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O. Introduction 

In many fields of human activity decisions are made and still will 

be made. 

The number of decision problems which are solved by the aid of 

mathematics is increasing. Many physical decision problems seem to be 

translatable into mathematical problems. 

It is well known that mathematical models of physical situations 

are often useful for describing the underlying structure. Such models 

are also in use in situations where decisions have to be made. Based 

on these models and formulated in the corresponding terminology the 

mathematical versions of these physical decision problems are defined, 

But though the mathematical decision problem is a purely mathematical 

problem and can be formulated by using only mathematical concepts, 

still in this study it will always be considered as a mathematical 

abstraction of a physical decision prob-lem. For this reason we shall 

develop a terminology out of words reminiscent of physical concepts 

but with a mathematical interpretation only. 

In this paper we will give an account of a study in stochastic 

ro-stage decision problems. 

In an oo-stage decision problem decisions have to be made at 

different points of time; decisions which in general are related and 

can not be made independently. 

By analysing some mathematicaL models of physical stochastic oo­

stage decision problems, we shall investigate their common characteris­

tics. From these we shall derive some basic properties, which will be 

attributed to the common mathematical model. 

Next we shall review some known methods for solving special 

decision problems. 

In the third section these methods will be generalized in such 

a way that they apply to a larger class of decision problems. 

The relation between the old methods and the new·one is .the topic of 

the 4th section. 

Finally by means of two applications we shall show how the new 

method works. 

It is not the purpose of this paper to give an exact mathematical 

treatise, but only to give a picture of the mathematical model, the 
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decision problem and its solution. [see for the mathematical aspect [1J] 

1) A common mathematical model 

In physical co-stage decision problems the choice of a decision 

often depends on the state in which the decision has to be made. 

Speaking about a state, we have to specify to what that state refers. 

In the mathematical model we use the concept state of the system. 

In a replacement problem for instance the system may be the mathe­

matical abstraction of a machine, while in an inventory problem the 

system is identified with the inventory or with the inventory and the 

quantities on order. 

Property 1 

In a mathematical model the state of the system is determined by 

N real-valued variables; thus by a point '\f of an N-dimensional 

Cartesian space, 

This N-dimensional Cartesian space will be called the state space :Ji:. 
On analysing the mathematical models we discover that decisions effect 

transitions in the state of the system. For instance, if in a replace­

ment problem one of the state variables is the lifetime of the machine 

in use, then the replacement (decision) of the old machine by a new one 

will change the state of the system in the mathematical model. In an 

inventory problem where the system comprises the quantities on order, a 

new order (certainly) effects the state of the system. 

In addition we observe that frequently the transitions are not of a 

deterministic nature. In a replacement problem e.g. the initial states 

of new machines are not always identical and because the decision maker 

generally draws at random out of a set of new machines, a decision cor­

responds to a random transition in the mathematical model. 

For this reason the following property is attributed to the mathe­

matical model. 

Property 2 

In the common mathematical model a decision is a random transition 

which is defined by the probability distribution of the state into which 

tbe system will be transferred at the moment of the decision. 
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So decisions are defined independently of the state at the moments of 

decision. They only refer to the state into which the system is trans­

ferred. A transition takes no time and consequently the system will be 

in two states at the moment of a decision. 

It is convenient to assume that at each point of time a decision 

is made, but that only a small number of them effects non-degenerate 

transitions. 

In this paper we shall make a distinction between non-degenerate 

decisions and degenerate decisions, By a degenerate decision the system 

is "transferred" with probability 1 into the state it is already in. 

It is obvious that in a finite time interval only a finite number 

of non-degenerate decisions can be made. For this reason the following 

property is attributed to the mathematical model: 

Property 3 

In a finite time interval only a finite number of non-degenerate 

decisions can be made. At each point of time one and only one decision 

will be made, 

Analogous to the state spaceY,, decisions (probability distributions) 

will be represented by points d of a so called decision space D. 

If we restrict ourselves to probability distributions which are 

completely determined by their moments, the space Dis an oo-dimensional 

Cartesian space. 

Because decisions are defined by probability distributions of states 

into which the system is transferred, it follows from the structure of 

many decision problems that in some states certain decisions are not 

feasible. To some extent the decision maker may be restricted in his 

choice of a decision. 

Property 4 

Whether a decision is feasible or not, depends on the state yr of 

the system at the moment of decision only, Next it is stipulated that 

for each state Y, the set of feasible decisions D(Y,-) in Dis a closed set. 

If for an arbitrary time interval, closed on the left no non­

degenerate decisions are planned and the system nevertheless changes its 

state during that interval, it is said to be subjected to a natural 
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process. In other words, if a natural process is present this process 

effects a walk of the system through the state space, 

With respect to the natural process we have: 

Property 5 

In the mathematical model 

(1) in each time interval closed on the left the natural process 

is defined by means of a Stationary Strong Markov Process, 

(2) the random walk corresponding to the natural process is 

continuous from the right in the time parameter and has 

only a finite number of discontinuities in a finite time 

interval. 

It follows from the properties of a Markov process, that it is 

defined for each initial state. Consequently the natural process is 

also defined for each initial state. 

In the mathematical model we have now stipulated what happens 

at the moment of a certain decision, and how the behaviour of the 

system can be. described if in a time interval closed on the left 

only degenerate decisions are made, We have still to state how the 

behaviour of the system is to be fixed if there is a non-degenerate 

decision at the beginning of the time interval considered. 

To this end we introduce the following property: 

Property 6 

In the mathematical model the behaviour of the system in each 

time interval between two non-degenerate decisions is described by 

a natural process. The initial state of that process will be the state 

into which the::_system has been transferred by the decision at the 

beginning of the interval considered, 

As we have stated already, at the moments of a non-degenerate 

decision the state of the system is not uniquely defined. 

Let us introduce a product space 

t+ both congruent to -yr. So we have: 

f' of two spaces {f_ and 

(1.1) 
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The point yr_e- '[r_ fixes the state of the system at the moment of a 

decision before the decision is made, while Y+ ~ 'fr+ fixes the state 

of the system at the same point of time, but after the decision has 

been made. Thus if we use for fixing the state of the system the 

space 'fr' instead of y then this state is again defined unambiguously 

at each point of time. At the moments of a degenerate decision we have: 

(1.2) 

The most important features of physical decision problems are 

losses and gains. It will be no restriction to suppose that only 

losses occur. 

Generally in decision problems two types of losses will be met. 

First, losses which increase or decrease continuously in the course of 

time (e.g. lack of interest or consumption of fuel), and secondly, 

losses which occur at discrete points of time (e.g. sales or repair­

ments). 

With respect to these losses we have: 

Property 7 

For losses not due to decisions the following statements hold: 

a) for each walk of the system in a time interval the losses not 

due to decisions are defined unambiguously. 

b) for each union of disjunct intervals the total losses are the 

sum of the losses incurred in the disjunct time intervals. 

For a while let us enter into the question of how these losses are 

to be defined in the mathematical model. This can be done by means of 

two functions. The first function is a yr_-function which represents 

the losses that will be suffered if the system is in the state 'If_ 

during one time unit. This function could be called "loss density 

function". The second function, which is also a ·yr_-function, fixes 

the losses incurred by the system if it takes on a state y.r_. This 

function could be called a "discrete loss function". 

In [ 1J it will be proved that under certain conditions about 

the loss functions and the natural process, the mathematical model 

possesses this property automatically. 
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Property 8 

If a degenerate decision is made no losses are involved. The 

losses due to non-degenerate decisions are defined and depend only on: 

a) the state lf_ in which the decision is made. 

b) the state f+ into which the system is transferred at the 

moment of the decision. 

From properties 7 and 8 we deduce: 

Statement 1 

In the mathematical model the losses incurred in each time inter­

val are unambiguously fixed by the walk of the system in the space i[t' 
during that time interval. 

The solution of the stochastic co-stage decision problem is giv~n 

in the form of a strategy. 

A strategy dictates a feasible decision at each point of time, on 

the basis of the available information, i.e. 

a) the state '(_ at the moment of decision. 

b) the states f'E Y'' taken on before that point of time. 

It is obvious that, if a strategy is applied, because of the 

extra transitions the natural process is no longer appropriate to 

describe the behaviour of the system. 

Property 9 

In this study we shall restrict ourselves to the class Z of all 
0 

strategies z, which satisfy for each point of time t the following 
0 

properties: 

(I) Even if it has not been applied before t , each strategy z of 
0 

the class dictates feasible decisions from t onwards. 
0 

(II) If a strategy of the class is applied from t onwards then 
0 

the random walk of the sy~tem in Y,' can from that point of 

time be defined with the aid of the available information at 

t • 
0 

(III) For purposes of comparing strategies we introduce a real one-

valued function of the available information and the strategy 

to be applied. For each given information this function is a 

criterion function defined on Z only with the following 
0 

properties: 

a) if for a particular information at t the criterion 
0 

function for strategy z1 takes on a smaller value than 
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for strategy z 2 , then in that situation z 1 is to be 

preferred to z 2 • 

b) if from t onwards the application of two different 
0 

strategies will effect identical random walks in "f'' 
and if one of the strategies is an element of the 

class considered then both strategies belong to that 

class and have equal criterion values, even if the 

informations in the initial states at t are different. 
0 

c) for at least one strategy the criterion function is 

minimal for each information at t • (Such strategies 
0 

are called optimal). 

In general, in one way or another, criterion functions are based 

on the losses to be incurred in the future. Consequently property a) is 

obvious. Property c) implies the existence of a solution of the problem 

and is of course indispensible. Let us consider now property b). If a 

realization of a random walk inf' is given then the losses are fixed 

(statement 1). So strategtes which effect identical random walks in "f' 
are also equal with respect to the losses during these random walks. 

Consequently there is no reason for different appreciations. 

Now we shall prove that optimal decisions can be made by taking 

into account only the state of the system at the moment of decision. 

Let z be an optimal strategy and let us compair two different 
0 

situations. 

In the first situation a system with given information about past 

states is at t in some state 'f . 
0 0 

In the second situation the system starts its random walk in that 

state. 

The two situations are identical except for the pasts of the system. 

Suppose we now apply strategy z from time t onwards in both 
0 0 

situations, but in the second situation on the false assumption that we 

have the same information at t as in the first. 
0 

It can easily be verified that in virtue of properties 4, 6 and 

statement 1 systems in identical states but with different pasts are 

permutable with respect to their pasts. Hence under the false supposition 

mentioned above the behaviour of the system from t onwards can for both 
0 
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situations· be described by one random walk. But if by applying z from 
0 

t onwards in the second situation on the basis of false information 
0 

we still obtain a feasible decision at each point of time, then this 

comes down to our using (unwittingly) a different strategy with refer­

ence to the right information. This strategy will be denoted by z ' • 
0 

It is uniquely determined by strategy z and the false information at 
0 

t. It follows that if in the second situation strategy z 'has been 
0 0 

applied by using the true information at t ~ the same random walk would 
0 

have been found. 

According to point IIIb of property 9 the strategy z ' belongs to 
0 

the class considered and has the same criterion value as z in the first 
0 

situation. 

If the criterion functions in the first and second situations are 

denoted by c1 (z) and c11 (z) respectively then it follows from the 

optimality property of z that we have: 
0 

(1.3) 

Let us apply again strategy z in both situations, but let us now 
0 

proceed as if there were no information given in the first situation. 

Repeating the argument given above we can state that in reality, 

based on true information, a strategy z "is applied in the first 
0 

situation. 

