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1. Introduction

-0 { t <o, It is composed of fibres, which are cylinders with their axes

parallel to the t - axis. The head of a fibre isg its left endpoint on the

t -axig, the tail its right endpoint. Fibre heads are distributed along the
7 (& & 3

. . . P N\
t - axis according to a Poisson - process with parameter x(t), where A (%)

Tinite interval and 0 < A(t) < n for all %

=

is Lebesgue - integrable on any
and some finite A . e define such a process in the following way :

. . . . . thoL .
Regarding the t - axis as composed of intervals, of which the j interval isg

(3,3 +1} (oven on the left, closed on the right), where j runs through the

. . e - . . .th
integers, the distribution of the number ;j of heads falling in the j
interval ie given by
T
N A
(1.1) Plr, =r{ =e J =i for r > 0
&3 1 ke
with
def ha
(1.2) A, = / V() dt.
J Ses
o
- . th .., , N . .
The head of the k fibre (u = 1y 24 600y IS 'Ej =T 4‘1) having its
. .th | . . -
head in the J interval lieg in . ﬁj .. 5 Where under the condition
zj = r the 1%, 1,coos‘jj L, Are indenendently distributed random variables
[Sa] J 9 -
with the common distribtution function Kj(t"9 with
| 0 for bS] )
| . :
. def _. ) jo -1 ] R . .
(1.%) AAj(t) == }{iﬁ LSt = < by {oa(u)du for j <t < i+,
l 1 for g+ 1 <t .
The «33 . For different intervals on the t - axis are mutually independent.
9“‘..
The length x (> 0) and cross - section vy (> 0) of a fibre have a

< x;, ¥y vl . The vectors

independent and indevpendent

of the location of the fibre on A realization of the yarn is a

2

t A
stepfunction;vhichcan be talen continuous from the right. The length of the

k fibre having its he=d in the J interval 1 ; 1its cross - section

s X,
~Js
3 .
=Jsk
Object of this paper is the study of random variables like ~9{to) and
X(to,to~+hf ; which denotn the cross - section of the yarn at to and the

volume of yarn in the interval (to, to+<h] respectively (with to arbitrary

and h > 0),




2. Terpstra's approach

In this section we assume that 3(x09uﬁ = 1 for some %, {Cooy d.e,
the fibres have length < X with probability 1. Turthermore we take
AMt) =X >0, i.e. we consider a stationary Poisson - process (this restric-

tion need not be made).
o ite(te)

In order to derive ¢ e ; we first compute
Aq - iT'C(t) N
(2.1) 2 (Titis, 1) =l T [als, s 41) = 11,

where ,g(sgs-+1) denotes the number of heads of fibres in the interval
(SyS‘+1] and s <t -x <t < s+1.
o} 0 o
If t 4dis the coordinate of the head of the one fibre falling in
(SQS‘+1] , then it is known that t is uniformly distributed in this inter-

val. If the fibre has length x = x,; with probability £ the head lies

1
in (to—:x9to]o Hence
(2.2) s (v, 4% 18,1) = = :m{piw £ 4 6% (1 —'E)—Td'ﬂ(x ) -
© («E v by S . 5 ;@ T il 1 ¢ sy /
1‘ iOO /OO -
=1 -3 0 x( - e an(x,y) .
o o
As
_ 2 A1 )H
(2.3) “w’b s+1)=n! =e M (1-11«?-* for n = 0,1, 25 20

and ~9<to) is the sum of the independent contributions to the cross - section
of all fibres with heads in (sgs—kl] , we have (the characteristic function

4
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of a sum of independent random variables being equal to the product of the

characteristic functions of the individual terms)
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= 2 le (71,4 28,1)i e L“mf” =
=0 c- 0] ’ e
1 o] [ co
a4 ¢ i VYN oo N Yy
= exp ~~11{1 - (1 -7 : f z(1 - e yd dL(x;y;); =
O o
00 700
; 1Ty Lo
= exp - : Fox(1 - e ')dh(yyy)o
o
As was to be expected, . (1, tp) does not denend on either s or 1.
J
- . / ~ N T oo . 7/ ~ -
Te may conjecture, that (2.4, =ill also hold if H(x, =) < 1 for a2ll x < «.
.
(Some restriction is needed : we must have [ x <{ e, cf. Breny (1957) and

section 4.)
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Ve remark that from (2.4) it ic evident ©
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has a compound

