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1) 
1. Introduction 

2) l In industry one often meets with a situation, in whic~ 

one operator is charged wit:1 servicing a number of identical 

mac ines, laid out in a workshop. The type of machine we con­

sider here is automatic. Once it has been started, it continues 

work indefinitely) till one of a limited number of special 

situations arises and then it stops automatically. On such an 

occasion it is the task of the operator to make some adJustment 

to the machine to put it in working condition again and to 

restart it doi its work. 

To be more specific, let us suppose we are dealing with~ 

machines, placed along a circular route, along w~ich the 

operator walks in a fixed direction, The machines are numbered 

from 1 to~ in such a ways that walking away from machine 1 

the operator finds the other machines in natural order along his 

route. It seems reasonable to suppose, that the operator needs 

a fixed amount of t 1 me to walk from a specified machine to the 

next one, upon each occasion he performs that walk. Therefore 

let C ~ be the (constant) walkingt ime needed to pass from machine 

i.. to machine c r 1 ( taken modulo Yl.) and 

( 1) C d.e.f 
'rl 

)_'i:_ c,_ 
i t 

the total walk:,_ngtime needed to complete a full round. 

The total time needed to adjust a stopped machine and 

restart it again (counted from the moment the operator start~ 

doing work on that machine) we call the servicetime of that 

1) In this paper proofs are ~iven of some of the results dis­
cussed in a lecture 111 the series 11 Actua teiten 11 of the 
Mathematj_cal Centre, Amsterdam. Cf. Runnenburg [1957] , 

2) Questions arising in the textile industr~ gave rise to the 
present investigation. 
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machine (on that occasion). The servicetimes are independent 

nonnegative stochastic variables, denoted 3) bys (usually with 

a suffix), with a common distributionfunction B(s), which is the 

same for all machines. The runningtime of a machine is the time 

from the moment the machine is restarted up to the next stoppage. 
All runningtimes are independent nonnegative stochastic variables 

denoted by t (usually with a suffix) .i all having the same distri­

butionfunction 

( 2) 
t ~ 0 

t < O _, 

where A is a positive constant. All servicetimes and runningtimes 

are independent stochastic variables, which do not depend on the 

history of the system under consideration, 

At any time any individual machine is either in position O 

(working) or in position 1 (stopped). Let ? (x.1 , . •. .,x-n) be the 
probability, that at time o machine i is in position x. 

(. 

( i E f 1, ... , ?1} J , where x... is either O or 1 for all l, • These 
probabilities are supposed to be given and satisfy 4 ) 

(3) ) f { x 1 , ..• " x'Yl ) = 1 , 

where the summation is over all possible combinations of O and 1 
for each of the '.)(._ . 

(. 

The instructions of the operator are given by the following 
rules. 

Rule 1) Start at time O in front of machine 1 and apply rule 2), 

Rule 2) Notice whether the machine in front of you is in position 
________ Q_or 1 and apply rule 3)~ 

3) Stochastic variables will be distinguished from numbers (e.g. 
from values they take in an experiment) by underlining their 
symbols. 

4) > means: sum over al 1 integers x. with o "!:: ::ic. :s i.. and 
(x~~---,x,,.,) <- i.. 
i.t:f-r, ... _,n}. 
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Rule 3) If the machine in front of you is in position OJ walk 

along your route and stop in front of the next machine . 
., 

then apply rule 2). If the machine in front of you is 

in position 1J put that machine in working order again 

and restart it, then walk to the next machine, stop in 

front of it and apply rule 2). 

With these instructions the operator keeps doing his rounds 

indefinitely. There is however the possibility to let him rest 

between full rounds. One can for instance simply increase one 

of the c.,_ , say cj , with a constant amountb.~use cj + 6. in the 

following calculations and instruct the operator to rest during 

a time 6. , when walking from machine j to machine j + 1 ( modulo 

Yl ) • 

In this paper we shall be concerned with r and w , where -m -m 

m is the number of machines the operator passed since he 

started patrolling and 

( 4) r def 
-ni 

duration of the complete round starting at the moment 

the operator leaves the~ th machine and finishing 

at the moment the operator leaves the (~+~ th machine~ 

(5) wm de.f duration of the time the ('YY1+Y1) th machine hae. been 

stopped when the operator reaches that machine. 

