(1^{r}\right) \mu_{i}^{(1)} \lambda_{k}+g\left(0^{r}\right) p_{k}}{1-\sum_{i}^{K} \lambda_{i} \mu_{i}^{(1)}}$.

$$
\text { Solving }(5.17) \text { for } f_{k}\left(1^{r}\right) \text { leads to }
$$

$$
\begin{equation*}
f_{k}\left(1^{r}\right)=\frac{p_{x} g\left(0^{r}\right)}{1-\frac{\sum_{i}^{i}}{1} \lambda_{i} \mu_{i}^{(1)}} \quad \text { for } \quad k \in\{1, \ldots, r\} \tag{5.18}
\end{equation*}
$$

Because
(5.19)

$$
g\left(1^{r}\right)=1,
$$

we finally have

$$
\begin{equation*}
f_{K}\left(T^{r}\right)=p_{K} \tag{5.20}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(0^{r}\right)=1-\frac{r}{\sum_{i}} \lambda_{i} \mu_{i}^{(1)} \tag{5.21}
\end{equation*}
$$

We thus proved
Theorem 5.1. The functions $f_{k}(X)$ satisfy the equations
(5.22) $\quad f_{k}(x)=\frac{\varphi_{k}(\lambda(1-p x))}{x_{k}-\varphi_{k}\left(\lambda\left(1-p\left(y_{(k)}, x\right)\right)\right.}$.

- $\left\{-\sum_{k+1}^{n} f_{i}\left(1^{i-1} x\right) \frac{\lambda_{i}-\varphi_{i}\left(\lambda\left(1-p q\left(y\left(k,,^{x}\right)\right)\right.\right.}{\left.\varphi_{i}\left(\lambda\left(1-p 1^{i-1}, x\right)\right)\right)}+\left(1-\sum_{i}^{n} \lambda_{i} \mu_{i}^{(1)}\right)\left(p\left(y_{(k,}, x\right)-1\right)\right\}$
for $\left|x_{i}\right| \leqq 1 \quad(i \neq k),\left|x_{k}\right|<1, x_{k} \neq y_{k+1, k}\left(x_{k+1}, \ldots, x_{k}\right)$
and all $k \in\{1, \ldots, r\}$.

They can be obtained successively from these equations starting from $k=r$.

The derivation of (5.20) and (5.21) here given is unnecessarily long and complicated, but the same method leads us to the moments of the waiting time distribution as we shall now show.

In section 4 we proved that in the nonsaturated case the $f_{k}(X)$ are powerseries with non-negative coefficients, absoiutely convergent for $\left|X_{1}\right| \leqq 1, \ldots,\left|X_{r}\right| \leqq 1$ and $k \in\{1, \ldots, r\}$. If we differentiate a function of this kind n times $(n \in\{0,1, \ldots\})$ with respect to one of its arguments and take the limits (in any order) $X_{1} \rightarrow 1, \ldots, x_{r} \rightarrow 1$ keeping $\left|X_{i}\right| \leq 1$ for all i\& $\{1, \ldots, r\}$ then elther the resulting expression is finite and the powerseries for this derivative converges for $\left|X_{1}\right| \leqq 1, \ldots,\left|X_{n}\right| \leqq 1$ or the limit is $+\infty$. Moreover in all cases we have
(5.23) $\left\{\left(\frac{\partial}{\partial x_{k}}\right)^{n} f_{k}(x)\right\}_{x_{1}=\ldots=x_{n}=1}=\lim _{x \rightarrow 1}\left(\frac{\partial}{\partial x_{k}}\right)^{n} f_{k}(x) \quad(|x|<1)$.

From (5.22) we see, that

$$
\begin{equation*}
\lim _{x \rightarrow 1}\left(\frac{\partial}{\partial x_{k}}\right)^{n} f_{k}(x) \quad(|x|<1) \tag{5,24}
\end{equation*}
$$

exists if $\quad \varphi_{j}(\lambda(1-p x))$ is $(n+1)$-times differentiable with respect to X_{k} for $j \in\{1, \ldots, r\}$ and $k \in\{1, \ldots, r\}$. This is certainly the case if the $(n+1)^{\text {st }}$ moments of all $F_{\ell}(x) \quad(l \in\{1, \ldots, r\})$ exist. If (as the only alternative) at least one of these moments is $+\infty$, then we find from (5.22)

$$
\begin{equation*}
\lim _{x \rightarrow 1}\left(\frac{\partial}{\partial x_{k}}\right)^{n} f_{k}(x)=+\infty \quad(|x|=1) \tag{5.25}
\end{equation*}
$$

