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1. Introduction 

Given a set of n points, numbered 1, ... ,n, and a n x n 

matrix MJ with elements m, ., satisfying 
lJ 

( 1 . 1) m. = m 00 ( i I= jL lj Jl 
( 1 . 2) m .. = 0 ll J 

( 1 . 3) for each i m. I= 0 for at least one J; and lj 
( 1 . 4) O < m. < co. ·- ij 

The set of points and the matrix M can be interpreted as 

a finite multigraph (cf. C. BERGE (1958), D. KOENIG (1936)), 
where the number of joins between point i and j is equal to 

m ... If rrL O = 0, this means that there is no join between i and 
l J l J 

j. Assumption (1.2) states that there are no loops. Assumption 

(1,3) implies that no point is isolated. 

From then points two samples are taken. We shall consider 

two cases. 

Case I 11 non free sampling": from the points 1, ... ,n r 1 
and r 2 points are chosen at random without replacement 

(r 1+r2 ~n). The r 1 points will be denoted as black (B) points, 

the r 2 points as white (W) ones, while finally the n-r 1-r2 
remaining points are the red (R) ones. 

Case II 11 free sampling 11 : n independent trials are performed, 

each trial resulting in the e~ent B with probability p 1 , in the 

event¼ with probability p 2 , and in the event R with 

probability 1-p1 -p2 . Point number i is alotted the colour 

indicated by the outcome of the i-th trial. 

Consider the random variables xij and yij (i,j = 1, ... ,nL 

defined by 

2S.ii = 0 spr o, 
yii = 0 spr o, 

and for i I j 

1 if point i and j are both black 
x. = : -ij 0 if not. 

t 
1 if point i is black and j is white, or 

point i is v1hi te and j is black, 
y .. = -lJ 0 if not, 
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~ 

( L 5) X = L m. x. 
lJ lj -lj9 

( 1 . 6) -;f_ = I: 
j :1.; 4 • lJ - _L (_ 

~e shall also consider a more general situation. Let be given 

a set of random variables z. , , ·1°1here z .. = 0 snr o 
-l J ' -ll ; 

vvhile for i cf. j z .. is either 
-lJ 

( L 7) z = '> m. . z .. 
<-;-:- lJ -lJ, 

C j 

0 or 1. Define 

In the following we shall give results on the stochastic 

proporties of x 1 ~and~- The proofs of these results will be 

given in a forthcoJing thesis. 

P.A.P. (1948) considers a 11 statistical 11 equivalent 

to our graph form .. = 0 or 1, re the points are chosen by 
~ - lJ 

11 free 11 and nnon free n sampling. Fie gives for both cases the first 

and second moments of the nunber of black-b ck joins (thus 

for x) and the third and fourth u10ment for tbe case of fre2 

sampling. He proves the a otic norr:;al uf X 2 (.Cree sarnplit7f 

for a rectangular twodir:1ensional lattice 1 ere there are joins 

(cf. also bet1veen neighbouring points in the direction of bo axj_s 

( 'I 9 4 7) ). 

There exists a lar number of ,ers on the subject by 

JHNA IYER ( 194-8-1953), most of them in an extre□ely-hard-

to-get journal, viz. t Journal of Indian Society r i-

cultural Statistics. As far as e are a\.are 1 

deals with rectaniular lattices 1 re nei b 

joined in the direction of both axis, but also di 

considered in a number of his pa rs. The results of 

only 

,Joints are 

nal joins are 

are i-:10stly on the first four moments or cu.lttLmts, and statements 

about as 0 t i C DO E'la l it y .. 

A re T)Ort BI _j =21L and van _ _, contains a er of 

ex1ct results for rect 

present re~ort is an out~ro 

lattices (non rre2 s ing). 'I'he 

of this last r 9 v1gich aro.:::e 

from a study of the ibution of a statistic, obtained in a 

psychological test. 

