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1. SUMMARY 

For the class~ of distribution functions satisfying 

(i) For O < F(x) < 1, F(x) is strictly increasing, 

(ii) For O <F(x) < 1, F(x) is twice differentiable with 

continuous second derivative, 

(iii) F(x) possesses a finite absolute first moment, 

the following order relation is define& F(x)< F*(x) if 

Gjl,F( x) is convex on the interval where O <. F( x) < 1. Here 

a*(y) denotes the inverse of F*(x). The ordering is 

independent of location and scale parameters. 

Let Ex. and Ex~ denote the expectation of the i-th 
-i :n -i :n · 

order statistic of a sample of size n from F(x) and FN(x) 

respectively. It is shown that if F(x)< F~(x), then 

F(E x. ), F*(E x~ ) for all i and n. The converse is -i:n -i:n, 
proved if the inequalities hold for sufficiently large n. 

For the subclass ';fc "F" of symmetric distributions a different 

order relation is defined: F(x)j F:1t(x) if a*F(x) is convex 

on the interval where ½ < F( x) < 1. Here again the ordering 

is independent of location and scale parameters. The same 

inequalities hold in this case for i ~ n;1 , whereas the 

theorem may be reversed in the manner mentioned above. 

Examples of both order relations and inequalities for 

expected values of order statistics are given. 
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2. A WEAK ORDERING AND AN EQUIVALENCE FOR A CLASS OF 

DISTRIBUTIONS. 

We shall consider the class "'f:' of all probability distribution 

functions F(x) on R1 satisfying: 

(2.1) For 0<F(x)<1, F(x) is strictly increasing, 

(2.2) For O < F(x) < 1, F(x) is twice differentiable with 

continuous second derivative F"(x), 

(2.3) F(x) possesses a finite absolute first moment 
+OJ 

E IX I = I I X I dF ( X ) • 
-OJ 

Conditions (2.1) and (2.2) imply that F(x) possesses a twice 

differentiable, strictly increasing, inverse function G(y) 

with continuous second derivative, uniquely defined for 

0 < y < 1 by G F(x)=x. We shall denote distribution functions 

belonging to T by F(x), F*(x), ..... , the corresponding 

(finite or infinite) open intervals where they increase 

strictly by I, I*, ..... , their inverse functions by G(y), 

a*(y), ..... , and random variables possessing these 

d . t "b t· b ~ 1 ) . ' is ri u ions y x,x , ..... . 

If F(x)l'F' and F*(x)€1=' then a*F(x) is also uniquely defined 

on I where the function is strictly increasing and twice 

differentiable with continuous second derivative. We shall 

say that a*(y) is convex in G(y) for O < y 1 < y .(. y 2 < 1 if 

G*F(x) is convex for G(y 1 ).:: x < G(y 2 ), or equivalently, if 

G F*(x) is concave for G"'(y 1 )< x..::: a*(y2 ). Throughout this 

report we shall use the concepts of convexity and concavity 

in the weak sense thus referring to non-negative and non­

positive second derivative respectively. 

In the first part of this report we shall be concerned with 

the following order relation on~. 

1),We distinguish random variables from algebraic variables 
arid numbers by underljning their symbols. 
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DEFINITION 1. If F(x)e1' and F*(x)e7=', then F(x)-<F~(x) 

( or equivalently F it(x) >- F(x)) if and only if a*(y) is 

con vex in G(y) for O < y < 1. 

We shall say in this case that F(x) precedes F#(x) or that 

F*(x) follows F(x) and that the two are comparable. 

Clearly F(x)<F(x) for all F(x)E~; since an increasing 

convex function of a convex function is again convex, 

F(x)-<F*(x)-<F**(x) yields F(x)-<F*9t(x) for F(x), F*(x) 

and F*'\x)€'1'. The relation < is thus a weak ordering on 

~. Hence by defining an equivalence relation rv by 

DEFINITION 2. If F(x)€1=' and F*(x)C:T , then F(x),vF*(x) 

if and only if F(x)-<F*(x) and F*(x)-<F(x), 

and passing to the collection Tr of equivalence classes 

we may define a partial ordering on Tr by ordering 

equivalence classes according to the ordering of their 

representatives. The structure of the equivalence classes 

is given by 

THEOREM 1. F(x)rv F*(x) if and only if F*(x)=F(ax+b) for 

some constants a> 0 and b. 