If we take $X_{i}=1$ for $i \neq k$ in (5.22), differentiate with respect to X_{k}, then let $X_{k} \rightarrow 1$ and use $(5.10),(5.11)$ and (5.20) the result is

whilst we find in the same way from the second partial derivative of (5.22) with respect to X_{k}

$$
\begin{aligned}
& \text { (5.27) }\left(\frac{\partial^{2} f_{k}}{\partial x_{k}^{2}}\right)_{x_{1}=\ldots=x_{r}=1}=\frac{\lambda_{k}^{3} \mu_{k}^{(2)}}{\lambda}+\frac{\lambda_{k}^{3} \mu_{k}^{(1)} \sum_{i}^{r} \lambda_{i} \mu_{i}^{(2)}}{\lambda\left(1-\frac{\mu_{i}^{k}}{\sum_{i}^{2}} \lambda_{i} \mu_{i}^{(1)}\right)\left(1-\frac{\sum_{i}^{k}}{1} \lambda_{i} \mu_{i}^{(1)}\right)}+ \\
& +\frac{\lambda_{k}^{3} \sum_{i}^{r} \lambda_{i} \mu_{i}^{(3)}}{3 \lambda\left(1-\sum_{i}^{\frac{k i r}{r}} \lambda_{i} \mu_{i}^{(1)}\right)^{2}\left(1-\frac{\sum_{i}^{R}}{T} \lambda_{i} \mu_{i}^{(1)}\right)}+\frac{\lambda_{k}^{3} \sum_{i}^{r} \lambda_{i} \mu_{i}^{(2)} \frac{\sum_{j}^{k}}{\frac{k}{T}} \lambda_{i} \mu_{i}^{(2)}}{2 \lambda\left(1-\frac{\sum_{i}^{T}}{7} \lambda_{i} \mu_{i}^{(1)}\right)^{2}\left(1-\frac{\sum_{i}^{K}}{i} \lambda_{i} \mu_{i}^{(1)}\right)^{2}}+ \\
& +\frac{\lambda_{k}^{j} \sum_{i}^{n} \lambda_{i} \mu_{i}^{(2)} \frac{\sum_{j}^{k}{ }^{k}}{t} \lambda_{j} \mu_{j}^{(2)}}{2 \lambda\left(1-\frac{\sum_{i}^{K i}}{i} \lambda_{i} \mu_{i}^{(1)}\right)^{3}\left(1-\frac{\sum_{i}^{2}}{i} \lambda_{i} \mu_{i}^{(1)}\right)} .
\end{aligned}
$$

From (5.3) we have by differentiating with respect to X_{k} (5.28) $\left(\frac{\partial f_{k}}{\partial x_{k}}\right)_{X_{1}=\ldots=x_{r}=1}=f_{k}\left(1^{r}\right)\left(\frac{d}{d X_{k}}\left\{\varphi_{k}\left(\lambda_{k}\left(1-x_{k}\right)\right) \psi_{k}\left(\lambda_{k}\left(1-x_{k}\right)\right)\right\}\right)_{X_{k}=1}=$

$$
=f_{k}\left(1^{k}\right)\left\{\lambda_{k} \mu_{k}^{(1)}+\lambda_{k} \varepsilon_{\underline{w}_{k}}\right\},
$$

(5.29) $\quad\left(\frac{\partial^{2} f_{k}}{\partial x_{k}^{2}}\right)_{x_{1}=\ldots=x_{k}=1}=f_{k}\left(1^{k}\right)\left\{\lambda_{k}^{2} \mu_{k}^{(2)}+2 \lambda_{k}^{2} \mu_{k}^{(1)} \varepsilon_{w_{k}}+\lambda_{k}^{2} \varepsilon_{w_{k}^{2}}\right\}$,
if $\varepsilon \underline{w}_{k}$ and $\mathcal{E} \underline{w}_{k}^{2}$ are the first and second moment of the stationary waiting time distribution $H_{k}(t)$ respectively.