Now the following inequality can be proved: 

(1.'1) 

and consequently we have: 

(1.5) 

From (1,5) it follows that information about states taken on 

before t does not effect a lower value of the criterion function. So 
0 

we can always suppose the system to start its random walk at t. 
0 

For making a decision at t only the state of the system at that 
0 

point of time is relevant. 

Because the properties mentioned in 9 are valid for each point of 

time t 0 and each state -Y,- 0 we can state: 
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Statement 2 

If the class of strategies considered satisfies property 9, then 

there exists a strategy which belongs to the class, is optimal and 

assigns unambiguously to each state 1{ _<.;, 'f_ a feasible decision. 

In other words there exists an optimal strategy that maps the 

state space'(/' into the decision space D. 

So it is no restriction to limit our discussion to strategies 

which map y;, into D. These strategies can be represented by the 

relation: 
d = z (if) (1.6) 

Consequently strategies z of the form (1.6) divide the state spacef{I 

into two ',disjunct sets ,one denoted by A , comprising states in which z 
always non-degenerate decisions will be made, the other consisting 

of the states in which always degenerate decisions will be made. 

In order to avoid difficulties in defining the mathematical 

decision problem we introduce the following property: 

Property 9 (continued) 

(IV) Each strategy of the class assigns unambiguously a feasible 

decision to each state of "f· 

(V) For each strategy of the class the set A will be a closed z 
set. 

(VI) Each strategy of the class dictates in a finite time inter­

val only a finite number of non-degenerate decisions. 

(VII) After each decision the system takes on a state outside Az' 

According to statement 2, point IV is no essential restriction. 

The reason for introducing point Vis shown by the following: 

Let the system enter A~ along a continuous path. Now if A~ is a 

non-closed set, there may be a point of time at which the system is 

still outside Az while for each later moment the system will have 

been in AZ for some positive time. In that case the moment and the 

state in which a decision is made cannot be defined. 

Points VI and VII of property 9 are in conformity with property 3. 

Let us consider now the sequence of states at the moments of a 
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non-degenerate decision. These states are all elements of Az. In (1] 
it will be proved that this sequence can be described by a stationary 

Markov process with a discrete time parameter. This process in A~ 

plays a prominent part in the following discussions. 

In this study the set Az will be called the intervention set. 

Property 9 (continued) 

(VIII) For each strategy of the class the Markov process in 

the set Az has an absolute stationary probability 

distribution, 

Our discussion of the common mathematical model will now be 

interrupted. It will be continued in section 3, 

First we shall consider some techniques, which are already 

available and which have proved to be useful. 
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2) "Dynamic Programming" and "Markovian Decision processes" 

There exists a large class of problems, which can be solved 

with the aid of a technique, called "Dynamic Programming". 

In a dynamic programming version of a stochastic oo-stage 

decision problem non-degenerate decisions can only be made at 

equidistant points of time. These points, denoted by ek, divide 

the time axis into elementary time-intervals of equal length. 

Fixing the total losses suffered in some time period, first 

the losses incurred in the composing elementary time-intervals are 

calculated. In order to assign costs in a unique way to time­

intervals we stipulate the following: The costs which are involved 

in a decision dk at ek and those costs at ek+l' which are not due 

to the decision dk+l are included in the loss corresponding to the 

k th interval. 

The properties attributed to the mathematical model of the 

dynamic programming problem are more or less identical to those 

which we have attributed in section 1 or shall attribute to the 

mathematical model in section 3. In order to simplify the dis­

cussion, some of them will be reformulated here. It is assumed 

that the properties 1,2,3 and 4 of section 1 also apply in this 

section. 

In addition we have: 

Property 2.1 

Independent of the position of an elementary time-interval 

for each state I G. y and decision d E. D(I) at the beginning of the 

interval concerned the expected loss h(I,d), assigned to the in­

terval, is defined. 

Property 2.2 

If Ik is the state of the system at the beginning of the kth 

interval and if dk is the decision made at that point of time then 

the probability distribution of !k+l depends on Ik and dk but 

neither on k nor on states and decisions taken on or made before 

Ik. (Markov property). 
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In an co-stage dynamic programming problem losses are discounted. 

If the discounted expected value of the losses assigned to the inter­

val (ek+j'ek+j+l) has to be calculated with respect to ek then these 

losses will be multiplied by a factor O(j, where CC satisfies: 

(2.1) 

Property 2.3 

If Ik is the state of the system at the beginning of the kth 

time-interval and if z is the strategy applied then for each k and 

for each state Ik the expected value of the total discounted costs 

from ek onwards can be given by a function C(z;Ik). 

It follows now from the definition of C(z;Ik) that we have: 

(2.2) 

If decisions are made in order to minimize the expected value 

of the total discounted loss to be incurred then the function C(z;I1 ) 

will be the criterion function for the optimal strategy. 

It is easily verified that the optimal strategy z has to satisfy 
0 

the equation: 

C(z ·I)= 
o' 1 

(2.3) 

The solution of the stochastic co-stage decision problem will 

be obtained by solving (2.3). A detailed discussion of the existence 

and uniqueness of the solution can be found in [ 2] 

One of the iteration procedures which may yield the optimal 

strategy works as follows. 

Let z{l) be an initial guess of the optimal strategy z 0 , then 

the i th cycle of the iteration procedure is described by 

First step 
th 

Let z. be the strategy obtained at the end of the (1-1) cycle. 
]. 

With the aid of (2,2) the I-function C(z. ;I) can be defined, 
]. 

Second step 

For each state r1 minimize with respect to d ~ D(I1 ) the d-function: 
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(2 .4) 

If for a particular state I 1 : 

(2.5) 

assign to I 1 the decision zi (I1). 

From this minimalization procedure a new relation between 

states and decisions can be derived. 

This relation is the new strategy zi+l' 

.th 
End of the 1 cycle 

Provided that the assumptions made are also true for the 

strategies { zi;i=2, •.• J and provided that this sequence of 

strategies converges, the wanted strategy may be obtained. 

For proofs the reader is still referred to [ 2]. 

Very often problems of this type can also be solved with the 

aid of a method, called "Markovian Decision processes". This 

technique is closely related to "Dynamic Programming". 

In view of its generalization in section 3 the method will 

be presented in a somewhat unusual way. 

For that purpose the following property is attributed to the 

mathematical model. 

Property :2. 4, 

If a strategy z of a certain class of strategies is applied 

then the sequence of states !k at the times ek (k=l, ... ) can be 

described by a stationary Markov process with discrete time para­

meter, having absolute stationary probability distributions and 

no cyclidally moving sets.*) 

~ If I1 is the initial state of this Markov process and if z is 
the strategy applied, then the absolute stationary probability 
distribution mentioned above is called an (z;I1 )-probability 
distribution. 
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If I 1 is the initial state of the system and if z is the 

strategy applied, then the expected value of the loss to be assigned 

to a time interval in the steady state is given by: 

where the expected value is taken with respect to the (z;I1 )­

probability distribution. 

(2.6) 

If the optimal strategy z exists it will be obvious, that for 
0 

this strategy the z-function r(z;I1 ) has to be minimal. 

The oo-stage Markovian Decision vroblem is solved by looking 

at a related problem. 

If z is the optimal strategy, let us suppose that the decision 
0 

maker receives for each time interval a premium r(z ;I) for meeting 
0 0 

the expenses. 

If I 1 is the initial state at e1 , if r(z0 ;I0 ) is the promised 

premium and if the decision maker will apply strategy z, let 

C (z;I1 ;I) be the expected value of the amount that the decision 
n o 

maker has to pay out of his own pocket inn elementary time intervals. 

It follows now from the definition of C (z;I1 ;I) that we have: n o 

cn(z;I1 ;I 0 ) = h(I1 ;z(I1 )) - r(z0 ;I0 ) + i [ Cn-l (z;!2 ;I 0 )II1 ;z(I1)] 

(2.7) 

C (z;I1 ;I) satisfies n o 
under certain conditions: 

C(z;I1 ;I0 ) = h(I1 ;z(I1 )) - r(z 0 ;I0 ) + C [c(z;!2 ;I0 )jI1 ;z(I1 )] 

(2.8) 

Now it is easily verified that if 

we have: 

C(z;I1 ;I0 ) = lim 
n--,, oo 

C (z; 11 ; I ) = oo • 
n o 

(2. 9) 

If the expected value of C(z ;I1 ;I) is taken with respect to 
0 0 

the (z ; I )-probability distribution then we find: 
0 0 
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'£ C (z · I · I ) = 0 o'-1' o 
(2 .10) 

It is obvious now that for each I1 the optimal strategy z0 has 

to satisfy the relations: 

(I) (2 .11) 

where l is distributed according to the probability 

distribution d. 

{2.12) 

With the aid of these two properties an iteration procedure can 

be developed which may yield the optimal strategy z . 
0 

Let z(l) be an initial guess of the optimal strategy 

cycle of the iteration procedure is described as follows: 

First step 

z • 
0 

The i th 

Let z. be the strategy obtained at the end of the (i-l) th cycle. 
l 

With the aid of (2.6) the I -function r(z. ;I) can be defined. 
0 l 0 

Second step 

For each I1 minimize with respect to D(I1 ) the ct-function: 

(2.13) 

If for a particular state I 1 

(2.14) 

minimize instead of (2.13) the ct-function: 

(2 .15) 

Moreover, if 

(2.16) 
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assign to I 1 the decision zi 0 1 ) . 

From this minimalization procedure a new relation between states 

and decisions can be derived. 

This relation is the new strategy z. 1 . 
1+ 

End of the i th cycle 

If all the assumptions needed are valid for z. (i=2,3, .•• ) and 
l 

if these strategies converge then the optimal strategy may be obtained. 

For the case that the number of possible states is finite the reader 

is referred to [ 3 J . 
Finally we like to remark that there exists a second type of 

Markovian Decision problems. In these problems the decision maker 

can make non-degenerate decisions only if the system changes its 

state. 

In these problems the following properties are attributed to the 

mathematical model. 

Property 2.5 

If the strategy z is applied then the probability of a transition 

in a period of length dt from state I into a state of a Borel set B 

inyis defined and given by: 

fz(B;I)dt • (2 .1 7) 

The probability of two or more transitions in such a period is 

smaller of magnitude than (dt) 2 . 

Property 2 • 6 

If the strategy z is applied and if the system is during a period 

of length d t in the state I then the losses incurred are defined and 

given by: 

l(I;z)dt . (2.18) 

The costs, which are involved in a transition from state I into 

I' amount to 

l(I';I;z) 

In [2] and [ 3 J it is shown that problems of this type can be 

solved in an analogical way as described above. 
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3) Generalized Markovian Decision processes 

In many a stochastic oo-stage decision problem one of the methods 

discussed in section 2 can be used. 

However, if the decision maker is free in choosing his moment of 

decision it will not always be optimal to restrict himself to equi­

distant points of time. On the other hand in a large number of pro­

blems property (2.5) will not be satisfied. For instance such a 

situation can occur in inventory problems with state variables, 

denoting tae time elapsed since the last ordering point. 

In those inventory problems the state of the system changes 

continuously. Consequently the probability of having two or more 

transitions in a period of length dt will be equal to 1. 

The discussion in this section is entirely based on the concepts 

defined and the properties attributed to the mathematical model in 

section 1. 

In that section we have already stated that to each strategy z 

of the form (1.4) a set of states A is assigned. As soon as the z 
system takes on a state in the set A a decision will be made in z 
accordance with (1.4). 