PROOF. F(x) - F*(x) if and only if a*F(x) is convex as 

well as concave on I and hence linear. Since it is also 

strictly increasing on I the result of the theorem follows. 

In statistical parlance theorem 1 asserts that the ordering 

is independent of location and scale parameters and that we 

may consequently restrict our attention to a comparison of 

standardized distribution functions. 
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3. A NECESSARY AND SUFFICIENT CONDITION FOR ORDERING 

To establish the significance of this weak ordering in 

statistical terms we shall need a well known result on 

convex functions and some equally well known properties 

of order statistics. Moreover we shall have to prove 

the latter properties for a slightly more general class 

of random variables than order statistics only. 

The result on convex functions is the celebrated JENSEN 

inequality [ 1 ]. 

LEMMA 1. Let x be a real valued random variable assuming 

values in a (finite or infinite) interval I with 

probability 1, and let f(x) be a real valued continuous 

convex function on I. Then, 

provided both expectations exist. 

PROOF. Let L(x) be a line of support of ,(x) through the 

point (Ex, f(E x)). Since L(x), Y\X) on I and L(x) is 

linear 

E 9'(~) ~ E L(x)=L(E x)= S"(E x). 

We define the following extension of the concept of an order 

statistic. 

DEFINITION J. A random variable x with distribution -;>i.:n 
function H (x) satisfying 11:n 

A-1 
d H 7\ : n ( x ) = r ( :;,.. s ~ ~ ( ~ l 1 _ i\) F ( x ) [ 1-F ( x ) ] n -i\ dF ( x ) , 

where n=1, 2, ... and " is any real number 1 ~ i\" n will be 

called a generalized order statistic from the distribution 

F( X). 

Clearly the i-th order statistic x. of a random sample of -i:n 
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size n (x..-i ~ x2 " ••• -' x ) from the distribution F(x) 
- 1 :n - :n -n :n 

satisfies the above definition for integer values of A. 

We do not claim that for non-integer values of~ these 

generalized order statistics have any statistical meaning 

whatsoever and they are merely introduced to facilitate 

the proof of theorem 2. 

If F(x)€T condition (2.3) asserts that Elx I< oo for all 
?>.:TI 

n=1, 2,... and 1 ~ ). , n. If G( y) and I are defined as in 

section 2 

E X 
->. :n 

1 
= j x d H . ( x ) = j G ( y ) b ( y ; ", n + 1- 71 ) dy J 

I i\.TI 0 

where b(y;,.,n+1-A) denotes the density function of the beta­

distribution with parameters A and n+1-A. Concerning Ex 
-":n 

the following properties will be needed in the sequel. 

LEMMA 2. For fixed n and F(x)CF, E x;,,.:n is a continuous and 

strictly increasing func ti.on of 7' for 1 , " , n. 

PROOF. For 1 <,.. < n, b(y;:>-.,n+1-).) is a continuous function 

of;,,., uniformly for O~y~ 1. Since, by (2.3), 

1 
f I G( y) I dy = I 'XI dF ( X) <. CD , 
0 I 

E x is a continuous function of ;. for 1 < ""- n. For :,.. =1 -,.:n 
(or n), b(y;:>.,n+1-'-) is continuous to the right (c.q. left) 

in", uniformly in y as long as y is bounded away from 0 

(c.q. 1). Since the function remains bounded if y ter.ds to 

0 (c.q. 1) this suffices to prove continuity of E x).:n to 

the right (c.q.left) also for :>.=1 (c.q. n). 

Strict monotonicity is proved by noting that for fixed:>. 

(1,,.~ n) 

;"" b(y;,.,n+1-:>.)=[- % + r~t~!~=~~tlog y-log( 1-y)]l:{y;,.,n+1-71) 

> 0 for y > Y,., 

<0 for y< Y,_ 
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for some O "y>- < 1, since the expression within brackets 

increases strictly from -ooto +mfor O.t.y <1. As G(y) 

is strictly increasing E xA:n increases strictly for 

1~11,n. 

LEMMA 3. If F( x )c T and x 0 € I then there exists an 

integer N ~ 1 and a unique sequence of real numbers :>.j 

satisfying 1~ ~j,N+j., E 2S.J\.:N+j = x 0 for j=O,1,2, ... , 
,._. J 

and lim NiJ· = y 0 = F(x0 ). 
j~oo 

PROOF. To prove the lemma we shall make use of a result 

due to HOEFFDING [2] stating that if F(x)ct and in is a 

sequence of integers satisfying 1 ~ i ~ n and lim i /n=y = 
r n n-+OO n o 

F{x0 ), then lim Ex. =x. In fact Hoeffding proved this 
n~m -in :n o 

theorem for a far more general class of distribution functions 

but we shall restrict ourselves to the class T. 