On combining $(5.26),(5.27),(5.28)$ and (5.29), obtain:
Theorem 5.2. The first and second moment of the stationary waiting time distribution $H_{k}(t)$, for $k \in\{r, \ldots, r\}$, are respectively
(5.30)

$$
\mathcal{E} \underline{w}_{k}=\frac{\sum_{i}^{r} \lambda_{i} \mu_{i}^{(2)}}{2\left(1-\sum_{i}^{G_{i}^{i}} \lambda_{i} \mu_{i}^{(1)}\right)\left(1-\frac{\sum_{i}^{k}}{i} \lambda_{i} \mu_{i}^{(1)}\right)}
$$

and
(5.31)

$$
\begin{aligned}
& \xi \underline{w}_{k}^{2}=\frac{\sum_{i}^{r} \lambda_{i} \mu_{i}^{(3)}}{3\left(1-\sum_{i}^{k i} \lambda_{i} \mu_{i}^{(1)}\right)^{2}\left(1-\frac{\sum_{i}^{k}}{i} \lambda_{i} \mu_{i}^{(1)}\right)}+ \\
& +\frac{\sum_{i}^{r} \lambda_{i} \mu_{i}^{(2)} \frac{\sum_{i}^{k} \lambda_{i} \mu_{i}^{(2)}}{2\left(1-\sum_{i}^{k-1} \lambda_{i} \mu_{i}^{(1)}\right)^{2}\left(1-\sum_{i}^{k} \lambda_{i} \mu_{i}^{(1)}\right)^{2}}+\frac{\sum_{i}^{r} \lambda_{i} \mu_{i}^{(2)} \sum_{i}^{\frac{k}{i} 1} \lambda_{i} \mu_{i}^{(2)}}{2\left(1-\frac{\sum_{i}^{1}}{1} \lambda_{i} \mu_{i}^{(1)}\right)^{3}\left(1-\frac{\sum_{i}^{K}}{1} \lambda_{i} \mu_{i}^{(1)}\right)} .}{.}
\end{aligned}
$$

our (5.30) is Cobham's formula (3) (see [2]).
The function $\psi_{k}(\alpha)$ can be found from (5.3) s at least for $\left|1-\frac{\alpha}{\lambda_{k}}\right| \leqq 1$,
(5.32)

$$
\psi_{k}(\alpha)=\frac{\lambda f_{k}\left(1, \ldots, 1,1-\frac{\alpha}{\lambda_{k}}, 1, \ldots, 1\right)}{\lambda_{k} \varphi_{k}(\alpha)},
$$

which, if combined with (5.22), leads to

where $z_{1}^{*}=0$ and $z_{k}^{*}=z_{k}^{*}(\alpha)$ satisfies (5.8) for $X_{k}=1-\frac{\alpha}{\lambda_{k}}, X_{i}=1$ $(i \neq k$ and $k \geqq 2)$ i.e.

$$
\begin{equation*}
z_{k}^{*}-\sum_{i}^{k-1} \lambda_{i} \varphi_{i}\left(\sum_{1}^{k-1} \lambda_{j}-z_{k}^{*}+\infty\right)=0 \tag{5.34}
\end{equation*}
$$

Therefore $\psi_{y}(\alpha)$ is explicitly given by
(5.35)

$$
\psi_{1}(\alpha)=\frac{\left(1-\frac{\sum_{i}^{r}}{1} \lambda_{i} \mu_{i}^{(1)}\right) \alpha+\frac{\sum_{i}^{r}}{2} \lambda_{i}\left(1-\varphi_{i}(\alpha)\right)}{\lambda_{1}-\alpha-\lambda_{1} \varphi_{1}(\alpha)}
$$

while $\psi_{k}(\alpha)$ for $k \in\{2, \ldots, r\}$ contains the z_{k}^{*}. As an illustration we give the following example: Take $r=2, F_{1}(x)=F_{2}(x)=1-\exp \left(-\frac{x}{\mu}\right)$, then

$$
\begin{equation*}
\varphi_{1}(\alpha)=\varphi_{2}(\alpha)=\frac{1}{\alpha \mu+1}, \tag{5,36}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{1}(\alpha)=\frac{1-\lambda_{1} \mu+\alpha \mu+\alpha \lambda \mu^{2}}{1-\lambda_{1} \mu+\alpha \mu} \tag{5.37}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{2}(\alpha)=\frac{(1-\lambda \mu)\left(-\lambda_{1}+z_{2}^{*}-\alpha\right)\left\{\left(\lambda_{1}-z_{2}^{*}+\alpha\right) \mu+1\right\}}{\left(\lambda_{2}-\alpha\right)\left\{\left(\lambda_{1}-z_{2}^{*}+\alpha\right) \mu+1\right\}-\lambda_{2}}, \tag{5.38}
\end{equation*}
$$

which leads to the following waiting time distributions ($t \geqq 0$)

$$
\begin{equation*}
H_{i}(t)=1-\lambda \mu \exp \left\{-\frac{\left(1-\lambda_{1} \mu\right) t}{\mu}\right\} \tag{5.39}
\end{equation*}
$$