Let us suppose that Z is a class of strategies satisfying the 
0 

properties given in property 9 of section 1 and by: 

Property 9 (continued) 

IX) The intersection of all sets Az 

is not empty. 

(zt: Z ) , denoted by A , 
0 0 

The set A will be called the stopping set. The reason why will 
0 

be clear very soon. 

Let us consider a sequence of random walks { ~} (n=0,1,. ·) 
inf with the following properties: 

a) The initial state of each random walk w is given by ,L • 
-n T 

b) During the random walk w -n 
n non-degenerate decisions will 

be made in complete agreement with a given strategy z. 
th 

c) After then non-degenerate decision no new non-degenerate 

decision will be made; on the contrary the walk will be ended 

as soon as a state in A has been taken on. 
0 
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According to these properties, the random walk w starts in w 
-o T 

and will be ended as soon as a state in A has been taken on. 
0 

Property 9 (continued) 

X) For each initial state f and for each applied strategy z~ Z0 

the expected loss to be incurred during the random walk w 
-n 

(n=0,1,2, .. ), denoted by kn Cf ;z), is defined and for each 

finite n uniformly bounded inf· 

XI) For each initial state f and for each applied strategy ze,Z0 

the expected duration of the random walk ~n' denoted by tn(f;z), 

is defined and for each finite n uniformly bounded inf with a 

positive underbound. 

The expected loss, assigned tow, includes the loss to be in--n 
curred at the end of the walk and the loss due to the decision made 

in the initial state f. The loss made in the initial state, but not 

due to the decision is excluded. 

Let consider two random walks w d and in y;-, both us now w 
-o 

starting in 't· If dis a non-degenerate decision then the system in 
d 

w will just at the beginning of the walk be transferred from the 

initial state tj into a new state in accordance with decision d. If 

dis a degenerate decision then the system inf will be "transferred" 

f· into 

Anyhow, after the decision dis made, the system in ~d will be 

subjected to the natural process with the "transferred state" as 

initial state. The random walk wd will be ended as soon as a state in 

A is taken on. In other words,after decision dis made in the initial 
o d 

state ,b, the remaining part of w is a w -walk from the "transferred 
T -o 

state". 

As we know, the system in the random walk w is subjected to a 
-o 

natural process with initial state f and will also be stopped as soon 

as the system takes on a state- in A. 
0 

If the decision din the initial state of wd is degenerate, then 

it follows from the definitions of the walks considered, that they are 

identical. 
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A function k(f',d) can now be defined as being the difference 
. d 

in expected losses between the '!!. - and the ~ 0-walk. 

A function t('f ;d) can now be defined as being the difference 

in expected durations between the '!!_d-and the '!!_ 0 - walk. 

From the definitions of k(/';d) and t<f;d) it follows: 

a) If dis degenerate then: 

k(l(;d) = 0 

t(f;d) = 0 

b) If dis non-degenerate then: 

k(f;d) = k1 <y;z) 

t(f';d) = \ <f;z) 
for each z satisfying: 

- k (IP·z) 
0 1 ' 

-t<f'·z) 
0 ' 

(3.1) 

(3. 2) 

(3.3) 

(3.4) 

(3.5) 

Note that in spite of (3.3) and (3.4) the structures of the 

functions k(f;d) and t(_t;d) are independent of any particular 

strategy z. 

For each pair <f,d) they are uniquely defined. 

Now it can be proved that the following relation is true l) 

kn(f;z) = km(f;z) + t, [kn-m(.!m;z) - ko(_!m;z>ff]' 

(3.6) 

th 
where I is the state of the system at the time of them non-

-m 
degenerate decision, 

It follows now from (3.3) and (3.6) that we have: 

kn <f ;z) = k 0 <j' ;z) + -ti [ k/ f ;z) - kj-l <:/;z) J = 

= k 0 (t.f ;z) + .j.. t[ k(_!j;z(_!j))lf ]. (3.7) 
/ J=l 

1) At a first glance this relation seems to be obvious. If only 
~ probability space is used then, because of the fact that 
in I the costs assigned to the alternative random walks 
w -m and w are considered simultaneously, some probabilistic 
-n-m -o 
difficulties have to be conquerred. In proving (3.6) we need 
also the strong Markov property of the natural process (see [11), 
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In the same way we find: 

tn<r;z) = to(ij;;z) +it [t<.!_j;z(.!_j»lr] Q 

7 J=l 
(3. 8) 

The solution of the stochastic oo-stage decision problem will be 

obtained by solving a more complicated decision problem. 

Extension of the problem 

In the state {oat the beginning of the random walk .!n the 

decision maker can also decide to put out to contract the control of 

the system. If he calls in the aid of a controller and if the system 

is during At time uni ts in some state f , then for that period he 

has to pay a fee equal to r(z; />• d t. (Note that the fee depends on 

the state of the system at a particular point of time.) According to 

the contract in return for the fee the hired controller is obliged to 

apply strategy z from the initial state (a and to pay all the· costs, 

which may occur. Furthermore it is agreed that the fee r(z;f) satis­

fies the following property: 

If Yi and / 2 belong to the same simple ergodic set of the z­

process, then we have 2): 

r(z; f1> = r(z; l2> (3. 9) 

In other words,as soon as the system enters a simple ergodic set 

then the fee per unit of time r(z; f> becomes constant. 

Now it follows from (3.9) that, if in fo the controller's aid 

is called in, the expected value of the costs in the steady state per 

unit of time is given by: 

't, [ r (z ;.!_) j f 0 ] (3 .10) 

The expected value in (3.10) is taken with respect to the f 0 -

probability distribution in A . 3 ) 
z 

2) If the strategy z is applied the z-process describes the behaviour 
of the system in 1f'"(thus not only in A!!). Simple ergodic sets can 
not be divided in more than one ergodi~ set. 

3~ The'/ -probability distribution in A~ is the absolute stationary 
probabrlity distribution of the Markov process with discrete time 
parameter in A, that corresponds to /}'. 

Z /0 
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Suppose that the strategy z ought to be applied.Let us consider 

first the situation in which the initial state /o belongs to a 

simple ergodic set of the z-process. 

In accordance with (3. 9) the fee r (z; cf) per unit of time is 
! 

constant and is given by r(z; tf ). 
I 0 

If the decision maker makes decisions in order to minimize the 

expected future costs and if strategy z ought to be applied during 

a random walk ~n with initial state f 0 , then he will take the con­

trol in his own hands if: 

or 

k ( J, ·z) L. r(z· tf )t uk ·z) 
n 10' = ';o njo' 

le ·( f ;z) 
_t_n....,(_f_o_;_z.,...) ~ r ( z ; f o) 

n o 

(3.11) 

(3.12) 

It follows now from (3.7) and (3.8) that (3.12) is equivalent 

with: 

1 
k ( f ;z) + 

1 i.t [k(I_;z(I_))lt] n 0 0 n . -J -J 0 

~ r(z; / 0 ). 
J=l (3.13) 

1 1 £ t [to.;z(I_))\f J t ( I ;z) + n 0 0 n . -J -J 0 
J=l 

Property 9 (continued) 

XII) For each strategy zE.Z the Markov process in A 
0 z 

with discrete 

time parameter. · 

a) satisfies th~ Doeblin condition 
4) 

b) has no cyclically moving sets. 

It can now be proved (see (1]) that for n~oo the left hand 

side of (3.10) converges to: 

t [k<_!;z(!)) l/0 ] 

t [t<_!;z(.!_)) If O 1 · 
where the expected value is taken with respect to the 

probability distribution in A. 
z 

4) See J.L. Doob: Stochastic Processes p.192. 

(3.14) 



-22-

If n))O and if strategy z ought to be applied then the decision 

maker will control the system himself if: 

let 

Let 

t l k (_!; z (_!)) \ f J < r(z; ~) 
~ [t(_!;z(_!)) \ f o] / < 

(3 .15) 

belongs to one of the simple ergodic sets of the z-process, 

from now on be given by: 

us now 

t Lk(_!;z(_!)) \ fo] 

i [t<_!;z(_!» If OJ 
consider the general case and 

r(z; / 0 ) = C [ ~ ( k(_!;z(_!)) i 1J 

. t [ t (_!; z (_!)) I Io] 

(3.16) 

define r(z; tf:,) by: 

lfo] 
/ 0 

(3.17} 

where _!0 is distributed according to the f 0 -probability distribution 

in A . 
z ),, 

In other words, if in J O the controller's aid is called in then 

r(z; f 0 > is equal to the expected value of the costs in the steady 

state per unit of time. 

Property 9 (continued) 

XIII) For each initial state f and for each applied strategy 

z €_ Z the expected value of the fee to be paid to the con-
o * troller during the random walk w, denoted by k <f;z), is -n n 

defined and uniformly bounded in f . 
It is easily verified (cf. 3,9) that, if/ belongs to a simple 

ergodic set, we have: 

* ,/,,, kn(T ;z) = r(z;f )tn(t ;z) (3 ,18) 

Analogous to the function k(f ;z) we can also define the function 
jf- J,, 

k ( l ;z). 

For a random walk-~n with initial state {o the difference in 

expected costs between both types of control is given by: 
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g (z · J ) = k ( 1£ · z) - k~( ,£ · z) 
n ';o n70' nfo' 

(3 .19) 

Now it can be proved with the aid of the points X, XI, XII and 

XIII of property 9 that the limit 

g(z; ,~) = lim 
1 C n-?" 00 

g <z · 1V > 
n '7 o 

exists and can be given by: 

g (z· J> = k (,£ ·z) - k*(;_/,, ·z) + 'Io o 70' o 70' 

+ 2- ~ [k (I . ; z (I .) ) - k-k'-(I . ; z (I .) ) If J . -J -J -J -J 0 
J=l 

(3.20) 

where _!.1 = ii if J 6 A • {o / o z 

If the controller's aid is called in and if two different stra­

tegies z1 and z 2 are considered, which satisfy 

(3.21) 

then for an infinite period of time the difference in expected costs 

between the strategy z1 and the strategy z 2 will be +co. 

If the decision maker takes the control in his own hands, and if 

both strategies may be applied during an infinite period of time, then, 

because g(z; f) is finite, it follows that the difference in expected 

costs. is also +oo. 

Consequently, in case of own control the optimal strategy will 

also minimize: 

(3. 22) 

where _!.0 is distributed according to the / 0 -probability distribution 

in A. z 

Now we shall mention four properties of the optimal strategy z : 
0 

(I) Let us assume that for a state / 0 {;ta feasible decision 

d can be found,. such that: 
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(3 .23) 

If (3.23) is true for the optimal strategy then it should not be 

profitable to apply z 0 in f'o· 
But by definition z ( IP') is the optimal decision and so we have: 

o Io 

(II) 

r(z ; J) 
0 70 = min ~ r r cz ; ~ > \ d] 

dE D( fo> L o -
(3. 24) 

Let ,& be the initial state of a random walk w in 7Tr. To -oo r 
If the system is inf and if the strategy z is applied 

let us suppose that, for meeting the expenses during w , -oo 
the decision maker receives a premium equal to r(z;f) per 

unit of time. (Note, that the premium is equal to the con-

troller's fee.) In addition, if he does not call in con­

troller's aid, he gets in the initial state an amount 

equal to k ( ,£ ;z) - k*( J,, ;z). 
olo olo 

So if he takes the control in his own hands and if he 

applies strategy z the expected value of the amount he has 

to pay out of his own pocket is given by: 

(3. 25) 

or, according to (3.20) 

where ,!1 = 

C (z ; f ) = ~ 'c [ k (I . ; z (I . )) - i\ I . ; z (I . )) J I l..J 5
) 

o . -J -J -J -J r o 
J=l (3.26) 

J, if 70 f €A. 
0 Z 

Hence (cf. (3.1)) 

or 

(3. 27) 

C(z;fo) = k(fo;z(/o» - k~ fo;z(/o» +t[c<zo;~ >\z<fo~ 
(3. 28) 

5) Note that in C(z; J) no costs are worked up .which will be incurred 
before the first de8ision point. The first decision, however, has to 
be made before or at the moment the system enters A . 