Some older Pai-:iers on the subject are by 11o TOilD ( 194-0) and 

(1947), 
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3, Some graphtheoretical notions 

Consider a set S of points and a subset U of the set of all 

joins between these points. The combination (S,U) is usually 

called a graph. For a detailed treatment of theory of graphs, we 

refer to D. KOENIG (1936) and C. BERGE (1958), 
For our purpose we use the word 11 graph 11 to denote a set of 

l{ oriented joins, labelled J '1, ... , Jl{' between f ( 2;£ f! ~ 2k) 

points, such that no points are isolated (are not connected to 

at least one other point), and loops do not occur. Multiple 

joins are admitted, 

A point to which Join J. is connected will be called the 
l 

second point of J. if the orientation of the join is towards 
l 

the point; if not, it will be called the first point of Ji, 

To each graph there corresponds a symmetrical 2k x 2k 

matrix A, consisting of k2 2 x 2 block-matrices A .. ( i, j = lJ 
1 , .. , , k) , with e 1 e men ts 

for ,,u,\ = 1,2 

a, . \ = 0, 
l ;U.., l A , 

and for i I j 1 if the /u. -th point of J. coincides i with the ), -th point of Jj, 

0 if not 

All graphs having the same matrix A are considered to be 

equivalent, E.g. both 

have as matrix 

and are therefore equivalent. 

The k x k matrix with elements 
~ 2. 

b .. = L J Q. 1·\ 
l J /·'·'J_ ~ l,J-'-! h 

will be called the configurationmatrix, 

Consider two graphs a1 and G2 , each based on f points and 

k (labelled and oriented) joins. If G1 and G2 are not identical, 

but a permutationmatrix P exists such that for the configuration

matrices B1 and B2 the relation 
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holds 9 v7e shall say that G1 and G2 have the same _confi;,!;r:ration. 

A graph G = (S,U) is called connected if frnm every point 

iES one can reach any other point of S by travelling alon 0 the 

joins of the set U,neglecting the orientation of the joins. A 

graph which is not connected, can be decomnosed in a number of 

connected components. This decomposition is unique (cf. D.KbITIG, 
1936 1 p.15). ,\. configuration-~matrix of a not connected graph (if 

necessary after :[)remultiplication with a }Jernmtatiornnatrix P 5 

and ~oostmul tiplication with P\.) is a logical sui11 of the configu

ration-matrices of each of the connected components. 

A connected graph with k joins sat most k + 1 points. It 

has at least two points ~or~ satisfying 

2 :5. J. ~ k+ 1 

finitely 1 say qll , distinct confiG,urations e::ists corres·oon-

din[c; to connected ohs based on k joins and .:. points. 

C~ .. 1.j 1 ( ) Let ,1 oe the .,Z-th one d....= 1,., •• 5 q 1 • 

T f<,f.n f } ,{ 
he conii0uration o.· a graph ·· connected components 

( 1-; ~ [ff can nov✓ be indicated sy;11bolically by 

r (<t:J 
if the i - th connected comporn::;nt has a configuration "-k..i.,t!.;, , 

If amon _ _, the connected cowponents ,r have the scule config1.1ratio oj 

1.ve 1:1ay cclso V✓ ri te 

as the s ol for e configurc.,tion of th2 gra1Jh" 

;,1eo.ns of the operator .,,,1/( ) , o:9erating on the symbol 

of a c iguration \/e indicate the er of distinct 3raphs, 

n;; this co is11.1ration. It can tie 1roved that if 

) 
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The calculation 
relations, 

-oroceeds 

A ,g@ner,:tl-expression :for the moments of z ............... O~_ .. __.._. ___ ..,.__ ______ ~~---·~-..,,· ..,,,._"",._._,,,..,__...,___v __ .. _______ ,, ______ ,,~---•·---- _ 

of :recur:rence 

In order to calculate the k-th moment of~' we have to 

consider products like 

( 4 0 1 ) 

and 

(4.2) "2 , z, , ,,,,Z• , 
:/Gi. t -1. l 9 '-lk, '_~ 

l,1 1,1 'L,I 2.,'1 ,I ,'l.. 

where t ,, 1 9 , •• 9 ik,2. are, say 9 1 different intecers from the range 

1, , . , , n, 1ro each such products there corres1 onds a graph. Let 

each of the subscri9ts of (4.2) correspond to a point of the 

graph. If two or more subcripts are equal, they correspond tn 

a same point, thus the graph has 1 different points in all. Let 

the first subscript,i_~11 , of z. . corresponds to the first 
· -l.1 J .. 2 J, J, 

point of a join, and the second subscript, i . 2 ) to the second 
J 

point of the same join, ':ie thus obtain a graph vvith k oriented 

joins and 1 points, no one r)oint being isolated. 1·· ,.'8 assume 

that always iji # ij 2 (j=1, ... ,k), thus no loops arise. Let the 

graph corres1Jonc1in; to ( 4. 2) have a configuration 

th2n the f oll0\.1ing a,s ion on the si?.rul taneous distribution 

of the 

As 

r7 

.:::ij (if-j) 

ion A1 

is introduced. 