In the first place this theorem asserts that E 2S.1 :n and 

Ex converge towards the end-points of the open interval -n:n 
I. As Ex is a continuous and strictly increasing _.,,_:n 
function of~, this establishes the existence of an integer 

N and a uniquely defined sequern;e 1 ~ ).j ~ n with E :·;& ,._ j :N+j=x0 , 

j=O,1,2, ... , for any point x ~ I. 
A' 0 

Now if • J /N+j would not converge towards y O =F( x 0 ), a 

subsequence Ajk/N+jk would exist converging towards some 

value Yb=F(x;)rF(xo), since the sequence is bounded. As a 

result the sequences [ "jk]/N+jk and [ ~jk] +1/N+jk would also 

converge towards y'. (Here[.,,_] denotes the largest integer 
0 

, A). Applying Hoeffding's result for the second time and 

using the monotonicity of Ex we should find 
-i\:n 

This contradicts E x... N+ .=x , which proves the lemma. 
-".: J 0 

J 
We are now in a position to prove 
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THEOREM 2. If xA:n and x::n denote generalized order 

statistics from the distributions F(x)€~ and F*(x)eT 
respectively, then the following statements are 

equivalent: 

(i) F(x) -( F'\x) 

(ii) F(E ~":n)~ F*(E x::n) foralln==·1,2, ... and 1~"'n 

for all n=1,2, ... and ( iii) F(E xl, )~ F*(E x~ ) 
- :n -i :n i=1,2, ... 9 n 

(iiii) F(E xi:n)~ F*(E xi:n) for all n=M,M+1, ... and 
i=1,2,.,. 3 D 3 

where M denotes an arbitrary integer. 

We note that (ii), (iii) and (iiii) are independent of 

location and scale parameters as indeed they should be 

(cf section 2). 

PROOF. By substitution we find 

E xtt 
-;..:n = I pt 

I 
=1 

0 

1 

* where H (x) and H (x) denote the distribution functions r.:n ::>.:n 
of x,,,. and x * ( cf definition 3). - .... :n -:>.:n 
If F(x) <F*(x), or G~F(x) is convex on I., :application of lemma 

1 to the random variable xA:n and the function a*F(x) gives 

a*F(E xi\:n) ~ E a*F(x,..:n) = E x::n , or 

F(E xi\.:n) ~ F*(E x::n), 

which proves (i)==9(ii). As (ii)->(iii)--+(iiii) is trivially 

true it remains to be proved that (iiii) yields '(1). 
Suppose that (i) is false and hence that f(x)=G*F(x) is not 

convex on I. Since r(x) is twice differentiable on I and 

t"(x) is continuous (cf.section 2) there exist an open 

interval J 1 and a closed interval K, such that J 1 c Kc I and 

,/' ( x) < 0 on J 1 . We consider an arbitrary point } € J 1 and 



-8-

denote the tangent to 1(x) at x=, by L(x,~). Then 

y,,(x,3)=L(x,~)- 'f(x) > 0 for x € J 1 , xf:S , artd 1/J(J ,J)=O. 
According to lemma 3 we may choose an integer Nanda 

sequence '1 <:;). .(J)..: N+j in such a way that E ,2S_ (~) ·N+ .=J 
J ;i..,(J) "j.:,. J 

for j=O, '1, 2, ... , and ~im J+j = 12 =F(l) . . 
J-00 

We note that N may be chosen independent of 5€ J 1 as J 1 
is bounded away from the endpoints of the open interval 

I by K. Now 

E lf(.2S."A.(J):N+j'5) = 
J 

= r(N+j+'1) 
r( ?\j(j) r(N+j+'1- Aj(!)) 