$(5,40)$

$$
\begin{gathered}
H_{2}(t)=1-\lambda \mu+\frac{\lambda^{2} \mu}{\lambda_{2}}\left(1-\exp \left\{-\frac{\lambda_{2}(1-\lambda \mu)_{t}}{\lambda \mu}\right\}\right)+ \\
-2 \lambda_{1}(1-\lambda \mu) \int_{0}^{t} d s \int_{0}^{s} \frac{I_{1}\left(2 u \sqrt{\frac{\lambda_{1}}{\mu}}\right)}{2 u \sqrt{\lambda_{1} \mu}} \exp \left\{-\frac{\lambda_{1}+\lambda^{2} \mu}{\lambda \mu} u\right\} d u,
\end{gathered}
$$

where $I_{f}(x)$ is the modified Besselfunction of the first order and of the first kind.

The result (5.40) contradicts equation (27) as given by RAE. $\operatorname{Cox}[4]$.

6. The case of saturation

If (5.1) is not satisfied, we can find a positive integer s, $0 \leqq s<r$, such that

$$
\begin{equation*}
\sum_{i}^{\frac{s}{1}} \lambda_{i} \mu_{i}^{(1)}<1, \sum_{i}^{s+1} \lambda_{i} \mu_{i}^{(1)} \geqslant 1 . \tag{6.1}
\end{equation*}
$$

In section 4 we stated already without proof, that

$$
\begin{equation*}
f_{k}(x) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} f_{k, n}(x) \tag{6.2}
\end{equation*}
$$

exists for $k \in\{1, \ldots, r\}$ and that

$$
\begin{equation*}
f_{k}(x)=0 \tag{6.3}
\end{equation*}
$$

if at least one X_{j} satisfies $\left|X_{j}\right|<1$ for $j \in\{s+1, \ldots, r\}$. As a consequence of (6.3), it cannot be true that

$$
\begin{equation*}
f_{k}\left(1^{n}\right)=\lim _{x \rightarrow 1} f_{k}(x), \tag{6.4}
\end{equation*}
$$

as the right hand side in (6.4) equals 0 and

$$
\begin{equation*}
g\left(1^{r}\right)=1 . \tag{6.5}
\end{equation*}
$$

The functions $f_{k}(X)$ thus cannot be powerseries with positive coefficients and the method of section 4 cannot be applied.

But if instead of $f_{k}(X)$ only $f_{k}\left(x 1^{r-s}\right)$ is considered, we can repeat the argument of section 5 with some alterations. From (5.2) and (6.3) we have at once

$$
\begin{equation*}
f_{k}(x)=0 \tag{6.6}
\end{equation*}
$$

for $k \in\{s+2, \ldots, r\}$ and $\left|x_{i}\right| \equiv 1$, for all $i \in\{1, \ldots, r\}$. If for $k \in\{1, \ldots, r\}$

$$
\begin{equation*}
\bar{f}_{k}(x) \stackrel{\text { def }}{=} f_{k}\left(x_{1}^{r-s}\right) \tag{6.7}
\end{equation*}
$$

one can prove that for $k \in\{1, \ldots, s+1\}, \bar{f}_{k}(x)$ again is a powerseries with non-negative coefficients, absolutely convergent for $\left|x_{1}\right| \equiv 1, \ldots,\left|x_{s}\right| \equiv 1$ and satisfying

$$
\frac{\sum_{t}^{k \prime}}{T} \bar{f}_{k}\left(r^{r}\right)=1 .
$$

From (5.2) we have for $k \in\{1, \ldots, s\}$ and $X_{s+1} w \ldots=X_{p}=1$

$$
\begin{gather*}
x_{k} \bar{f}_{k}(x)=\sum_{i}^{\frac{s+1}{i}}\left\{\bar{f}_{i}\left(0^{k-1} x_{1}^{r-s}\right)-\bar{f}_{i}\left(0^{k} x_{1}^{r-s}\right)\right\} . \tag{6.8}\\
\cdot \varphi_{k}\left(\sum_{i}^{\frac{s}{i}} \lambda_{i}\left(1-x_{i}\right)\right)
\end{gather*}
$$

and for $k=s+1$

$$
\begin{equation*}
\bar{f}_{s+1}(x)=\sum_{i}^{s+1} \bar{f}_{i}\left(0^{r}\right) \varphi_{s+1}\left(\sum_{i}^{\frac{s}{i}} \lambda_{i}\left(1-x_{i}\right)\right) \tag{6.9}
\end{equation*}
$$