For each k = 1, ... the exnectation of (4.2) does not depend on 

the ac only on the configuration 

~e refore introCuce the following notation for the expec~atioi 

of' ( 4, 2) " 

( 4, 3) 
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To indicate the su;1 0,r.er a 1Jroduct of k coefficients 

m. . (i. 1 ~ i. 2 ), where exactly 1 out of the 2k subscripts 
l. 1 l . 2 J; J, J, . J, 

are diflerent, and in such a way,~tha~ the graph corresponding to 
tl • d t 1' n • ' • y- C (re.) . t 

1i s pro uc - nas con1 igura i:;ion 
0
c;1 k;,!;:; vve wri e 

if the condition on the subscripts is that in the summation 

i 1 , •• ", ij have to be different,, Summation over i 1 , .•• 9 if extends 

from 1 1 ••• ,11" 

Nov/ one can derive 

( 4 0 4) 

re 
)_11 

confiJurations 1:1i th 

5 The mome~ts of x 

k. = lr and 
l 

"" ./! 

f. = t. 
l 

Here assumption A 1 is satisfied) as 

VJ}~. '2 T' e '=-' 

(l.) 
X. 

C ,) 
m. 

ion over all 

(~e omit the subscri~ on r. and _ 1 ,as no danger of confusion 
' 

aris~s in the sections on!·) 

From (4,4) we have e.g. after sohle simplifications 

E~ "" .lz. (,'l.-t) 
h-(h-1) 



..:. 'Z.. 7 2 
Cf,-,::::- .LJX - ( :8~) 2 

-7- 4 r,i,:;' 2. 
r( r-1) · ( r-2) · ~ n-r) L.. ( L mi . - ~ ) 

= 4 n(n-1)·(n-2)· n-3) ~ · :i -J 

If ~.m .. does not de1Jend on i, the first term of cr2 is equal to 
G lJ -
J 

zero. The third reduced moment and the fourth. unreduced 

moment have been calculated as well. 

b ~ free __ sampling 

( 5. 2) 

so e.g. 

6. The moments of" iL .. 

m .. + 2 D ;;:_ m .. m. 7 ) • 
lJ 1-Jk lJ LC 

Assumption A. is satisfied. In order to calculate 
I 

we first ta~e a point P1 of the i-th connect~d component 

(i=1, ... ,h) as a reference point. Colour Pi ~hite, next all 

points connected b:;· a join to 1Ji are coloured black 1 then all 

points connected to these black points are coloured white. If in 

repeating this 2_1rocedure one arrives c:,t a point vvhich has already 

been given one colour) but should be coloured by the just-mentio

ne d rule in the other colour as well? then i,-;e conclude that the 

i - th conn e ct e d corn pone n t i s ~_c;__t_ ___ qj._,c:.h~o_!l}§J:j:;_J:-...9. . 

If no such situation arises one arrives at a stage 9 where all 
points have be2n allotted a colour, viz ri points are white and 

1. - r. black, \Je then say that the i-th connected component is 
l l 

bichromatic. 

Define 



( 6 0 1) 

a)non-free samuling --··--·---«-·•-·-· __ ,.i:: __ ,. •. . • 

Ey = 2r 1r 2 
ri-Cn::TJ 

2 m. • . . lJ i 
lJ 
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if all connected components of "j_ Cj~'j 
I,. t,,.J r.,. 

are bichromatj_c 

if noto 

(n--l) ! 
11 ! 

U.1.= '[(':[ rri,:_; - ;,'f h\/il.._[ ,'?,/c.2.(·'l2.-1)+ 11-.rt..J'?.,-1) - L{"'-,-'t2.,(t1-1)(lt.z-1)} + 
l j ,, h [n(n-1)(n--2) h(h-,)(h-2.) l'l(n-i)(v,-2.)Cri-3) 

+ Lf ~ hi~ [ .Ji, ft.,_ _ lf./1..2,_{'L,. - I) _ •·'l.,_ ,'t_J/i1 - 1) ..S(- J... "7.-1 rtl, ( l'/. 1 -• I ) ( •1.z. - J) } + 
,) J l>-i(h~I/ nu,-1)(11~ h(n-l)(n-.z) h(h-i)(h-1.)(n· :3) 

·-'t1·cl6 h (-\+·"ell.+ 3) ·--- ·'1./1.2. ( 2.·'t/1.,z, + ,'z.J + ·'-C-z.. + 2.) 
l,2..( h- !)Cl., ( h - 2..)( h - 3) 

b)free_sam:pling 

7 · 1:.~n5~fn~L.!.9~~.!: d..i3. .th.e ... P.2.~~.'1..1 .s!.i:§.!!i.12~.~.i on 
The following theorem can be proved. 