0 
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It will be clear that the decision maker wants to minimize the 

expected value of his own share. 

Now let us assume that the decision maker in / 0 is allowed to 

minimize that amount, unless he effects an increase of the expected 

costs.in the steady state per unit of time. In other words (cf.(3.24)), 

if the decision maker applies z 0 , he is authorized in f'o to make a 

decision only if this decision does not change the expected value of 

future premiums. 

Thus: 

(3.29) 

Now it is easily verified that the optimal strategy has to 

satisfy (3.24) and 

C (z ; J, ) 
o ; o 

= min [ k(J---;d) 
dt rf</0 ) / 0 

- k~f0 ;d) + ~ { C(z0 ;_'.?) \ct] , 
(3. 30) 

where D*( f0 ) is the intersection of D(f0 ) and the set of decisions, 

which satisfy (3.29). 

(III) Let us suppose that the decision maker in state f~ A0 is 

wondering, whether he will make a non-degenerate 

decision according to strategy z now or he will wait T 

time units, provided that the system takes on no state in 

A during these T time units. If in the second reflection 
0 

no state in A is taken on then in accordance with z a 
0 

decision will be made at the end of the period of T time 

units. But, if the system takes on a state in A during 
0 

that period then a decision will be made earlier. In that 

case in accordance with z the decision is made in the enter­

ing state of A. (Note:A is the intersection of all inter-
o 0 

vention sets, so the decision maker cannot wait longer.) 

It follows from the definition of the optimal strategy z 
0 

that in states in A a postponement of a non-degenerate z 
decision is not prof~table. Or in other words, if c.; is 

the state in which in the second reflection the decision is 

made, then 
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(3.31) 

(IV) Let f0 be the initial state of a random walk ~ 00 in state 

space. If the system is iny and if the strategy z is applied 

suppose that for meeting the expenses during w the decision 
-oo 

maker receives a premium equal to r(z;f> per unit of time. In 

addition if he does not call in controller's aid he gets in the 

initial state an amount equal to k (t.l ;z) - k-X--(J,,.·z). 
o lo o /o' 

So if he takes the control in his own hands and if he applies 

strategy z the expected value of the amount he has to pay out 

of his own pocket is given by: 

(3.28) 

It will be clear that the decsion maker wants to minimize 

the expected value of his own share. 

Now let us assume that the decision maker is allowed to 

minimize that amount unless he effects an increase of the ex­

pected value of the costs in the steady state per unit of time 

(i.e. premium). In other words in /a he is authorized to post­

pone decisions, if (cf. (III)) 

(3.32) 

Now it can easily be verified that the optimal strategy 

has to satisfy (3.31) and 

(3.33) 

where T(f) is the set of T values, which satisfy (3.32). 

The functional equations(3.31) and (3.33) fix the shape of 

the intervention set of the optimal strategy. In many decision 

problems the boundary of that intervention set is given by: 

6) cf. 5) 
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/ 

i{r(zo;~>lf ;T} 1 T=O l:T 
= 0 (3.34) 

and 

( d~ t { C(zA) I '/ ;TJt=O = 0 (3.35) 

With the aid of these four properties an iteration procedure can 

now_ be developed which may yield the optimal strategy. 

Let z1E Z0 be an initial guess of the optimal strategy. 

The i th cycle of the iteration procedure is now described by: 

First step 

Let z.€ Z be the strategy obtained at the end of the (i-l) th 
1 0 

cycle. With the aid of (3.22) and (3.26) the functions r(zi;/) and 

C(Z;,_;f) are defined. 

Second step 

The intervention set A 
z. 

that only states in A 
z. 

1 

1 

will first be purified in such a way 

remain, which satisfy: 

(3.36) 

The meaning of i is given in property III of the optimal strategy. 

The set of stat:s f t l.jr which satisfy (3 .36) will be denoted by 

Next we shall remove those states in A 
z. 

satisfy: 
1 

min ~[c(z.;~>\f,TJ<. 
Te T( f) 1 -

which belong to B. and 
1 

(3.37) 

where T(f) is the set of T values which satisfy: 

(3.38) 

The remaining states I in A and their corresponding decisions form 
(1) zi (1) 

a new strategy zi . It is assumed that zi E Z0 • 

Third step: 
(1) 

Repeat the first step but now with z. 
1 
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Fourth step: 

For each f <= fminimize with respect to d f:- D( ,j) the ct-function: 

(3.39) 

The set of states f ff/rwhich satisfy 

min t J r(z. (l) ;_!_) I ct}= r(z. (l) ;/) 
dED(t) l 1 1 

(3 .40) 

will be denoted by B. '. 
1 

Next minimize for each f €Bi' with respect to d6D:A"'-(f> the d-

function: 

(3.41) k(f;d) 

where D*( f) 
which satisfy 

is the intersection of D(f) and the set of decisions d 

\p J <1> 1· l <1> f Cl r(zi ;_!_) d j = r(zi ; ) . (3 .42) 

From this minimalization procedure a new relation between states 

and decisions can be derived. 

If for some state B.' we have: 
1 

C(z_(l);y>= min [ 
1 d tD*(f) 

J.,, (1) ,L J, 
k(T ;d)-r(zi ;T)t(/ ;d) + 

+°glc<zi(l);..!)j ctJ} (3.43) 

assign to that state / the decision zi (l) ( y>. 
The relation between states and decision which will be obtained 

in this way, is denoted by zi+l' It is assumed that this strategy is 

an element of Z. 
0 

End of the i th cycle 

Without more details about the structure of the functions, 

probability distributions etc. used, it seems difficult to give a 

rigorous proof of the effectiveness of the iteration procedure given 

above. 

In [ 1 J we shall stipulate sufficient conditions for obtaining 
(1) 

strategies z. and z. which belong to Z . 
1 1 0 
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Assuming that these conditions are fulfilled, we shall now show 

how the effectiveness of the procedure in a special case can be proved. 

For that purpose we introduce mixed strategies of the form 
n m 

(Za) (zb) zc (zj~ Z0 , j=a,b,c). 

In succession such a strategy prescribes: 

1) n decisions in accordance with z 
a 

2) m decisions with the aid of zb 

3) an infinite number of decisions in conformity with strategy z . 
C 

and 

For the mixed strategies we shall define the functions 

=t tr((zb)mzc;~) / f }=~ lr(zc;1>Jf] 

n - ~ j C((z )n(zb)mz ;y) = ~ tlk(I. ;z (I .))-k (I. ;z (I.)) I 'f 
a c . -J a -J -J a -J 

J=l 

(3.44) 

(3.45) 

respectively, where ~ is distributed according to za (.!rn) and >'( is 

distributed according to zb(I ). -n+m 

Let us consider now the second step of the iteration procedure. 

According to (3 .36) we find for each y <lf. 7/: 
r(zi (1) ;zi; f) ~ r(zi; f) 

and by induction: 

r((zi (l))nzi;f>1= r(zi;/) 

If n.-,. oo it can be proved with the aid of property 9 that: 

lim 
n~oo 

(3.46) 

(3.47) 

(3 .48) 

where I is distributed according to the/ probability distributioq. in 

A 
(1) 

zi 
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r((z. ) z.; d-) = 
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lim 
n-."'-oo 

(1) n-k (1) k / 
r((z. ) (z. ) z.; f) 

1 1 1 , 

we can deduce for each finite integral number k: 

t r((z. (l))kz. ;I) = t r(z. ;I) 
1 1 - 1 -

(3 ,49) 

(3. 50) 

and thus with respect to the /-probability distribution in A (l). 
z. 

1 

(1) k 
r((z. ) z. ;I) = r(z. ;I) spr O • 

1 1 - 1 -
(3. 51) 

It follows from the definition of Bi that: 

t e- B. 
- 1 

spr 0 (3.52) 

It can now easily be verified that the simple ergodic sets of the 

z. (l)_process are also inside B .. 
1 . 1 (1) 

If f 1 and f~ belong to the same simple ergodic set of the zi 

process then we have: 

r(zi (l)zi; jj) = r(zi;fj) 

and by induction: 

r ( (z. ) z. ; . ) = (1) n f 
1 1 J 

If n-,,..oo 

r (z. ; J.) 
1 / J 

j=l,2 

j=l,2 

lim 
n-'?-00 

r((z. (l))nz.; J.) =t r(z. ;I) = r(z. if.) 
1 1 !J 1 - 1 J 

j=l,2 

where ! is distributed according to the identical ;·j-probabili ty 

distributions in A (l)' 
z. 

1 

Hence 

(3.53) 

(3.54) 

(3. 55) 

(3.56) 

It follows from (3.37) that for each J,• belonging to a simple 
(1) / 

ergodic set of the zi -process we have: 

C(z. (l)z.; ,L') ~ C(z. ;f·') 
1 1 T - 1 

(3. 57) 
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Using this inequality just after the first decision we find: 

C ((z. ) z. ; ) - C (z. z. ; ) 
(1) 2 1, .::::. (1) 1-, 

1 1 - 1 1 
(3.58) 

It follows now from (3.45) that (3.58) is equivalent with: 

lf 'J + 

(3.59) 

Let us suppose that, if the decision maker applies strategy 

(z .. (l)) 2z. from f' onwards, he -gets a premium per unit of time, 
1 1 

which is equal to the expected value of the costs in the steady 

state per unit of time. In the initial state ,f' the premium is 
(1) 2 I . given by r((z. ) z.; '). It follows now from (3.54) and (3.56) 

1 1 

that, if t' is a state in a simple ergodic set of the zi (l)_process, 

the premium will always be equal to r(zi; f'). 
Consequently (3.59) is equivalent with (cf. (3.18)): 

r lk(_!.l;zi (l)(_!.1)) - r(zi; f')t(_!.l;zi (l)(_!.1))l f 'j + 

+ t {c<zi (l)zi ;_!.2) / f '} ;; C(zi (l)zi; f ') (3.60) 

If / 11 belongs to one of the simple ergodic sets let f' in 

(3.60) now be distributed according to the f "-distribution in 

A 
z. 

1 

(1). 

It is easily verified that by taking the expectation of 

both sides of (3.60) we find: 

(3.61) 

where_!. is distributed according to the f "-distribution in A (l)' 
z. 

From (3.61) it follows: 1 

~ l k(_!.;zi (l) (_!.))If "J 
~ t t(_!.;zi (1) <_!.>> If"} ~ r(z.; f"> 

- 1 
(3.62) 
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Substitut~ng /"=!:.. in (3.62) and taking expectations with respect 

to some f -probability distribution in A (l) then we find with the 

aid of (3.48): zi 

(3.63) 

where I is distributed according to the y -distribution in A (l). 
z. 

l. 

Hence (3.64) 

This proves the effectiveness of the second step in the iteration 

procedure. 
(1) 

In the same way we can prove that zi+l is to prefer to zi 

(fourth step). 

Now we have shown that for each f cf the sequence of strate­

{ zi} satisfies: gies 

r(z.; ,/,,) ~ r(z. 1 ;;·) 
l. 1 - l.-

(3 .65) 

Except the speed of convergence, in practice the only point of 

interest is whether: 

r <f-> = ·o 

or not. 