From (6.8) and (6.9)

$$
\begin{gather*}
X_{k} \bar{f}_{k}(X)=\sum_{i}^{\frac{s}{i}}\left\{\bar{f}_{i}\left(0^{k-1} x_{1}^{r-s}\right)-\bar{f}_{i}\left(0^{k} x_{1}^{r-s}\right)\right\}+ \tag{6.10}\\
+\sum_{i}^{s+1} \bar{f}_{i}\left(0^{r}\right)\left\{\varphi_{s+1}\left(\frac{s}{i} \lambda_{j}-\frac{\frac{s}{k}}{t} \lambda_{j} X_{j}\right)-\varphi_{s+1}\left(\sum_{T}^{s} \lambda_{j}-\sum_{k+1}^{s} \lambda_{j} x_{j}\right)\right\} \varphi_{k}\left(\sum_{1}^{s} \lambda_{i}\left(1-x_{i}^{r}\right)\right) .
\end{gather*}
$$

Equation (6.10) is the analogue of (5.2), while the analogue of (5.4) is (for $\left|X_{i}\right| \leqq 1, i \in\{1, \ldots, s\}$ and $\left|U_{j}\right| \leqq 1, j \in\{1, \ldots, k-1\}$ and $k \in\{2, \ldots, 5\}$)
(6.12)

$$
\frac{\bar{F}_{k}\left(X 1^{r-s}\right)}{\varphi_{k}\left(\lambda\left(1-k\left(X, 1^{r-s}\right)\right)\right.}=\frac{\bar{f}_{k}\left(U^{(k)} X 1^{r-s}\right)}{\left.\varphi_{k}\left(\lambda\left(1-p l C^{(k)} X, 1^{r-s}\right)\right)\right)}
$$

and (5.3) can be written

$$
\begin{equation*}
\bar{f}_{k}\left(1^{k-1} x_{1}^{r-k}\right)=\bar{f}_{k}\left(1^{r}\right) \psi_{k}\left(\lambda_{k}\left(1-x_{k}\right)\right) \varphi_{k}\left(\lambda_{k}\left(1-x_{k}\right)\right) \tag{6.12}
\end{equation*}
$$

for $k \in\{1, \ldots, s\}$. Therefore the moments of the waiting time distribution can be found as in section 5 for $k \in\{1, \ldots, s\}$. One obtains
(6.13)

for $k \in\{1, \ldots, s\}$,
(6.14)

$$
\bar{f}_{s+}\left(1^{r}\right)=\frac{1-\sum_{i}^{s} \lambda_{i} \mu_{i}^{(1)}}{1-\sum_{T}^{T} \lambda_{i} \mu_{i}^{(1)}+\mu_{s+1} \sum_{i}^{\frac{s}{T}} \lambda_{i}}
$$

$$
\begin{equation*}
\sum_{i}^{\frac{s+1}{s+1}} \bar{f}_{i}\left(0^{r}\right)=\frac{1-\sum_{i}^{s} \lambda_{i} \mu_{i}^{(1)}}{1-\sum_{i}^{\frac{s}{s}} \lambda_{i} \mu_{i}^{(1)}+\mu_{s+1} \sum_{i}^{\frac{s}{i}} \lambda_{i}} \tag{6.15}
\end{equation*}
$$

which is Cobham's formula (cf [3]).
In addition one can prove, that

$$
\xi \underline{w}_{k}=\infty \quad \text { for } \quad k \in\{s+1, \ldots, r\} .
$$

The authors wish to thank Prof. Dr D. van Dantzig for suggesting the use of his "method of collective marks" and for his valuable advice and criticism, which helped to give the paper its final form.

References

$[12]$ M.D. Moustafa,	Input-output Markov processes, to appear in Proc.Kon. Ned.Ak.v.Wet.
$[13]$ E.C. Thtchmarsh,	The Theory of Functions, Oxford Uni- versity Press, Second Edition, 1939.
$[14]$ D.V. Widder,	The Laplace transform, Princeton
	University Press, Princeton, 1946.

[^0]: 1) Random variables are denoted by underlined symbols.