Theorem 7. 1_ 

~ 7 0 1 ) 

s:;,- a 
L m .. = . lJ 
.J 

m 
ai 

m .::... oo 9 a 
ma independent 

all a= 

and if rand n tend to infinity such that 

1 . r 
llll TI = o 9 vvi th O < S < 1 7 
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then in the non-free sampling case the distribution of 

x - Ex 

er 

tends to the standard normal one. Ex and ~2 have been given in section 

If (7.1) is satisfied and n tends to infinity and p tends 

to a lin.i t p:,;: ( 0 < p* <. 1) then in the case of free sampling the 

distribution of 

x - Ex - -
CT 

tends to the standard normal one. 

section 5b. 

been given in 

If (7.1) is satisfied 1 and if r 19 r 2 and n tend to infinity 

such that 

liill r b1 1 ::: 

n I 

lim r 
62 2 ::: 

n 

then the distribution of 

'.! -
:.L.. 

C>· 

l 

tends to the standard norual 

section 6a. 

O< b 1 , 0 ~ 'b2 i 

51+02.(19 

one o 

2 and 6 have bean given in 

If (7.1) is satisfied, and if n tends to infinity and r 1 and 

p2 tend to finit limits p 1* 1 and :i:i2* (O<p1*~ O<p~, p 1* + p2*<')) 
then the distribution of 

. Y. - E;y 

() 

tends to the standard norual one. E;y_ and cl 
section 6b. 

bec:::n given in 

A theorem on the tendency towards the compound POISS dis-

tribution has bean ~roved for z. asymptotic behaviour of x 

and y for both the free and the non-free sampling case can be 

considered as a special case of this theorem. First we introduce 

soiile assumptions. 
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AsSUffiJ?tion _ _P.1_ 

(s~ction 4) is considered to be satisfied. 

~§§:t:1.~QIJ.t i __ cm A 2 

Consider an event [k) 1 
n ~ = , where the subscripts 

of the ~'s correspond 

.l-l 
Consider the event 1-.,, n z .. =1 

-lJ 
, where the configuration is now 

Then 

,r, (/.,) 

+ (__ },. ,:) 
··1+1-t; Jc./-1-'1 

if p ['iJ )C> 

Prz .. _,/Hl 
L -i J - I ,<.. ...1 

This assum-otion is 

Assumption __ A3 

.::.. Pr z . . = 1 t z . 1= 1 ] • . ll-lJ -l -
supnosed to be satisfied fork= 

~ I ~ 

If in a configuration L. &!.:) Iv . C1,.,, , with .'r1 kl. =k ,l,li. =l? a point is 
t-~l ...,(.,l<i. , G,.=- .. -

made to coincide with anoGher one tci which it is not connected 

thus giving rise to a configuration 

-:••-s I 
''ll. th ) i<:..' co 
' - L.- I, 

(? () 
K_;t = -t- - ! . 

then if 
(I) 

3 ,> 0 

also 
c,) tk.l 

3r ... 2. 

If for a confi~uration 
/ ) C'"< .• 
k/! 

1- /,) 
c I c1c1.i l z: ': . . z e.:.::::o 

L k/__, ··-· 
then one can find join~such that if they are removed from 

C k,l o. configuration c1~'- 7 re,Jains i th 
_,._ j -

nov1 state 

ore.n 2. 1 
-I t ' ' ~ . 1 1 ( ~I '7 '; 1.""•8 .0e ~ oe o.eI ine a JY , • , , 

throvgh (1.4) and let assumptions 

'-.,. 0 / 

-i (i,j=1, ... n) 
cJ 

A1i•-~•1, ~: ,3 

satisfies ( 1. 1 ) 
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If n tends to infinity and if for every i 9 j, /t,. 9 A, \Ji th ij'j ,. 