Let us introduce the following assumption: 

a) after a finite number of cycles M the sets B and B ' are always 
0 i i 

identical with '(,Ii-: 
b) the sequence off-functions de:f'ined on Bi' by: 

k(f;zi+l Xf)) - k~f ;zi+l </»+t tc(zi (1) ;!:_) zi+l '1 f>J + 

converges uniformly in f to zero. 

-c <z. <1> . • l> 
• 1 'T 

(3.66) 

Consequently if z is the optimal strategy and if i~ M we 
0 - 0 

haye for each f : 
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r(z z. (l); 1L) > r(z. (l); ,l) 
o 1 T - 1 T' 

and by induction: 

n (1) f > (1) f r ((z ) z. ; ) = r (z; ; ) . 
0 1 ..._ . 

It can now be proved with the aid of property 9 that: 

(3. 67) 

(3 ,68) 

lim r((z ) z. ; ) = . n (1) f 
n•-?"00 0 1 

<.p J (1 > I } . ,1 > . 
C)._r(zi ;_!)f~r(zi ;f), 

(3.69) 

where .! is distributed according to the /-distribution in Az The 
0 

convergence in (3 .69) is uniformly in f . 
It follows now from (3 .69) that if f1 and / 2 belong to some 

simple ergodic set of the z -process we have: 
0 

lim 
n---?-00 

(3. 70) 

Let us consider the strategy (z )nz_ (l). According to (3.45) the 
0 1 

following relation is true: 

By induction it follows from the definition of z. 1 1+ 

n-1 (1) 1. L 
C((z) z, 1 z. ; )_ 

0 1+ 1 -
C((z )nz_ (1); ,L) 

o 1 T 

(3.71) 

(3 .72) 

According to b) for a given 

found such that for i ~ N (E) 

f. > 0 an integral value N (E) can be 
0 

- 0 

C((z )n-lz_ (l);,L) - e ~C((z )n-lz_ z. (l)·f> 
o 1 f - o 1.+l 1 ' 

(3.73) 

Take i ~ max(N (E),M) then it follows from (3.71), (3.72) and 
0 0 

(3.73) that: 

C((z )n-lz_ (l);'f) 
0 1 

(3. 74) 
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Let cJ be a state in a simple ergodic set of the z -process and 

let 

A 

! 0 0 f in 1 (3.74) be distributed according to the f 0 -distribution in 

z 
0 

Then after taking expectations of both sides of (3.74) we get: 

- E::, ~{,k(!;z 0 (!_}) - k*(!;z0 (!))} {oJ (3. 75) 

where I is distributed according to the / 0 -probability distribution 

in A 
z 

1ccording to (3.70) if n-,...oo then with respect to the / 0 -pro­

bability distribution in A z 
0 

spr 0 (3.76) 

where~ is distributed according to the f 0 -probability distribution 

in A . The convergence is uniformly in I. 
z 

0 

Thus if n~oo we have: 

- E? 't [ k(!;zo(!)) - ~lr(zi (1) ;~) Jfo1.·t(!;zo(!)) If\] 
(3. 77) 

or 

(3. 78) 

Rewriting (3.78) we obtain with the aid of (3.69}: 

'le (1) .. 
r(z; ) > r(z. ·f) -

0 0 - 1 ' 0 

E 
(3.79) 

and thus if to a simple ergodic set of the z 0 -process: /a belongs 

r(z ; J) = o /o 
lim r(z (l}; ti) 

n+oo n fo 
(3.80) 

Finally, if fo is a transient state of the z 0 -process, we have: 

(1) I L. . n (1) I« "" r(z. ; ) _ lim r((z) z. ; ) = C 
1 0 - 0 1 O 

n '?'oo 

(1) . f } 
lr(zi ;!) I o ' 

(3. 81) 
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where I is distributed according to the f-distribution in Az 
0 (cf. (3 .69)). 

Because I is a state of some simple ergodic set we find with 

the aid of (3.79) and (3.81): 

r (z. ; ) == C ( r (z. ; I) (1) fc ..::::to{' (1) 
1 0 1 - If oJ 1 t {r(zo;_!) \ fa} + 

+ If~· Er c 
~ {_t (_! I ; Z Q (.!_ I ) >{ .! 1 

' 

(3.82) 

where.!' is distributed according to the I-probability distribution 

in A and I is distributed according to the J,, -distribution in A 
z - r o z 

0 0 

Hence 

(3.83) 

Starting from certain assumptions the effectiveness of the iteration 

procedure is proved. 
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4) The relation between the new and the old method 

In this section we will discuss problems which can be formulated 

as Markovian Decision problems, but which are also solvable with the 

aid of the method discussed in section 3, 

Moreover, the freedom of formulation we meet in the new method, 

can be utilized in such a way that both approaches are identical. 

Let us suppose that the decision problem is formulated as an "old" 

Markovian Decision problem. In "old" Markovian Decision problems, only 

the states of the system, either at equidistant points of time or at 

moments at which the system changes its state, are of interest, In 

section 2 we have always marked these states with the symbol I. 

Let us restrict ourselves to problems in which only at equidis­

tant points of time non-degenerate decisions can be made. 

Let the state space and the decision space in the old version be 

given by f and D respectively. 

Now we add to the state; space ·ya new state variables, that 

measures the length of the period elapsed since the last non-degener­

ate decision. 

The states in the extended state space f * are indicated by 

f~ <f ;s). 

At each point of time the state of the system can be given 

uniquely by a point f ~ 7/:-Jt 
If the state of the system is presented by such a point then in 

the problem concerned non-degenerate decisions are allowed to be made 

only in states, in which the state variables takes on an integral 

value. In other words, if the s-component of f * is not an integer 

then D( t/~ contains only the probability distribution concentrated 

in f It· 

Non-degenerate decisions defined in the original model can also 

be presented by probability distributions of states 

probability distributions are determined by the old 

of the relation: ~*= <f;o). - -

,£. Jf 7&* T in 'f' . These 

ones with the aid 

Now we have shown that the restrictions inherent in the "old" 

Markovian Decision problem can also be worked into the more general 

model. This model will be used in the new method. 
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However, if we compare the Markov process in A with that of the 
z 

old version, then we observe that the two processes are not identical. 

This is obvious, because in the new version we limit ourselves to 

states which correspond to non-degenerate decisions, whereas in the 

old version states at equidistant points of time are considered, whose 

related decisions may be degenerate. 

Consequently the new method introduces a new technique for solving 

"old" Markovian decision problems. In section 5 we shall use this tech­

nique for solving the well-known (S,s)-inventory problem. 

In order to get identical techniques we stipulate for the more 

general model: 
I 

a) In (f';l) the degenerate decision given by the probability 
l 

distribution concentrated in ( r--;l) is not feasible. 

b) In (f';l) the decision given by the probability distribution 

conc~ntrated in <y·;O) is feasible and does not effect costs. 

As a consequence of this regulation in the new model at each of the 

equidistant points of time a non-degenerate decision is made. 

In other words for each strategy z the intervention set A con­z 
tains all states of the form (/;1) and no other states. 

I 
Consequently we have: 

A = A 
Z 0 

(4.1) 

Now it is easily verified that the Markov processes in the two formul­

ations are identical. Both processes describe the states of the system 

at the equidistant points of time . 
. )!­

As we know the functions k( If"; d) 
I 

!* and t(j' ;d) in the general model 
d 

are defined with the aid of the two random walks w and w. 
-o 

From (4.1) it follows that the random walk w consists of the 
d -o 

initial state only, while w is a random walk between two equidistant 

points of time. 

Now it follows from the definitions of the functions k( ~tz) 
/ ' ' r 

h <f ;z), t ( f ~z), r(f ;z) and r</ ;z) that we have: 

k((/ ;1) ;z)= h(f ;z) 

t((f;l);z)= 1 

and.consequently (cf.(2.6) and (3.17)) 

(4. 2) 

(4.3) 
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r(z;(f;l)) = r(z;/) (4.4) 

Finally the identity (4.1) also implies that the second step in the 

iteration procedure of the new method always fails (delay is not per­

mitted). For this reason the two iteration procedures are identical 

too. 
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5) Examples 

I) The (S,s)-inventory problem 

The(S,s)-inventory problem is often used for illustrating dynamic 

programming techniques [ 2] . 

In [4] this inventory problem is solved with the aid of Markov 

processes. 

In this section, however, we shall show that the (S,s)-inventory 

problem can also be solved with the aid of the method discussed in 

section 3. 

Let us suppose that a wholesaledealer can replenish without lead 

time a stock of some commodity at equidistant points of time ek (k=l,2, .•. ). 

The intervals between these points of time are of unit length and are 

called elementary time intervals. 

In addition we assume the following: 

a) the purchase price of q units is expressed by a function Q(q). 

b) the inventory costs are c1 per unit a unit of time in stock. 

c) emergency purchases will be made if the inventory is run out between 

two equidistant points of time. The purchase price is then c2 per unit. 

d) the probability distribution of the number of clients, arriving in T 

elementary time intervals is given by a Poisson distribution with para­

meter AT. 

e) the demand~ per client is distributed according to the distribution 

function F(x). It is assumed that there is no dependence between the 

demands of successive clients. 

In the solution of the (S,s)-inventory problem we restrict ourselves to 

those strategies which prescribe only purchases at point~ of time ek,where­

upon the stock is equal or below a certain level s(s ~O). At such points 

of time the stock will be supplied till S. (S~ s). 

In other words the strategies considered differ in the corresponding 

levels sand Sonly. 

In fig.1 a state space suggested. 
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(n) 
A'(S,s) 

On the horizontal axis the state variable "time since the last order" 

is plotted, while on the vertical axis the stock and the emergency 

purchases can be fixed. Because the strategies concerned are completely 

determined by the two parameters Sands the intervention sets will be 

denoted by A(S,s) instead of Az. 

In fig .1 an intervention set A(S, s) and the stopping set A0 are 

marked. Note that the two sets consist of an infinite number of non­

connected subsets (half lines), A~:~s) and A!k) respectively. 

It can now easily be verified that the probability distribution 

of the demand in T time units is given by the distribution function: 

F. (y) 
J 

(5.1) 

where F.(y) is the distribution function of the sum of j equally and 
J 

independently distributed stochastic variables x. and where F (y)=l. 
-1 0 

Of interest is also the distribution function of the time needed for 

selling a quantity x. Let us denote this time by the stochastic varia­

ble t and let the distribution function be given by K (t). 
-X X 

order 
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It is easily verified that we have: 

Hence 

ct = -x 

= 

00 

1 - K (T) 
X 

00 

j tdK (t) = I (1-K (t)) dt 
0 X X 

0 

00 l - .At < 1 t> j -> F. (x) e j: 
j=O J 0 

(5.2) 

= 

1 
00 

dt = .,\ 2 Fj(x) (5.3) 

j=O 

If the strategy (S,s) is applied then the distribution of the 

seize of the stock u left at the time of a new supply (non degenerate 

decision) is given by: 

00 

+Z: 
n=l 

00 

= 2. 
n=O 

S-s l 
/ [ 1-G1 (S-u-y) J gn (y) dy + 

- An [ :l e 1-G1 (8-u)j = (5.4) 

8-s 

' [ 1-G1 (S-u-y)] dGn (y). 

In order to be able to apply the method discussed in section 3 

we have to determine the functions k(/;s,s) and tCf ;S,s). 