In this paper we shall define stochastic variables rand~ 

and their distributionfunctions and prove that 5 ) 

(6) p f _rm 5. r } == p f J: :s. r } , 

( 7) 

(8) 

(9) 

5) Pf A} stands for "probability of the event A II JP f A/B} 
for 11 pre) b ability of the event A given ~..:vent B ir and t is 

the symb l for expectation. 
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In a sequel to this paper we shall derive some asymptotic 

formulae for these quantities for Y) ~co. 

2. Statistical properties of the system 

Let the Wl th inspect ion ( m c [ 1, 2, ... } ) , which is performed 

by the operator 2 consist in noting the positions of the first 

~ machines he passes successively, at the moment he reaches 

them, starting at the m th one. The result of this inspect­

ion may be denoted by a vector 

(10) X def ( X > • •. J ::;( ) 3 
- 'm - 'YYl -=+'l1-1 

where x '1'>1+, = o if the ('m+i.) th machine is found to be working 

and x . "'1 if not, where i. E { 1., ... ., "VI} . 
-1'1-1-t ... 

Upon carrying out an inspection, the operator may find 

any one of the 2.,,, vectors 

( 11) 

where x. is either o or 1 for all <- • Each of these vectors 
~ 

specifies a possible state of the system of machines at the 

inspection. It follows from the definition, that the last 

'Yl.-1 components of the vector specifying the m th state are 

the first n -1 components of the vector specifying the (m tt;8 t 
state. 

One can quite easily compute the transitionprobabilities 

from one state to t~e next, i.e. from the state found at the 

mth inspection to that found at the (WI r1) st • As we shall see 

presently, the last state given determines the transitionpro­

babilities to future states completely, so we have come across 

a Markov-chain. This shall lead us easily to the limits we are 

looking for. We refer to Feller [1950], Chapter 15 3 for the 

terminolog~ and all results quoted on Markov_chains. 

From the probabilities 2(x 1 , ... "x.,,,) we can deduce the 

absolute probabilities a 1 (x1 , ... , x'Yl) for the first or initial 

state of the Markov-chain, where in general the mth state of 
the chain is the state at the 'YYl th inspection. 
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To simplify our considerations; we suppose that when the 

operator re aches the m th machine ( --m E [ 1,2., .. }) on his patro 1, 

a potential servicetime .:2.'YYI is drawn from the distribution B(s) 

Then the actual servicetime will be x s • As before the s 
- "r'YI -"r'Y', -..,YI 

are independent of the history of the system, 

Let 

( 12) 
;, 

where the exponent is o for l = 1 

for i 2: 1 ~ 

, then the probability of 

finding the positions u at time O ch~nged to po~itions 1 , ... , u 11 c , ct - , ,., " 

at the first inspectionJ under the condition that 
i th 

::C.1 ' ... ' X 'Yl 

s. is the le 
C 

h of the potential servicetime of the 

machine is given by 

(13) 'l1 

= .TT Pfz..=:x. /f!::.r>=l(_p for 15. t:":'..i. ~ _?_pee Sp for, 15.C5.L-1}= 
L =·/ t. L -K -k 1- t. 

Therefore 

co co 

( 14) CL1 (x1 , ... ,x,,,)"" L- ~(c;,· ,uo/))/. /,f f(u'-,x.JdB(s,) ... cLB(s'n)-
(u.e ... ,u.11) o- o. 

What do we know ab the runningtime of a machine just 

after the operator has left that machine? There are two possi­

bil ies: 

1 ) the cpE. r c:to r had t th in vfnich cesc is 

inde r b under v1c:;y before. he r€oches 

ionfunction A(t) J 

2) the operator did no work on that machine because it was 

still running. Going back to the last time he did serve 

that machine we see that the time the operator has spent 

since walking and servicing other machines is independent 

of, and smaller than the runningtime still ing on. 
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Therefore the remaining runningtime of this machine has 

also A (t) as distributionfunction (because P{i. < t} = A(t) 

implies P [ !_ _ a -::st/!:._ > a J = A (1::) for t?. o if a.. is a constant. 