Poigson -~ distribution, i.:2.
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) and, under the condition =»n = mn, the L. avr~ independently distributed,
5
each with dictribution functior
i B )
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hAnzlogovely to tha derivation of (2.4) one can show that
~y 5 . +7
: . o . dﬂf% A PNPR )
(2.8) (T, s == . e :
o 0
[0 [T .
‘ o ‘ Iy LRy itx .
= exp - Alh +ox + o ~ e I - (h—:x)e f}ﬂ%(rfy) L
w=0
50 [ oo . !
! . 1T 11hv _ -
) (o ety L) HERONE
= K=n
are known for
s, Martindale
) ted consideratione
se to method of derivaiion are to be Tournd ir Fortet (1951)

by apnlying a
expressed as
out to Breny

manner., Let

s ané  m(A)  the number of fibres for

AY n . . e q PR
;s X, ) € A dis satiefied. Then, iT A ~ B = 0, m(A\ and g(B)
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are independent stochastic variables having s Poisson - distribution, the

parameter of ‘E(A> being

« \ RN
(3.1) cm(a) = | a(t)atar(x),
A
v def _ . . A .
where T(x) = rix } ig the distribution function of the length of a
fibre. Tor a general class of real functions ' (t,x) one can define
=l fai="]
(3.2) f i (t,x) dm
. 5 _5{;
where m 1is a stochastic measure cn ¢ , with mn(A) as described, for
every L -measurable set A. Pecause of the independence of the 'Q(A) for

disjoint sets, we shall have something like (use Riemann - sums)

A o 2 a iTE(E, 2 )n(s ) ®
(505) . 2XD 11 ! ,’I (tg'X:) C—‘E_x { ’ TT (:/ e Li9 v N Y
o) - o V= ,L’—-—OO
2 = o ive (%, x ),
:;W\[ TT 400 = (8) 88a7(x))e” + A(t) 2847 (x)e W
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it (7,1 ) at a7 (x)
! V

\ =0 u:—- el =
7 o0 :’DO
Nexp - | J A {1 - dgr(t,x)}atar(x)
e} - 00
or
G ~eo fco o0 oo
(%.4) cexp it | ) t(t,x)dm = exp - / | oa(s)r-dve(s,x)dt ar(x)
Q“' - 00 d - GO
Substitution of
. f 1 for +t < t37 t+x 2 to
(3.5) P(t,x) = ;
I 0 otherwise
now leads to (204,? hecause
e
(%3.6) ~Q<t9> = / drm
‘ d t —x (<t
O QO
In the sgame way
(3.7) Elt,x) = ((t-t )u(t —t/—\tmfomL}%to+h~tﬂ +

- Hx+t~to)ﬂtoaxmt)~(X+t~tomh)\ﬁb+h«x—tﬂ




leads to (2.8),
Stochastic set functions have been discussed by Prékopa (cf. Prékopa

(1956, 1957)).

A, ¥gin formula

th .. . th . . .
The k fibre from the j ~ interval contributes to the cross - section at

S

point t of the axis an amount

def \
VUE { - - - - )1
(4°1> ”C"jg,k<t/ yj91<:“<’“-39k+‘*~j9k t/ L<j§‘39k t') $
where ((x) =1 for x>0 and i(x, =0 for =x < 0, Hence we find for

the total cross - section at »noint t

A [se) =
) et) BT Yy sy

J=

(4.2

We ghall study the random wvariable
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=
N
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under the condition ¢ x < oo, This variable is (as will be shown> well -

defined for any real - valued function T(t), which is of bounded variation

in a closed interval [tqyt?] (with =~co < b, <ty < ), constant for
t < t19 as well as constant for ?~t9 and finally continuous from the
right for all +t. Te assume (this is no restriction) that t, is a negative
integer and t, & positive integer.

With probability 1 g(t) ig a gtepfunction with a finite number of
finite steps in the interval it19t9]9 given ¢ x < o (Breny (1957)). As
ingide [%,,t ] inite steps originate, it is suffi-
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cisnt to prove a finite number of fibr

the point t
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1) e - ) =
<4‘°/"/ L\F—"Jg-f; + ,}f:.jc](— JC»1I/ < OC} /‘
or
1) . Eﬂ . :

ile take PL1 ceo = 0O fTor Ej = 0, here and later.
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(4.5 P max (1. + ¥, - % > 0  for infinitely many jt= 0.
) ) {1,<1f;ﬁ<«,rj <’"‘J9k =i,k 1>"~ T vy 3}

To prove the last relation, it is sufficient to show (by one of the

Borel - Cantelli lemmas) that for the (indeﬂendent)_gyggﬁg

(4°6> i Qgg { max (ﬁj,k +-§j7k - tq).z O}
J 1<k 25
we have
't,]""]
(4.7) L P{A. < oo
J==o0 J
wow, if F(x) &f Pix < %},
) P = PLaRs Pt B B 200
SREES
r . r
[ N 3+
= T - e a0 ] -
A+ .
= 1 - exp - - (4, - K <
- exp - Ay {1 "(t,-t)a j(tH <
J
< T*xj{W - V("Lq -ﬂdf\”j(t) POt - F(t1 3=,
By
as 1-e © <x for x > 0 and leg A Tor each j. Hence, because
o o
T o0 - w) < xdF(x) =% x <o, condition (4.7) is satisfied.
k=1 5