If f €. A(S,s) we have by definition 

k(t/ ;S,s) = 0 

t<f;s,s) = o 
(5.5) 

Now let us suppose that at e1 the stock u is smaller than s. 

Thus f € A(S ,s). 

As we know the function k(l,u;S,s) is defined with the aid of 

two random walks. 

In the initial state of the first walk ~d the stock is supplied 

till S (decision d) and after that no purchases (non-degenerate 

decLsions) will be made. The stock is controlled until at some point 
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In the second walk w no purchases will be made and the stock 
-o 

will be controlled until at some point e the stock is run out. 
r2 

The expected costs to be incurred in the first walk are: 

purchase price: a) Q(S) 

b) Q(S-u) 

1) s 

if u~O 

s (X) 

(5.6) 

inventory costs: c1 / ( t t ) dx 
0 -x 

= c1 / (2.., F.(x))dx 
0 j=O J (5.7) 

For determining the emergency purchase price we need to know the 

probability distribution of the quantitity ~' ordered in emergency 
d 

purchases during the random walk w. It is easily verified that the 

distribution function of vis given by: 

co 
H8 _0 (v) = (1-G1 (S-v)) + ~ 

' n=l 

emergency purchase price: 

s -
j [1-G1 (S-v-y)lg (y)dy + 

+O J n 

J 
-oo 

HS;O(u)du 

(5,8) 

(5. 9) 

The expected costs to be incurred in the second walk are zero 

for u ,&o and for u> O given by: 

u 
inventory costs: J <lt >ctx 

0 -x 

u (X) 

= c1 / ( L F . (x)) dx 
0 j=O J (5 .10) 

For determining the emergency purchase price we need to know the 

probability distribution of the quantity~• ordered in emergency 

purchases during the random walk w. It is easily verified that the -o 
distribution function of vis given by: 

1) The expected inventory costs of a quantity dx to be sold between 
t and t d are c1.tt .dx. 
-X -x+ X -x 
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00 -An[ ~ + 2_ e 1-G1 (u-v)J 
n=l 

emergency purchase price: 

0 0 
-c 

2 J J -oo -oo 
H 0 (v)dv 
u, 

Withtheaidof(5,6) up to and including (5.12) we find for u~O: 

k(l,u;s,s) = 

(5.11) 

(5.12) 

s 
Q(S-u) + c1 j 

u 

CD 

( 2-. F/x))dx + c2 
j=O 

0 
j<H8 _0 (v)-Hu·O(v))dv 

-oo ' ' 

and for u<O: 
S 00 

k(l ;u;S,s) = Q (S) + c1 j ( L F .(x))dx + _c2 
0 j=O J 

(5.13) 

0 

./ H0 (v)dv . 
-oo ;s 

(5.14) 

The function t(f;s,s) is also defined with the aid of the two 
d 

random walks w and w. 
-o d 

The probability that a random walk w takes n elementary time 

intervals is given by: 

- s ' 
p(n) = e- >-.(n-1) [ 1-Gl (S)J + / [ 1-Gl (S-y)] gn-1 (y) dy = 

+0 

s 
= [ [1-G1 (S-y)J dGn-l (y) . 

(5.15) 

So we find for the expected duration of the first random walk: 

00 S 

= .;E_ n j [ 1-G1 (S-y)J dGn-l (y) = 
n=l 0 

and in the same way for the expected duration of the second random 

walk: 
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00 

a) 2- G (u) 
n==0 

n 
if u )0, 

(5.17) 

b) 0 if u ~ 0. 

Consequently t(l,u;S,s) is given by: 

,00 00 

a) z G (S) - 2. G (u) 
n==0 

n 
n==0 

n if u> O. 

(5.18) 
00 

b) £_ G (S) 
n==0 

n 
if u:=-0. 

Now it is easily verified that the Markov process in A with dis­
z 

crete time parameter has no cyclically moving sets and only one ergodic 

set. 

Because of the fact that the functions k(l,u;S,s) and t(l,u;S,s) do 

not depend on 1 we need only to know the probability distribution of~ 

in the steady state. This probability distribution, however, is given by 

(5.4) and so we find (cf.(3.22)): 

The right hand side of (5.19) can be rewritten in the form: 
;:;'"' 0 .s U, () 

S/t;: 'f<o/A 1- ~f 1rfv) c/4 i- 1f0J, ~(;l)ifa(s-":}-f!l'f./Jo<J}dx- ~f/(f-'Jcjd{~u.J 

(5. 20) 

The optimal choice of Sands can now be obtained directly from the 

minimalization of (5.11) with respect to Sands. 
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II) The motorist's problem 

A motorist has effected an accident insurance. In the insurance-policy, 

belonging to it, among others the following conditions are stated: 

1) The insurance will run for one year. At the end of each year it can 

be continued. The premium has to be paid at the beginning of each 

period of one year. 

2) The premium amounts to E1 , unless 

a) in the preceding period of one year no damages have been claimed. 

In that case the premium will be E2 , unless 

b) in the preceding period of two years no damages have been claimed. 

In that case the premium will be E3, unless 

c) in the preceding period of three or more years no damages have 

been claimed. In that case the premium will be E4. 

3) Damages have to be claimed immediately. Only the difference between 

the damage and a fixed amount a0 , the socalled own risk, is covered 

by insurance. 

It will he obvious that our motorist will claim no damages smaller than 

a. But in view of point 2 of the insurance-policy we may expect that it 
0 

will also be unprofitable to claim damages, which are not much larger 

than a, unless a loss is already claimed that year. In addition the 
0 

optimal lower bound of the amount to claim depends on the time of the 

accident and on the last premium paid. 

Let us suppose that the following data are available. The motorist 

association has established that for motorists like our driver the number 

of accidents in a period of length Tis distributed by a Poisson distri­

bution with mean ~T. Next it is observed that the losses s are indepen­

dently distributed according to the distribution function F(s). 

The motorist's problem is how to establish an optimal strategy 

for claiming losses. 

Let us try to solve this problem with the aid of the method des­

cribed in section 3. 
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First we have to create a state space, next to define a natural 

process and finally to state what decisions imply in the model to be 

constructed. 

Let us approach the problem from the point of view of a motorist, 

who is a fanatical opponent of insurances. He will certainly advise not 

to pay premiums. If a premium is already paid then he will suggest to 

claim all losses to be incurred and not to continue the insurance at 

the end of the year. 

But, one year after the last premium has been paid, claims will be 

rejected by the insurance company. 

In accordance with the opinion of that motorist in the natural 

process no premiums will be paid and all losses will be claimed. 

If we accept this picture-of the natural process, then the payment 

of a premium and the suppression of a claim are effected by decisions. 

Analysing the motorist's problem in this way we observe that at 

each point of time the following facts are of interest: 

a) the fact, whether an accident happens at the moment considered 

or not. 

b) the extent of the damage. 

c) the fact, whether the damage is covered by insurance or not. 

d) the fact, whether a damage is claimed since the last payment 

of a premium or not. 

e) the amount of the last premium paid. 

f) the point of time considered. 

This information has to be worked into the state of the system. 

ln addition we have to see that the random walk effected by the 

natural process is continuous from the right in the time parameter 

(property 5). In fig,2 a 4-dimensional state space is suggested that 

comes up to these requirements. 

The s-coordinate of a state point denotes the extent of the last 

damage claimed after the last payment of a premium. The u-coordinate 

denotes the length of the period elapsed since the first claim after 

the last payment of a premium. Both coordinates are obvious and can be 

determined at each point of time. 
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.S 

State space 

T 
----4 

The T1-axis is a time axis and as long as damages are still covered 

by insurance the points of time are fixed on this axis. 

The T2-axis is also a time axis, whose points fix the points of time 

from the moment whereupon damages are no longer covered by insurance. 

In the (T1 ,t2 )-plane one can find eight broken time intervals. 

The intervals T11 , T{1 , T12 , etc_. are time intervals of one year. The 

half lines T2 ,T21 ,T~1 etc. are also time intervals with a same time scale. 

In determining the (T1 , T2 )-~omponen~ ,?.~~-} ... ~!~t,e .~?int only points of 

the lines T11 ,T2 ,Ti1 ,T21 etc. will be used. 

If the orthogonal projection of a state point on the (T1 ,T2)-plane 

is: 

1) a point of Tli (i=l,2,3,4) then: 

a) the last premium paid is E .. 
1 

b) the damages are still covered. 

c) no damage has been claimed since the last premium is paid. 
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d) date and point of time considered are fixed by the location of 

the projection on T1i. 

2) a point of T2i (i=l,2,3,4) then: 

a) the last premium paid is E .. 
1 

b) the damages are not longer covered. 

c) during the period they were covered no damage was claimed 

d) date and time considered are fixed by the location of the 

projection on T2i. 

3) a point of Tli (i=l,2,3,4) then: 

a) the last premium paid is E .. 
1 

b) the damages are still covered. 

c) one or more damages have been claimed since the last premium 

has been paid, 

d) date and time considered are fixed by the location of the 

projection on T1i. 

4) a point of T2i (i=l,2,3,4) then: 

a) the last premium paid is E .• 
1 

b) the damages are not longer covered. 

c) during the period they were covered one or more damages have 

been :claimed.1 

d) date and time considered are fixed by the location of the 

projection on T2i. 

5) a point of T2 then: 

a) never a premium has been paid. 

b) no damages are or have been covered by instlrance. 

c) date and time considered are fixed by the location of the 

projection on T2 , 

From this construction of the state space we can deduce for the random 

walk of the system in the natural process the following statements: 
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(1) If never a premium has been paid the projection of the state 

point on the (T1 ,T2)-plane will run along the T2-axis. 

(2) If the last premium paid is E., then, as long as no damage is 
1 

claimed and damages are still covered, the projection of the 

state point will run along the line Tli (i=l,2,3,4). On the 

moment upon which damages are no longer covered by_ insurance 

it turns round an angle of 90 degrees and after that the 

projection will follow the half line T2i (i=l,2,3,4). 

(3) If the last premium paid is E. and if at the time, whereupon 
1 

the first damage since the last payment of a premium has been 

claimed, the damage was still covered, then from that time 

onwards the projection of the state point runs along the lines 

T{i and T2i. 
(4) The u-and s-coordinate of the moving state point are unambiguous­

ly determined by their definitions. 

So the random walk of the system, effected by the natural process can 

now be defined for different initial states. The natural process itself 

is determined by the Poisson distribution of the number of accidents and 

by the probability distribution of the extent of the damage. 

It can now easily be verified that these random walks are continuous 

from the right in the time parameter. The proof that the natural process 

is strong Markovian will not be given here. 

As we have stated before payments of premiums and suppressions of 

claims are effected by decisions. 

Let us first discuss the payments of premiums and their effects on 

the natural process. Premiums can be paid at the ends of the periods in 

which damages are covered by insurance and at the moments, whereupon no 

damages are covered. 

In other words non-degenerate decisions of this type can be made at 

the moments that the projection of the state point on the (T1 ,T2) plane 

takes on either one of the end points of T1 i,T{i or one of the points of 

T2,T2i'T2i. 
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If at the end of Tli (i=l,2,3) .a premium Ei+l is paid then the state 

point will be transferred into the point of which the projection on the 

(T1 ,T2)-plane is given by the initial state of Tli+l and for which holds: 

u=O and s=O. 

If at the end of T14 a premium E 4 is paid then the state point will 

be transferred into the point of which the projection on the (T1 ,T2)-plane 

is given by the initial state of T14 and for which holds: u=O and s=O. 