µ, >. and .,hl ,"6 A 

such that 

( 8. 1 ) 

and 

( 8. 2) 

for all k= 

lim Pr z::::: .:::::1 / z 1 =1] =0, 
L-lJ ~A -

lim _,__: z = 2...;. =., 

lim 
' c,, {kJ )- . . CcO 

ELc(cl) Jz ... -z. ,.;'.Jl1,·••9l7 1;Ck, Jm, .. ,.1=0 . k.,~ · - - .--l K+ _,i<.+1 

k+1 
, a~1a all o<., , 

,Z 

(1.;here 2_1c·. =k, [l.=l) for all h= 2., ... , [·-.g2.J, f=3, ... ,2k and all 
i.. 0 ~ l 

k= 2... , 

(8.4) _ t 
"i- m ., 

l i· --1 ½ l.r 
~ il _':J___'i _ _ 

"S- rn ·· <-:- '1 
'J 

and finally 9 

( 8. 5) rn. -< 1.1 for- c.7.ll i and j 9 
lJ 

re - o.oe s not de2c")end on n, then 

oo k ~ ) X f_· C('~) ( 8. 6) L ..... - -~ i- i:::: 
bi k! 

= -1 .) 

which is the moment-gener2tinJ function of the cornnonent POISSON 

distribution. 

If hlij is either O or 1, and if asswrr9tions A 1 , A2 , A3 , A4 , 

are satisfied, to~ether with (8.1), (8.2) 1 2nd (8.J), then: z 

has asy,,1ptoti cally a s distribution 

Assw,1ption (8.2) is s8tisfied e.g. 

i 9 s.1:. cl 

(p 2') \·~!(I / 

El cL'' ' 1,2, ..j 

n m1 is a const~nt indenend~nt of n then (8.2 1 ): 

"fore (8.2) is satisfied. 

of 

there-· 
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First __ s2.ecial_ case ____ of_ __ Theorem {8_._ 1) 

non_free_samplin~ 

If rand n tend to infinity 

such that 
r lim - = 0, n 

(8.7) li1i1 E;?_S = 2~, 0<.)\<oq~ 

( 8 8) l. n(tt.)k,..,., . t.t,) <,1 ai:; 
• 111 ii: L..L. c: ... ~,_ . Ck. k j t,,-, • • • "" ""0 

(J J IC+/> 1 rl 

for each k=2, ... , and all~, 

if moreover 

and finally, 

-1. ~ n, .. 
lim i:.!--~-~ = 

T~--, . I.J 
q 

free_sampling 

If n tends to infinity and p 

tends to zero such that 

lim E x = 2 A, o <A.:: OQ-> 

1 . LK+l l . . (ti) (1} (k) 
lffi tJ LL L ... f,k . C [ l'Vl •.• n, = 0 

* m, 
11 

I> ' Tl> 1<,k-1-1-

f or all k =2, ... and allll<, 

if moreover 

m~< oo h= 1 , • • • ( m~ = 1 ) , 

mij ,o;; ll'If for all i anc j 1 

does not dJpend on n, 

then 

If m .. = 0 or 1 and if as~ui,1ptions (8.7) and (8.8) are satisfied lJ 
·} x has a POISSOIT-distrubi tion vvi th parameter A. 
Assumption ([L 8) is satisfie~0hen 2~ m~j = ri11 independent of i 

and lim ~ m1 =0 J 

Second special __ case ___ of ___ Th2or_e:.1 ..(8 ._2) 

non freJ samnling ~-·-· ---- .. -~~ .. -----~.,/;,;,,. .... ·--
If r 1 ,r2 and n tend to infinity 

such that 
li,n r1 =0 

n 
lim r2 =0, 

n 

(8.9) liEl ~Y. = 2.~' Q<.,~< 0-0 

' 
andi 

free_samJ?ling 
If n tends to infinity and p1 
and p2 tend to zero, such that 

( 8. 1 ()) lii'll Elc,C.l) J J•) ... .... ?) ZL. . . : ck(~) J ni'~ .. ,;.k> = 0 
1<.,k-1-1 - ?1. '-;,···~ 1,,k.-1-1-' ,K-1-1 

for all k=2, ... and all , 

and if 
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lim ~ - 2 ... _, - I 

and finally? 
m .. < M, for all i and j , where Mis indenendent 

lJ 
Of TI 7 

then 

s,:, k: 
t Z 1 .. "'7 (1 ef)k L Ti lTll _0 2 , = 
K=1 "'· -

-1. 

If assumptions (8.9) anc1 (8.10) are satisfied 1 and if m .. is 
o. lJ 

either O or 1 then ;a; d has 2sy1.,1~,totically)····:?0IS ~ON--distribution 

vii th :parameter,~ . 

Assumption (8.10) is satisfied v1hen 2_ m .. = 
j lJ 

independent 

of i and 
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