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1. Introduction

In industryg) one often meets with a situation, in which
one operator is charged with servicing a number of i1dentical
maciiines, laid out in a workshop. The type of machine we con=
slider here is automatic, Once 1t has been started, 1t continues
work indefinitely, till one of a limited number of specilal
situations arises and then it stops automatically. On such an
occasion 1t is the task of the operator to make some adjustment
to the machine to put it in working condition again and to
restart 1t doing its work.

To be more specific, let us suppose we are dealing with m
machines, placed along a circular route, along wanich the
operator walks in a fixed direction., The machines are numbered
from 1 ton in such a way, that walking away from machine 1
the operator finds the other machinesin natural order along his
route. It seems reasonable to suppose, that the operator needs
a fixed amount of time to walk from a specified machine To tne
next one, upon each occasion he performs that walk. Therefore
let C. Dbe the (constant) walkingtime needed to pass from machine
v to machine U+t (taken modulon) and

(1) ¢ def

A

I

4&@

C

<

the total walkingtime needed to complete a full round.

The total time needed to adjust a stopped machine and
restart it again (counted from the moment the operator starts
doing work on that machine) we call the servicetime of that

o e o w w

1) In this paper proofs are ziven of some of the results dis-
cussed in a lecture in the series "Actualiteiten" of the
Mathematical Centre, Amsterdam. Cf. Runnenburg [39571

#

2) Questions arising in thne textile industry gave rise to the
present investigation.




machine (on that occasion), The servicetimes are independent
nonnegative stochastic variables, denotedB) by s (usually with

a suffix), with a common distributionfunction B (s), which is the
same for all machines. The runningtime of a machine is the time
from the moment the machine 1s restarted up to the next stoppage.
A1l runningtimes are independent nonnegative stochastic variables
denoted by ¢ (usually with a suffix), all having the same distri-

butionfunction

~/\t
1T~ £ T = 0

(2) A () 4=t { ’

0 t < ¢
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where A is a positive constant. All servicetimes and runningtimes
are independent stochastic variables, which do not depend on the
history of the system under consideration,

At any time any individual machine is either in position O
wa) be the
probability, that at time O machine ¢ is in position X,

(e {u..,,w}) , where x. is either 0 or 1 for all ﬁ), These
probabilities are supposed to be given and satisfy

(working) or in position 1 (stopped). Let ?(11

PR
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where the summation is over all possible combinations of 0 and 1
for each of the <. .

The instructions of the operator are given by the following
rules.
Rule 1) Start at time 0 in front of machine 1 and apply rule 2),
Rule 2) Notice whether the méchine in front of you is in position

e o e w e we TR W

3) Stochastic variables will be distinguished from numbers (e.g.
from values they take in an experiment) by underlining their
symbols.,

ih

( and

4) 2 means: sum over all integers x, with o= x

.Jw}‘

(x.ra--.,x,n <

&s{-rj‘.
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Rule 3) If the machine in front of you is in position 0, walk
along vour route and stop in front of the next machine,
then apply rule 2), If the machine in front of you is
in position 1, put that machine in working order again
and restart it, then walk to the next machine; stop in
front of it and apply rule 2).

With these instructions the operator keeps doing his rounds
indefinitely., There is however the possibilifty to let him rest
between full rounds. One can for instance simply increase one
of the ¢, say c; with a constant amounta,use e+ 4 in the
following calculations and instruct the operator to rest during
a time A , when walking from machine ] to machine j+1 (modulo
n).

In this paper we shall be concerned with r and w, , where
m 1s the number of machines the operator passed since he
started patrolling and

(%) p def duration of the complete round starting at the moment

-m
the operator leaves the mqth machine and finishing
at the moment the operator leaves the (%ﬂw@th machine,
(5) y;m(gf duration of the time the pm+w)th machine hag been

stopped when the operator reaches that machine,

In this paper we shall define stochastic variables p and W
and their distributionfunctions and prove that 5)

(6) fom Plr =r} - Plrsr],
(7) é‘,”lﬁw grf_ €7,
(8) bm  Plw, =w}=P{w=w],
(9) ln Ewl. Ew’

0 e e G G S W

5) P{A} stands for "probability of the event A ", P{A}B}
for "probability of the event A given cvent B " and ig

the gsymbol for expectation,




T

In a seqguel to this paper we shall derive some asymptotic

formulae for these gquantities for m - co.

2, Statistical properties of the system

Let the Mqtn inspection {(wm e {7,2,“.}> , which is performed

by the operator, consist in noting the positions of the first

m machines he passes successively, at the moment he reaches

them, starting at the w;th one., The result of this inspect=

ion may be denoted by a vector

v/
(10) A EL—_f(x S, X ),
-— m - m M+ i
where x  .=o 1if the @wn)th'machine is found to be working

and x -1 if not, where (e {g,,,)m},
Upon carrying out an inspection, the operator may find

any one of the 2”7 vectors

(11) ng—if(:c””.)xm))

where X, is either O or 1 for all ¢ . Each of these vectors
specifiles a possible state of the system of machines at the
inspection, It follows from the definition, that the last
n-4 components of the vector specifying the wvth state are
the first m-1 components of the vector specifying the mﬂqft
state.