If at the end of Tli (i=l,2,3,4) or in a point of T2 ,T2i and Tli 

(i=l,2,3,4) a premium E1 is paid then the state point will be transferred 

into the point of which the projection on the (T1 ,T2)-plane is the 

initial state of T11 and for which holds: u=O and s=O. 

Now the effects and the costs of this type of decisions are stipu­

lated. 

In the sequel our considerations are based on the assumption that 

at the end of each period premiums will be paid in which the damages 

are covered by insurance. 

So if a strategy is applied then the points of T2 ,T~1 etc. will not 

be taken on by the projection of the state point on the (T1 ,T2)-plane. 

Consequently we can restrict ourselves to the state space given in fig.3. 

s 

a 
0 

State space 

Tl - - - - - - -> 

% ---"--"~---- A 
' z 

- )K A 

' 0 
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From the assumption about the payment of the premium made above it fol­

lows that for each strategy to be considered at least the intervention 

set consists of 

a) twodimensional planes through the endpoints of Tii (i=l,2,3,4) 

and perpendicular ta". T1 . 

b) the endpoints of the intervals Tli (i=l,2,3,4). 

Now we will discuss decisions, which effect suppressions of claims. 

Let us assume that just before an accident the projection of the 

state point on T1 is a point of Tli' 

Ifs' is the extent of the loss incurred, then the system is at 

the moment of the accident in a state of which the projection on T1 is 

a point of Tii' that corresponds to the time considered and for which 

holds s=s' and u=O. 

If the claim is suppressed then the system will be transferred 

into the state of which the projection on T1 is a point of Tli' that 

corresponds to the time considered and for which holds s=O and u=O. 

If just before an accident the projection of the state point on 

T1 is a point of Tii then a loss has been claimed already and it has 

no sense to suppress the claim. 

Consequently suppressions of claims take only place if u=O and if 

the proje◊tions of the state points on T1 are points of Tii (i=l,2,3,4). 

Now it follows from point 3 of the policy of insurance that if u=O and 

if the projection of the state point is a point of Tii a claim will cer­

tainly be suppressed if s ~ a 0 • It is obvious that if it is profitable 

to claim a loss of the extents', a loss s) s' has to be claimed too. 

For this and other heuristic reasons that part of the intervention 

set A~ which corresponds to the suppressions of claims, is in the (s,T1)­

plane and has a form as drawn in fig.3. 

It is easily verified that the stopping set A, according to its 
0 

definition must have the form as drawn in fig.2. 

It can now easily be proved that the Markov-process in the inter­

vention set AZ with discrete time parameter has only one ergodic set 

and no cyclically moving sets, while in addition it satisfies the Doeb­

lin condition. 
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Now the strategies and their implications have been discussed in 

full extent. 

Our next task is to determine the functions k(f;d) and t('/ ;d). 1 ) 

As we know the function k(f-';d) is determined by the difference 
d 

in expected values of the loss to be incurred in the random walk w and 

in the random walk Yio' both from the state t/. 
The function t(f ;d) is defined in a similar way. 

Let us consider now the random walk w. If the projection of the -o 
initial state on the T1-axis is a point t of Tli then it follows from 

the construction of the state space that the random walk w will take 
-0 

(1-t) uni ts of time, unless u=O and s ~ a . In that case w consists of 
0 -o 

the initial state only and by definition no costs are involved in that 

walk. If the random walk takes (1-t) units of time then the expected 

number of accidents in that period is ,,\(1-t). Because of the fact that 

inthe natural process all damages will be claimed the expected loss per 

accident is given by: 

K(a) 
0 

a 
= j 0 s dF(s) + 

0 

00 

a0 f dF(s) 
a 

0 

Thus we find for the expected loss to be incurred in w : 
-o 

0 

~ (1-t) K(a ) 
0 

if u=O and s ~ a 
0 

otherwise 

(5.21) 

(5.22) 

Now we discuss the case that the projection of the initial state on the 

T1-axis is a point t of T1i. 

1 -.,\(1-t) 
The probability of no accident during the period [t,1 is e 

If no accident occurs then the walk will end at t=l, thus at the end of 

T1ir In such a walk no losses are incurred. 

The probability of one or more accidents during the period [t,iJ fs 
-A(l-t) 

1-e • Suppose that the first accident happens at ! 1 , then one of 

the following eventualities may arise: 

1) The reader, who is only interested in the solution of this problem 
can omit the determination of k(f;d) and t(f;d). 
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a) the damage s1 at !i is smaller than a0 • In that case the walk is 

ended at !i and the total loss to be incurred is s 1 • 

b) the damage s1 at !i is larger than a0 • In that case the walk will 

go on till t=l. The probability of a continuation after the first 

accident is (1-F(a0 )). The loss at t 1 is equal to a0 • Because of 

the fact that after the accident the projection of the state 

point on T1 is a point of Tii we find for the expected value of 

the loss to be incurred in the remaining part of the walk: 

(5.23) 

Combining these results we can state that, if the projection of the 

initial state on the T1-axis is a pbint of Tli' the expected loss to be 

incurred in w is given by: 
-o 

-A(l-t) [ ·] /l-t \ 2 -~r (1-e )K(a0 ) + 1-F(a0 ) K(a0 ) A (1-t-r)e dr = 
0 

(5.24) 

In a similar way we will find for the expected duration of the random 

walk w in this case: 
-o 

... L 1 ->-<1-t> ] (1-t)-F(a0 ) 1-t- I (1-e ) 
(5.25) 

Now we have determined the expected loss to be incurred in- and the 

expected durations of - the random walks w, starting from different 
-o 

points of the state space. With the aid of these results we are in the 

position to determine the functions k(f ;d) and t(f;d) too. 

It is convenient to introduce here a new notation for the state of 

the system. 

With 
f = [ i,t;s;u] (5.26) 

we indicate that state point, which projection on T1 is int of Tli" 
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With (5.27) 

we indicate that state point, which projection on T1 is int of Tli" 

As we know the endpoints of T11 , given by [i,l;O;O], belong to A0 • 

So for determining k( f; z ( f)) we have only to calculate the ex­

pected value of the loss to be incurred during the random walk wz('f). 

After the premium E. 1 is paid the random walk !z(f) is identi:al with 
1+ 

a random walk ~o from the initial point of Tl,i+l (i+l,O;O;O). So if f 
is the endpoint of Tli then we find with the aid of (5.24) for k(f;z</>>: 

-.X I 
E. 1 + F(a )K(a )(1-e·) +)\.K(a )(1-F(a )) 

1+ 0 O O 0 

if f = [ i , 1 ; 0; 0 J with i =1 , 2, 3 

- >- \ E + F(a )K(a )(1-e ) + A K(a )(1-F(a )) 
4 0 O . 0 O 

if f = [4,l;O;oJ (5.28) 

In a similar way we find with the aid of (5.25): 

- 1 -lJ t(f ;z( f » = 1-F(a0 ) Li- i (1-e ·1 (5.29) 

Now it can easily be verified that for f = Ii' ,1 ;O;o] we have: 

k(f ;z ( «f.)) = E1+F(a )K(a ) (1-e -•\+ .A (1-F(a )) K(a ) I o o o o 
(5.30) 

and 

(5.31) 

If a strategy z is applied let the boundary of the intervention set A 
z 

in the (T1 ;s)-plane be given by the curve: 

s = S(i' ,t;z) i'=l,2,3,4 (5 .32) 

t E to,1] 

If according to a strategy z we have to suppress a claim in 

f= [i' ,t;s;oJ then one of the following eventualities may arise: 

a) The damages at tis smaller than a. In that case a random walk 
0 

~ starting inf consists of the initial state f only. Because 
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of the suppression of the claim the system is transferred into 

[ 17 z(i.£.) i,t;O;Oj. The random walk!: I from f is after the sup-

pression identical to a !:a-walk from [i,t;O;o] . Because of 

the fact thats ~a0 the losses involved in the suppression of 

the claim (non-degenerate decision) are zero, So we find with 

the aid of (5.24) and (5.25) for the functions k(f;z(,f)) and 

t(f;z<f», 

k(f ;z(f)) -lc1-t> l ~ l = F(a )K(a )(1-e )+ 1-F(a) K(a )/ (1-t) 
0 0 0 0 

(5.33) 

[ 1 -A(l-t) ] 
t(f ;z<f>> = (1-t)-F(a0 ) 1-t- ~(1-e ) (5.34) 

respectively, 

b) The damages at tis larger than a, but smaller than or equal 
0 . 

to S(i' ,t;z). In this case a random walk w starting in ,ltakes -o r 
(1-t) time units. The expected loss to be incurred in this walk 

is given by (cf, (5.23)): 

A (1-t) K(a ) 
Q 

(5.35) 

Because of the suppression of the claim the system is transferred 

into [1,t;O;o]. The random walk wz<f> fromfis after the sup­

pression identical to a !:a-walk from [i,t;O;o] • Because of the 

fact that s>a0 the losses involved in the suppression of the 

claim (non-degenerate decision) ares-a. So we find with the 
0 

aid of (3,3), (3.4), (5.24), (5;25) and (5.35) for the functions 

k( f ;z ( f)) and t ( f ;z ( f »: 
k ( f ; z ( f)) = kl ( f ; z) - k o ( f; z) = 

= 1 s-a0 +F(a0 )K(a0 ) (1-e-A(l-t)) + [ 1-F(a0 ~ 

- .A (1-t)~(a ) = 
0 

.' . { -1(1-t) \ } 
= s-a + K(a )F(a ) '1-e - ,\(1-t) 

0 0 0 

(5.36) 
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t(f ;z(f)) = \ ( f;z) - t 0 <f,z) = 

( J 1 -~<1-t> ,l] ( ~, = 1-t-F(a0 ) l 1-t-). (1-e )j -. 1-!., = 

11 - A(l-t) :"\ 
= F(a0 ) -S:,. (1-e )-(1-t}_j (5.37) 

Ei+l +F(a0 )K(a0 ) (1-e -~+ i K(a0 ) [1-F(a0 ~ ;if f =(i ,1 ;d;o1 

ii4 

E4+F(a0 )X(a0 ) (1-e-.k)+ 1 K(a0 ) [ 1-F(a0 ~ ; if '/ = [4, 1 ;O ;OJ 

E1 +F(a0 ) E(a0 )(1-e -A)+A K(a0 ) [ 1-F(a0 )] ; if f = [i', 1, s ;u] 

F(a 0 ) :K(a0 ) (1-e-A (l-t) )+ [1-F(a 0 ~ K (a0 )A (1-t) ; if f = [i' , t; s ;o] 
u L 

[ -~(1-t) \ il f [ s "'ao s-a +'K(a )F(a ) 1-e -A(l-t) if - i' t·s·O 0 0 0 - ,,, 

a ~ s ~ S(i' t · z) 
0 - - ' ' 

(5.38) 

l-F(a0 )[1- ½ (1-e-\J ; if Y,=[i,l;O;o] or [i' ,l;s;u] 

(1-t)-F(a0 )[1-t-½ (1-e-.\(l-t)>] if f=(i',t;s;o] s~a0 

[ 1 -.k(l-t) ,l iJ,, [ 11 F(a0 ) :f (1-e )-(1-t~ ; if/ = i' ,t;s;Oj 

a 0 ~ siS.(i' ,t;z) 

(5.39) 

In section 3 we have stated that the boundary of the intervention set 

of the optimal strategy can be determined with the aid of the relations 

(3.34) and (3.35). 