7' ( 5 ) - '1 N+ j - ~.(.l) f </J ( X, J ) F j ( x ) ( '1-F ( X ) ) ,J dF (x)= 
I 

N+j-'1 
= C . ( J ) 1 1/1( X, l) f j ( X, 3) d F ( X ) , 

J I 

where C . (.J) > 0 and 
J 

,µ,.(s) '1-,a,.(J) 
fj(x,3)= F J (x) ('1-F(x)) J 

7\.(3)-'1 
with µj(3) = Nij-'1 , and hence lim ,µ,.(J)=7Z=F(.s). 

j--+00 J 

Furthermore, since E .2S.A:n is a continuous and strictly 

increasing function of A, Aj(J) and Jl-j(s) are continuous 

and strictly increasing functions of J. Hence fj(x,J) is 

continuous in x and J and so of course is 

f(x,J)= lim f.(x,3) = F~(x) ('1-F(x)) 1-~. 
J~oo J . 

For fixed .J e. J 1 , .30 say, f(x,l 0 ) possesses a single maximum 

at x= J . Therefore we can find a non-degenerate open 
0 

interval J 2 c J 1 , with ~ 0 € J 2, and constants A> 0 and t> 0 

satisfying 

max f ( X, J ) .(. A ~ A+ r "' inf f ( X, 5 0 ) • 

x¢J'1 o x€J2 

Since m4x f(x,!) and inf f(x,l) are continuous functions 
xt:.J1 xeJ 

of ..1 c J 2 these inequaliti~s will continue to hold for some 

interval :!;1 -c:: 3 <s2 , J 1, .:S2 € J 2 , or, which is exactly the 
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same, 

max f .(x,.!) < A <A+d"'< inf fJ.(x,3) 
,J,J J . E:J 

X ~ 1 X 2 

will hold for ,z 1=F(!1) < ,µ,/3) < F(3 2 )=722 , j=O, 1,2, .... 

Now for j--HD this interval tends to :!1< :l ":! 2 , so we 

can find an open interval J 3 c ( 3 1, ::;2 ) c J 2 such that the 

inequalities hold for~€ J 3 and sufficiently large j(~ M1 ). 

Thus for j ~ M1 and 3 e J 3 

E t/J("!:;.'1\,(1):N+j'J)> 
J 

{ J N+'-;1 f N+j ;1 .1 
> Cj(3) J f(x,3) fj J (x,3)dF(x)+ X(x,3) fj -(x,J)dF(x~ 

2 I-J1 

> C .(J) [ (A+J')N+j-1 J 
J J 

2 

cp( x, 3) dF ( x ) +AN+ j - 1 / X ( x, '! ) dF ( x ) J 
I-J1 

·. N+j-1 
= C/3). AN+J- 1 [ ( 1+ {) B(::S) - D(l)} , 

where x(x,3) = min f ~(x,1), oJ, o, 
B('!) =f f(x,j)d F(x) > 0, and 

J2 

D(J) = -1 X(x,5)d F(x) ➔ O. 
I-J1 

Since f(x,3) and X(x,3) an continuous in x and~ and the 

latter integral converges uniformly for all 3 e J 3 , B(:S) and 

D(~) are continuous on J 3 . Hence for some non-degenerate open 

interval J 4 c J 3 

inf B('l) = B.,.O, and 
J€J4 

0 ~ sup D( j) ~ D 
l€J4 
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For J € J 4 and j ~ M1 

N+''1[ ,rN+j-'1 1 
E ¢,'( E_ ~ . ( J ) : N + j , j ) > C j ( 1 ) . A J - B • ( '1 + A ) - D , 

J 

so for sufficiently large j ~: M2 ~ M1 and for all l E: J 4 

E 10E.,.,(l) :N+j_,°l)> 0. 
J 

Now ~j(l) being continuous in l maps J 4 on an interval L .. 
i\.('l) J 

As , lim ~ +. = 1i? = F( "S) the length of L. tends to infinity 
J~OO J J 

for j--.c:o, and as a consequence Lj contains an integer 

ij= "j(~), l€ J 4, for sufficiently large j ~ M3 i M2 . Hence 

E st,, ( xi j : N + j' J) = f( E E.i j : N + j ) - E <f( E_i . : N + j ) > 0, or 
J 

F( E x. N+.) > Flt( E x~ N+.) -l.: J -l.: J 
J J 

for all j ~ M3 and at least one integer i ., '1 ~ i.-' N+j. This 
J J 

contradicts (iiii) which completes the proof. 

Theorem 2 presents two equivalent approaches to the problem 

of finding inequalities for expected values or order 

statistics by comparison with distributions for which these 

quantities are either analytically tractable or numerically 

known. The equivalence of (i) and (iii) permits an approach 

by means of a convexity proof whereas the equivalence of 

(iiii) and (iii) enables us to start from known asymptotic 

results. 