This is the reason why we hav~ to restrict our considerations 

to the particular distributionfunction for the runningtime, 

defined by (2)) and is also independent of the time the operator 

will be under wa~ before he rEaches this machine again, which 

means that for m~1 

( 15) 

so 

P{x -=(x, ... ,x) IX =(/.,{)'">'J )]= -rn+1 1 Yl -'Y>-1 --'1 'l-1 

(16) 
~ -P[x = X p_ X :: X ,P. ... .e X :: X )x = u j) ... .J}_ X -= (./ }= 

-'YVl+1 1"1'-'W1+2 11 , -m .. "" 'I?-,.,,., ..11"< "l'-......,,,.,..,.,_1 .;Tl 

{ 
p {x "' X. \ X = L.I j)_ .. • 0, X - IA } if X - U 

-'h'l+'YI 'YVl--t'YI -'YYl-t-1 J2\ ,.,,_'YY14-"t1-1-..J"t'1 <._i.;Ji.,+1 

= fori-l..-'>1-1, 
o otherwise. 

We note that this probability does not depend on m so our 

Markov-chain is stationary, and conclude from (15), that the 

last state given determines the transitionprobabilities to any 

future states. 

Now for m 2:: o 

X }-'Wl+'l'l -

( 17) 

fv<:> fcori _,\(C+X S +---+X S ) - { ) e ....,, ... 2. .....,,.,..,. "VI-J--t-"r'l "hi.,...., _ . .. 1_x + 
'»1.+1'1+1 

O- 0 - - _ ,\(C+ X S + - · • + X g ~~ 
X (1-e ,.,.,,.:i, m+:I. .,.,., ....... .,., .. ..., dB(s \ dB( )-

+ .,,.,.,...,, ... 1 'WI+%./... s..,,,,+"1 -
= X +(1-1X ) e.-AC Jx.,,.,,2.·>···+X.,,,.,,..,,, 

'l'l1+'Vl+1 'Yn+'YJ+1 

where 

co 

(18) "( f _)5 
_j def e dB(.s). 

0-
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Our Markov-chain is irreducible and aperiodic, for every 

state can be reached from every other state in M steps as well 

as in 'Yl+-1 steps with positive probability. Therefore all 

states belong to the same class and because there are only 

a finite number of states they must all bE, ergodic. This means 

that tht; absolute probabilitic:s c/'Yn! ( x 1 , ... , x,,,) of finding 
t , t O 

' ' ( ) t t' th ' t ' h ne svs em u1 s cate x :x a ne 'YVI ins c ion ave u -1 ) ... ., 'Y) 

a (positive) limit for m....,,oo • If 

( 19) 

then the a(x1 ., ... , x,,,,,) 
of equations 

(20) 

are the unique solution of the s tern 

where Pf x 1 , . ., x,,, /1f1 , . , } denotes the transj_tionprobabi-

lity from the stz1te ( c\,. __ 0 ) to the next stc1te (x1 , . .. , x,,,,) 
and which satisfies 

(21) 

Substituting (17) in (20) we have 

which is sati fied by 

(23) 

where 

( 24) 

a(x, . , 
i 

X 

and A is a constant. 

X-1 

.) = A 7T 
j=O 
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From (21) WG have 

(25) A - 1 = > ft 1 
(~ -r e » c. 'fj) = 

(:x~,· .. ,x'l'l) j=o 

We note that a(x1 , •. . , x 11 ) is a symmetric function of 

3. Calcul2tion of P f 1: ::::': r} 
Let 

and P[w ::s w-}. 

( 26) 

( 27) 

and 

(28) 

( 29) 

(30) 

'11-1 

l d...d C + 21 X . 5 .• 
-"'YV1 1 -'YYl-+t. -'l'i1+(.. 

From the definition of r and w we have -'m -'111 

'V) 

r =c-1--Zx 
-,,.,., 1 -'h'l+L 

'/.. - t -.,,.,, 
0 

Therefore 

== 

if 

otherwise. 