One can gquite easily compute the Transitionprobabilities
from one state to the next, i.e. from the state found at the
m® inspection to that found at the (m++)°°, As we shall see
presently, the last state given determines the transitionpro=-
bavilities tTo future states completely, so we have come across
a Markov_.chain, This shall lead us easily to the limits we are
looking for, We refer to Feller [1950] , Chapter 15, for the
terminoloz:r and all results guoted on Markocv_chains,

From the probabilities ¢ (x ,...,x ) we can deduce the

absolute probabilities a (x ., x,) for the first or initial

172 70
state of the Markov-chain, where in general the m?h state of
the chain is the state at the wm =~

inspection,
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To simplify our considerations, we suppose that when the
operator reaches the mt? machine ( e{nz,u.k)on his patrol,
a potential servicetime ;QW]is drawn from the distribution R(s).
Then the actual servicetime will be x s . As before the S,
are independent of the history of the system,.

Let

(,12) f(u | 36) gc - +(7_2x.)(1_u. )e..,\('e1+-..+CL-_H,+x75-1_,..4+x£_75£_1)
[ A [ 4 w/

=l

for L=

3

where the exponent is 0 for «¢:+ , then the probability of

finding the positions Uyyooos Uy at time O changed to positions
X, . X, at the first inspection, under the oonditiontghat
s, 1s the length of the potential servicetime of the ¢

machine is given by

A
3

e
i)

P{“,zx. for 1= < /u.:w .-5. for 1=,
=57 JEmjuydy ksj=sy for 1=

(13) = Z?‘?){giz~xd/gf:z% For 1= k=0 § Sp=5p
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D
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Therefore

(/]L” CL1 (IV e Iw)(: Z Q(Le,""’{’(w)/'"/L]ff(ua'xa)dg(%)'” ‘LB(S»:J-
23 - o-

S

)

What do we know about the runningtime of a machine just

PR

after the operator hags left that machine? There are two possi=-

bilities:

1) the peretor had just scrved that mechine, In which cese the runnirgtine 1s
Independent of the time the eperator will be under way before he reaches
the mechine again end hes distributionfunction A(t),

2) the operator did no work on that machine because it was
still running. Going back to the last time he did serve
that machine we see¢ that the time the operator has spent

since walking and servicing other machines 1is independent

of, and smaller than the runningtlime still going on.
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Therefore the remaining runningtime of this machine has
also A(t) as distributionfunction (because Fqﬁfit}: Alt)
implies ]:{E —ast|t > a} = A(t) for t=o0 1if a is a constant,
This 1s the reasgon why we have to restrict our considerations

- to the particular distributionfunction for the runningtime,
defined by (2)) and is zlso independent of the time the operator
- will be under wa: before he reaches fthis machine again, which

means that for m =1

P{x - x x -x & ... & x = }—-
T mem YY) 1 1 — Ao T+ -
(15)
:P{g - x ]:{ = & .. & x = x }J
M +m LG Y] MW V¥t A e B B |
S0
\
P{’)g“nv+1:(xf"""xw)/éﬁm:(ljﬂ”"yw)}:
(e ,
= {_:_c”m”: X §x =%, ¢ .. &x = 1;gm=g7¢{,’._, ﬁgwmmﬂjh},:
‘P{lm—k'ﬁ = x'm-vw \*x—'w*—l: (_’j2 (€ T (e’ z’v-m-»,'w._*l: lj.n } if x,;: \‘j“,-ﬂ
= fordi=sizg2mn-1,
0 otherwise.

We note that this probabllity does not depend on m so our
Markov-chain is stationary, and conclude from (15), that the
last state given determines the transitionprobabilities to any
future states,

Now for wm =o

P {2@ =X I:‘c - oy . x } B
e+ MWiEm+T | TTOma L (R 2 = e M
(17)
N 2] co
’ _AMesx s aiiex s )
\ W2 T+l Wi kM
= f "jfﬁ_xﬂmuﬂw)e -
. e /\(C"'x S [ o Qg )
) - - med T+ 2 : LR 'vh-e—'n)
+ xm+w+1 (’—-@ }CLB(S,WHZ) - dB(S’Vw+’V))=
A o XLt T X
= X r(1-2x ) e T * mm
MW+ ¥+ M+nM+T
where
o
N def -As
(18) Jodel e d Bes).

e



Our Markov-chain 1s irreducible and aperiodlc, for every
state can be reached from every other state in n steps as well

as in ms+7 steps with positive probability. Therefore all

states belong to the same class and because There are only

a finite number of states they must all be ergodic. This means
That the absolute probabilities amw(x%, . of finding
the system in state (xvj_,.JxM) at the m inspection have

a (positive) limit for wm —se . If

Q ’ ) o f . ()
(19) a'(x7""’xm)%w({_}:qc'q o (x ., x )Y,
then the alx,...,x, ) are the unigue solution of the system
of equations
(20) Q(DC“..A,X'W): 2 Ql(g) Ly )P 361)”.,3{,"]%,...,5 }J
(g ..., 7 " 4 kg
J17 Jff,n)
where 73fx1,L._,x%{%,.h,g%} denotes the transitionprobabi-
lity from the state (y, ..,y ) to the next state (%, - x,)
J,’ o

and which satigfies
(2/]) 2 @(%1’.,.33671):7.
(xqsux,,)