For a stochastic stepfunction g(t) vhich has, with probability 1, a
finite number of finite steps in the interval Lt1?tp]9 the integral in (4.3)
ig defined with probability 1 as the Lebesgue - Stieltjes integral of the rea-

lization c¢(t) and satisfies

;o<
(4.9) up = ce(t)ar(t) =
=) ~£J co . \
- ij k31 T3 J L \tJ,k 3~jsk”t - (jrusk—tﬂ ar(t) =
- .3 %‘j Y [Tt +x. ) - T(t. )]
j::oo k=1 .k T ik 0 Tk =3k’ ’

where the double series has only a finite numbher of nontrivial terms (i.e.

terms unequal O ) with probability 1 .




Lemma. If a , n = 1,2

Pt 1

5 .. are mutually indenendent real - valued

stochastic variables, such that the events An =1{a % 0} satisfy
‘ ' NP . - def .
P;_Ar occurs Tor infinitely many n{ = O0; we have: s = I a_ 1is a stochas-
1 : n=1 1

tic variable for which (for all real 7T )

s~ dts L s diTas,
(4.10) e T = Jlce ™
n="1
Proof : s dis a well - defined stochastic variable, for it is with proba-
) bility 1 the sum of a finite number of independent random variables unequal O
As we have
o jee]
(4.11) {A occurs for infinitely many n} = /U 4
n n=1 m=n 0
and therefore
(o]
; > oo
(4012) ldm Py A = 0
n =0 m=n M
(o]
. 1
to each £ > 0 there exists an ¥ = (e}, for which P{ - AL < oe
: m=MN+1 M
AWE > 1 - ¢ (if _A_»1 denotes the complement of the set Am)o
m - 1 ) m
’ co iTa ~ 0 iTa ' | ita l | iTa
(3) BT e ™ 87T e ®IBTT & ™ 8T o ™ -4
L My n=1 ! | =1 I Yn=1T+1 |
i i
| Ji E }
[e'e} i
- ] { 1van , : .
ﬁ_kf;k i e o 1% a_ £ 0 for at least onen > ¥+ Tree2e,
[ in=1+1 .} n J
~ | .
and hence
2 ™ . o0
e 1tan Gl 1T an
(4.14) Iim T(dk, e = | e ;
N—=0o0 n= n="1
which proves the lemma.
The random variables
. T
def -7 y /
(4.15 z., = T eoxp iry T4 + - T(%
(4.15) -] bon - '“"J'*fkg T,k 15K ‘(“«3“1{)}

are nontrivial, i.c. not coual to 1 =ith nrobability 1, only for J < t_ -~1.

Hence we find from (4.9) by anplying the lemma to

(4.16) a, =

4,
-
s
<+
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=

e




that for all real 7T

(4.17) ¢ exp itw, =

- ¢ JI.*TOO qu exp 31y [Ty o+ 2500 - Tty 00 -
o L5 |
) J~-‘DOEE oxp ny (T e+ Xy ) - Ty )

Turther we have by (1,1), (1.2) and (1.3), using Pubini's theorem to

prove the second eguality,

e
(418) QT exm sog, (e, o+ xy 0 - T, ) -

o . r
=z { J f / exp ity[T(t + x) —T(t)]dKj(t>dH(x9y)} Pir, = rl =
=0 J o}

o) (’ co //‘j + ]
! ] exp ity T(t+ %) ~T(t)]dKj(t)dH(XSy))} =
¢ o} o} J
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= exp - J ," / M)V -expity (T(t+x) - T(4)} ] atan(x,y) «

Because 1 - exp ity (T(t+x) - (%)} | <2 and T(t+x)-T(%) =0

for t < tq—-x and t 2't29 we have
roo
(4.19) [ |1 - exp ity {T(t + x) - T(t)}] at < 2{x + (t, - t,i)}
- O
and 30, becaune
[/co {” <o /"00 . B . .
(4.20) }* | | T-expity{n(t+x) -~ 7()}] atdi(x,y) < 2{3;3;&(1:0—1:1)}( o,
g 8 oo -

we are allowed to apply Fubiniis theorem once again. Combining (4.17) and

(4.18) we find our main formula

(4.21) g/exp iTEq: =




The particular cages

(4.22) T(t) = ¢(t - to)s
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(t-to) Wit -t ) - (% -t b t(t-t_ ~-h),

/ 0 o]
. show, that both (2.4) and (2.7) are satisfied for { x < . 1In fact a
generalization of these results (with A (t) instecad of A !} has been obtained.
“ Relation (4.21) may he used to obtain interesting formulae for other
stochastic variables besides Q(t@) and ( 4—h/
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