X . 5 . .Sr}= 
-'Y)-1+(., -'Y)"'t+L 

BecausG thE 5. .,,,'1+;. are independent of the 

P{c+.E.x .s .::::.r):J.x .=f.}= 
-f - "W1 + (... - '"Yn-t (... i - 'Vl-1..f.- I,.. 

i 'l') 

=-P'c+2i- S_'.:':1"/2i.x =/l-}= 1 i -<.. i -'Yl1+c 

f:. 
::: p { C- -t ~ ~~ '.:= r 1., 

- t > 0., 

:i::: . 
- 'l'l1+L-

J we have 



- 9 -

where ~ 1 ., .. -~ ~* are indepEndently distributedJ each with 

distributionfunction B(s) . Therefore 

(31) 

and 

(32) 

(33) 

and 

( 34) 

where all 1!- are either O or 1 and 
" 

( 35) 

and the .?. 1 ~ ... , 2 'VJ are independent stochastic variables, each 

with distributionfunction B ( s) and each of them independent 

of Yi" ... .., '.:l!'Vl J then 

(36) P [ rtt1 ~ r} = P [ !: s y,} . 

From (31) and (36) we have at once for every nonnegative~ 

( 37) 

In much the same way one can obtain the limiting distri-

bution of i.v- • For w~o ~,..,., we have 
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= P[z _ts'W?. 
-'l'Yl - J 

and so 

if 

( 40) d.eff r-f 
'1Af= 

,- 0 

if 3; -t. > 0 

otherwise 

and for every nonnegative { 

(41) 

Of course w- and z. are closely connected. In fact 

( 42) 

Q 

from which Wb have 

(43) 

4. Approximation for large~ 

If we want to compute l ~ for large 'VJ i we can do so by 

making use of (43). First we introduce 

( 4 4 ) I° ,i e f c '.!::1 =- _ _ _ = c ~ 'YI 

from which by (26) 

( 45) C ~ := C +- ( 'l'l - 1) f' t ~ .) 
and after some calculations 



(46) 

( 4 7) 

- 11 -

GO 

J - ✓''l.d.Pf } e 2'_:::: z = 1 - P· 
0 

All we need to find from (43) is p 

P =I~ v-1 a(~j. - -, v'\'1) = 
,~~, --_)V"tl) 

= A ~ 1 (rn/) 77- {-11- e ,,\cJ--:J) =· 
" - J= 0 

A 2±. k (;) ft 1 
~1+ e ,,le fj) 

'Y) L) J= 0 

which is quite a Job if~ is not small. 

where from (44) 

Ina second paper we Ehall proveJ that if we replace our 

orig ino 1 ~ by ~ 'Y) __ where 

(48) 

I 

and B ( s) 

( 49) 

-Pfs :::::s} --,, 
' __ B ('ns) 

has finite first and second moment, then 

'Vl ➔ uo 

- ), ''1 
p = 1- e 

where~ is the onl~ positive root of 

( 50) 

and 

(51) 

The truth of this statement can be gathered from the 

following considerations. From the above conditions it follows 

that t converges almost surely to a constant if n tends to 

infinityJ sri let 

( 52) d.e. f ;-'7_ c= u S. ,C.:,in 
,.,,1-) CO 

. .,~, ... ~,, . 
, A-,/A>,A-c 
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Now x. is the time: needed to return to a machine J i_n the 

stationary situation. If we may regard this~ as a constant~ 3 

then the probability of finding a machine stopped upon return­

ing to it, is given by 

(53) 

so we may Gxpect 

(54) -tm P==1-e. 
- .,\ "2 

'Yl ➔ OO 

and thus from ( 45) 

( 55) '( _,\11) riz=c.+b 1_e J 

which is equation ( 50 ). 

( 56) /; 
'll 

If == E V . ., 
-'YI 1 -~ 

then we have for n tending to infinity 

( 57) IV J { _-e __ c_x_i~_l 
() \fur-- co 

cl.x 

if 

(58) 

( 59) 

(60) 2.. - ( -) (J = 1\1.l- 1-l 

1-A b1(1-7:} 

and 

(61) 

where 

( 62) 
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