Because of the fact that for each strategy z to be considered the z­

process has only one ergodic set the relation (3.34) ~s satisfied for each 

flf• 
Let us consider the relation (3.35). According to (3.35) each point 

of the boundary of the intervention set A has to satisfy: 
z 

0 

(:,'E.{c(zo; ! ) I f ;Tt=\> = o (3.35) 
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In this section we will use (3.35) in a somewhat different form. 

In section 3 we have introduced the function g(z;f). This function 

expresses the expected value of the amount that the decision maker has 

to pay out of his own pocket, if he applies strategy z from the initial 

state f onwards . 

Let us consider the following states: 

f1 = [ i' , t; S(i, t; z) ; 0 J 
y2 =[i',t+~t;S(i,t+ll.t;z);OJ 

f 3 = [i,t;O;o] 

f 4 = [!-,t+At;O;o] 

f5 = [ i', t+ 6. t; s' ;u J 
Now the following identities are easily verified: 

g(z; f1 ) = S(i,t;z) - a 0 + g(z; ~) 

g(z;f 2 ) = S(i,t+At;z) - a 0 +g(z; f4 ) 

and for each s' and u' 

(5.40) 

(5.41) 

(5 .42) 

(5.43) 

As we know the probability of one accident in a period of length 

At is equal to ,A • .a. t, while the probability of two or more accidents 

is of magnitude (A t) 2 . 

Following the definition of g(z;f) we find: 

g(z; / 1 ) =A,At K(a0 ) - b.t.r(z; f1 > + g(z; f 2> + 0( 6t2 ) 

and, if i{s(i,t;z)] is given by: 

S(i,t;z) oo 
R'[S(i,t;z)J = j x dF(x) + a 0 / dF(x), 

0 S(i,t;z) 

(5.44) 

(5.45) 
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g(z; / 3 ) =.A.L\t K[S(i,t;z)J - ,6t r(z; / 1 > + 

+ t e-A,At + L'1t FL S(i,t;z~} g(z; f 4 ) + 

+ ~.,6t[1-F[S(i,t;~J g(z; f2 ) + 0( ~ t 2 ) = 

= g(z; f 4 > +.A. At K[S(i,t;z3 - bt r(z; f 1 > + 

+ A.At[1-F(S(i,t;zm { g(z; f 2 )-g(z; f4 >J + 0(.o.t2). (5 .46) 

From (5.41), (5.42) and (5.44) we can deduce: 

or 

+ ~ LH K[S(i,t;z)) - ,6t r(z; / 1 ) + ~ .o.t[1-F[S(i,t;z))] 0 

,, [ S ( i , t+ 4 t ; z) - a o] ( 5 • 4 7) 

S (i, t+ .6 t; z) - S (i, t; z) = 

=A at{ K(S(i,t;z)) - K(a0 ) + [1-F[S.(i,t;z)]] [s·(i,t+ Llt;z)-a0]J 
(5.48) 

Consequently: 

d S(1. t·z) 0 (i t+ t,·z)-s(i,t,·z) 
' ' = lim -"'--' --~----"---'--- = 

dt Atii-O .6t 

CD 00 

= ,\..1 J (x-a0 )dF(x) + f [x-S(i,t;z)J dF(x)J . 
la 8(1,t;z) 

0 

(5.49) 

From (5.49) it follows that the boundary of the intervention set consists of 

parts of that curve S(t) which satisfies the equation: 

d S (t) 
dt 

00 00 

=A J (x-a )dF(x)-A/ [x-S(t)l dF(x) 
a o S(t) j 

0 

(5 .50) 
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The curve S(t) is determined by (5.50) except for a translation int. 

It can be proved that for this example the relations (5.49) and 

(3.35) are equivalent. 

Next we will consider the relation (3.30). If the optimal strategy 

z 0 is applied, then according to (3.30) each point f~·fhas to satisfy: 

C(z ;/)=min [k(l..t;d)-k*(f;d) +C)C(z ;1i)ldt] 
0 d ~ D"'" ( 'f) / l O _ f j 

(3 .30) 

Because of the fact that for each strategy z to be considered the 

z-process has only one ergodic set the relation (3.30) is equivalent 

with: 

In this section the relation (5.51) will be applied in a somewhat 

different form. 

Let us suppose that just after the payment of the premium E1 an. 

accident happens. If the extent of the damage is s then at the moment 

of the accident the system will be in the state f =0' ,O;s;o]. 

If the decision maker claims this damage and if he will apply the 

optimal strategy z afterwards, then the expected value of the amount 
0 

he has to pay out of his own pocket is given by: 

lim g(z0 ; [1 1 , f ;s; FJ ) 
!-+o 

(5.52) 

If he suppresses the claim and if he will apply the optimal 

strategy z afterwards, then the expected value of the amount he has 
0 

to pay out of hi.:.s own pocket is given by: 

(5.53) 

Now it is easily verified that: 

(5.54) 

Now it follows from (5.53) and (5.54) that the suppression of the claim 

is only profitable, if 
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s-ao+g(zd[l,O;O;o] ) ~ AK(a0 )-r(z0 ; f) + E1 + g(zo'P,.,o;o;o]) 

(5.55) 

or: 

s .t. a + \ K(a ) - r(z · d,) + E = o A o o'T 1 
(5.56) 

Thus: 
,; 

S(l,0;z) = a +i·K(a) - r(z .,/,) + E 
o o o o'T 1 

(5.57) 

Let us suppose that just after the payment of the premium E1 an 

accident happens. If the extent of the damage 1s s then at the moment 

of the accident the system will be in the ·state tf = [i' ,0; s ;O] . 
If the decision maker claims this damage and if he will apply 

the optimal strategy z afterwards, then the expected value of the 
0 

amount he has to pay out of his own pocket is given by: 

lim g(z0 ~(i', E ;s;o]) 
C➔ +O 

(5.58) 

If he suppresses the claim and if he will apply the optimal strategy 

z afterwards, then the expected value of the amount he has to pay 
0 

out of his own pocket is 

s-a +g(z ,[i,0;0;0J) 
0 0 

(5.59) 

Now it :follows from the definition of g(z; f): 

a) lim g(z · [i'-1 :r:..~·S(i-11-f,·z )·o]) = 
f 7 +0 o ' ' '"" ' 0 ' 

= lim. {s(i-1 1-d·z )-a J +g(z · (i 0·0·0]) + Ei. 
' ' o o o' ' ' ' $'--,. +0 

(5.60) 

b) lim g(z ; (i'-1,1-0;S(i~l,1-b;z );o]) = E1+g(z0 ; [1,0;0;0)) 
f ...,.+o o o 

(5.61) 

c) lim g(z ; [i', o ;s; EJ) =A K(a )-r(z ; 1L) + E1 + g(z ; (1,0;0;0)) 
f-,.+o o . o o T o 

(5.62) 
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With the aid of (5.58) up to and including (5.62) we find that the sup­

pression of the claim is only profitable if: 

or 

Thus: 

s-a +g(z ; [i ,0;0;0] ) ~ lim g(z0 ; [i' ,S ;s; 5] ) 
o o [-,,, +0 

(5.63) 

s-a iA K(a )+E.-r(z ; ,l)+ lim 1 S(i-1,1- f ;z )-a } 
0 0 1 0 T f-? +0 l O 0 

(5.64) 

S(i,0;z) = ~ K(a) + E.-r(z ;;1)+ lim 
0 0 1 0 7 ~ 

s(i-1 1- [ ·z ) 
' ' 0 

(5.65) 
0-;)>+0 

s 

S(3,t,z) 8(4,t,z )' 
\ 0 \ 0 

S(2,t,z0 ) ~ 4 

\ J3 

S(l,t,z) 

___________ __:~_tr----- T 
,__ _ _.,_ - - -~1 

T14 Tll Tl.4 

fig.4 A detail of the state space 

Recapitulation: (cf.fig.4) 

Jl = K(a) + E - r(zo; f) 
0 1 

J2 = K(a) + E - r(zo; f) 
0 2 (5.66) 

J3 = K (a ) + E - r(zo;f) 
0 3 

J4 = K(a) + E - r(zo;f) 
0 4 
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We have already stated that the boundaries S(i,t;z) are parts of a 
0 

curve S(t), which is also plotted in fig.4. 

From the structure of the problem it can easily be deduced that 

for the optimal strategy z the boundaries 8(3,t;z) and 8(4,t;z) are 
0 0 0 

identical. 

In other words the following relation has to be true: 

(5.67) 

With the aid of (5,66), (5.67) and of one of the solutions S(t) of 

(5.50) the motorist's problem can be solved. This will be done in the 

following numerical example. 

Let the following data be given: 

1) /\ =2 

2) F(s) 1-e 
-s 

= 
3) a = 0.4 

0 

4) El = 1.6 E3 = 1.2 

E2 = 1.4 E4 = 1.1 

Now by using (5 .68) we find for (5.50): 

d s (t) 
00 00 

2 I [ s-0.4] 
-s 

- 2 f [ s-S (t)] = e ds 
dt 

0.4 s (t) 

and thus: 

d s (t) 
= dt 

Hence: 

2 -0.4 2 -S(t) 
e - e 

J d S(t) ½ -0.4 -S(t) 
e -e 

= t+c 

and consequently: 
-0 4 

1 ll .l. 2e · (t+c)} S(t) = 0.4 + n +2 e 

-s 
e ds 

In the sequel we shall limit ourselves to the solution 

(5.68) 

(5.69) 

(5. 70) 

(5,71) 

(5.73) 
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S(t) = 0.4 + ln(l+ebt) , 

where 
-0.4 

b = 2e . 

From (5.68) we derive: 

1) K(0.4) = 0.3297 

2) Jl = 0.6594 + 1,6 - r(zo; i/) 
J2 = 0,6594 + 1.4 - r(z · 'f > o' 

J3 = 0.6594 + 

J4 = 0.6594 + 

Now let t. be given by: 
1 

1.2 - r(zo; f) 
1.1 - r(zo; f> 

S(t.) = S(i,0;z) 
1 0 

= 
= 
= 
= 

(5.74) 

2.2594 - r(zo; f> 
2.0594 - r(z0 ;'{) 

(5.75) 
1.8594 - r(zo;tf) 

1. 7594 - r(zo; f) 

(5.76) 

From the definitions of J. (i=l,2,3,4) it follows that the following 
1 

relations are true: 

S (t1 ) == 0.4 + Jl (5.77) 

S(t2 ) - S(\+1) == J2 (5.78) 

S(t3 ) - S(t2+1) = J3 (5.79) 

S(t3 +1) - S(t3 ) == J4 (5. 80) 

Now t 1 can be determined from (5.77). It will be a function of the 

unknown r(z0 ;,j). If the r(z0 ;/)-function (t1 +1) is substituted in 

(5.78) then from this substitution the r(z 0 ;f)-functions t 2 and (t2+1) 

can be obtained. In a similar way we can find the r(z 0 ; /)-functions t 3 

and (t3+1). 

Finally the relation (5.80) will turn out to be equivalent to: 

e-3 r(zo;f) - 0;122134e-2 r<zo;f)+0.0009e-r(zo;Y')+0.000011 = 0. 

(5.81) 
By solving (5.81) we find: 

(5.82) 

and consequently: 
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Jl = 0,0824 

J2 = -0,1176 

J3 = -0,3176 
(5.83) 

J4 = -0,4176 

The solution of this numerical example is given in fig,50 

a 
___ .., ___ ., ------- ------- - - - - i",03 

0 0,68 0,93 1,03 

0,48 ,57 ,61 0,6 

Tl, 

Tll T' 
12 

T'' 
13 Tl.4 

fig.5 Solution of the motorist's problem 
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