Substituting (17) in (20) we have

| e
(22) a(x7,.,.Jxm):{a(ojxj,...,:c ) )-i‘ a(’f,x”_.uxwﬁ)}{xﬂw‘t-:wa) eﬁﬂcj% x’"”}

which is satisfied bv

. de =
(23) alx ,....x, )= A j/:/; (_1+€ J ,
where
(o) x =t i x,




From (21) we have

2.

(25) (Z:: 7 live ” he _j)=
x,, .- 'd j=o
L () T e ™).

- J =0

We note that a(x,.. ., x,) iz a2 symmetric function of

3. Calculetion of P {5 = ;»} and  Plw =awi.
Let

(26) P

adl T

— ..
YN+Ee "7 AV

From the definition of_l:m andzym we have

(27) - T s
— 1 Y= L a4+ L kad Yri-k M+ M
and
-t if X -t >o0,
(28) wo o= "
o 0 otherwise.
Therefore
. o
P{fwsrv}:P{Cw“Zji Xt Sonns <r}:
(29) ; ) .
= ZO.:"3 "D{c * 2:]:_ £W+L _"M1+L< r %&‘%W+L:£}-P§;§'¥_W+p=%}

Becausc the . are independent of the x . , we have
S s

' Plov B s | Fax- 2]

M+ L '-"YYHL,

~—~
o
O
~
i
.d
~
G
+
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where s . ., s, are independently distributed, each with

distributionfunction B(g) . Therefore

Ao

(3/3) P;rmsr}zéép{6+ ngir}.P{ﬁy =t?}

= amrl

M —> co < ™ > O
o i /" k1 BYI)
= 2?_T3§04'2; s,=ri(%) A ﬂz (ree "5 07),
If we introcduce
(33) rodfe s Sty e
and
(3%) | v e Sy s

where all v, are either O or 1 and

7 def
(35) 'P{y:1:,u:.’““‘lffn:mr’v7}: CL(Q/;),_,JUM)
and the s , &, are independent stochastic variables, each

4>
with distributionfunction B (s) and each of them independent

of v,,...,u, , then

(36) lom

M CO

o

{_;qmsr}: P{fﬁ?"}.

From (31) and (36) we have at once for every nonnegative k

(37) O S

" - co

In much The same way one can obtain the limiting distri-

bution of w, For w=o we have




(39) Lo P?(_u[ SW}:PZ(Z___?S’IM}:P{@_({SW}-
if

2 Lo
(ko) wrdef [ E-E A0 Z-f>0
, T 0 otherwise
and for every nonnegative 4

(41) b EwF L E Wt

M — CO

Of coursc w and z are closely connected. In fact

(%2) P{giw}:fmp{gifquw}/\ a_ALLOZ/t

from which we have

Co

~A
+.L.fe ZdP{gﬁz}.
(o]

s
A A

(43) gqif:gg__

4, pppreximation for large m

If we want to compute gzg for large 4 , we can do so by

making use of (43)., First we introduce

(’“M) /04:_—"‘75((,@1(4:...:841%
from which by (26)
(45) £z e (mt)p€s

and after some calculations




(46) J’e"AZJP{gsz}: - p.
o

A11 we need to find & w from (43) is p , where from (44)

M_1 £ =
(¥7) A ST T (e ).
)

£ 4 -
il Ae
_ z £ /7
_é_%fk@xz—@+e 7°)
which 1s quite a job if w» is not small,

Ina second paper we shall prove, that if we replace our

original § by s, . where

(48) D,(%SS}ZB'(M)

and B (s) has finite first and second moment, then

(50) 7:C+-577~3”AQ)
and
(51) bdef £ s

The truth of this statement can be gathered from the
following consideraticons. From the above conditions it follows
that z converges almost surely to a constant if » tends to

infinity, s~ let

(52) ?'ﬂﬁ o s. tim P

n—» Ca
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Now 2z 1s the time needed to return to a machine, in the
stationary situation., If we may regard this x as a constant n
then the probebility of finding a2 machine stopped upon return=-
inz to 1t, is given by

— A
(53) i_e "
80 we may cxpect
(5%) o o
and thus from (45)
(55) M = c+£¥(1~e'ﬂﬁ))
which iz equation (50).

(56) If L 2,% v

then we have for»n tending to infinity

£ (xz—/»f
(57) P{£ =%] ~ ] e T s
n 4 o Vi
if
(58) T =%
o
(59) = mnl
(60) 0-'1 mT(41-T)
i 1-Ab'(1-T)
and
(61) )’ﬁ“ntl = n®
where

(62) j£<a,<2~_
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