We conclude this section with two remarks. The first one is 

simply that as F(x) < F 1\x) implies F(E E_) 6 F*(E x*) we may, 

roughly speaking, expect distributions following on one 

another to show a tendency for increasing skewness to the 

left c.q. decreasing skewness to the right. The second remark 

concerns conditions (2.2) and (2.3). We note that condition 

(2.2) has only been fully exploited to prove (iiii) >(i) in 
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theorem 2. For the remainder of the text continuity of 

F(x) would have been sufficient. Condition (2.3) might 

have been relaxed by replacing it by the condition 

HI x. I~ oo for some integers 1 , i ~ n , and adding 
-l :n O 0 

0 0 
11 if both expectations exist II to statements (ii), (iii) 

and (iiii) of theorem 2. The proof requires only minor 

changes. We shall make use of this in example 4.2. 

4. SOME EXAMPLES OF ORDERING. 

In this section we $hall give three examples of the 

order relation considered in the preceding sections, 

ranging from the almost trivial case of comparison with 

the rectangular distribution to the more intricate problem 

of mutual comparison of gamma distributions. Especially 

the first two examples are meant to provide simple 

illustrations of the theory rather than sharp inequalities 

for use in specific cases. 

4.1. Comparison with the rectangular distribution. 

We take F*(x)=x, o~ x, 1, or G*(y)=y. Since Ex~ = -i:n 
application of theorem 2 gives a result mentioned by 

BLOM ([3],p.68): 

If the density function F'(x) is non-decreasing (F(x) 

convex), then F(E xi:n)~ nt1 for all n=1,2, ... and i=1,2, .. ,n; 

if the density function F'(x) is non-increasing (F(x) concave) 

the inequalities are reversed. 

4.2. Comparison with F'\x)= - 1 and F'\x)= x- 1 , 
X X 

For F*(x)~ 

if EX. = --i:n 

~, -c:o<x~ -1, or G,t(y)= - ;, we find for i) 2 

n *( * ) i-1 H -:---::;- and F Ex. = -- . Although Elx I is not 
i- 1 -i :n n 

finite we may apply theorem 2 (cf. the remark at the end of 

section 3) to obtain for all n=2,3, ... and i=2,3, ... ,n: 
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1 
( - 1 i-1 If F[xT is concave on I F[xT con vex) then F(E x. )~ -1:n n 

if 1 is F[xT convex on I the inequalities are reversed. 

For F*(x)= x-1, 1, x~ a; or a*(y)= -11 , we find for i, n-'1 
X • -y 

E x*i · = ni and F~(E x~ )= ~. Applying theorem 2 we - :n n- i:n n · · 
obtain for n=2,3, ... and i=1,2, ... ,n-1 : 

If 1_;(x) is convex on I then F(E .!.i:n), ~; if 1_;(x) is 

concave on I the inequalities are reversed. 

, 

Combining the results of 4.1 and 4.2 we may set up crude 

bounds for the expected values of order statistics in terms 

of the distribution quantiles for many distribution functions, 

~ for instance 

( ) 1 -x <T'-1 A. Gamma distributions: F 1 x = rTrJ e x , er> O, 0-' X"- oo. 

For er, 1, F 1 ( x) is non-increasing and 4. 1 is applicable. 

Furthermore one easily shows by repeated differentiation that 
1 1 F1xJ is convex for all values of~, and -1-_-F~(x---.-) is convex 

for cr ~ 1. Summarizing we obtain 
1-1 i 

0->1 rl~F(Exi:n)~n 

1 cr-1 ( )'-1 B. Beta distributions: F 1 (x)= B(<r,-z:) x 1-x , <r>O, 

'r" > 0, 0' X .do 1. 

F 1 ( x) is non-decreasing for <T ~ 1, -r, 1, and non-increasing 

for r,1, -r~1. ,Repeated differentiation shows that F(:) 

is convex for r~ 1 and 1_;{x) is convex for ,r ~ 1. 
Hence we obtain . 
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tr> 1, "C> 1 i- 1 ,F(Ex. )'-1 n -i:n n 

1, 1 i-1 ( ) i ( 1) q- > "t= ---'FE x. , ~ <: n -i:n n n 

0'=1, r > 1 ( i-1 <) n~1'F(E xi:n)4i 
i -n n 

q- ~ 1, 't < 1 F(E xi:n), n~1(< 1) 
n 

<r< 1, r~ 1 (i-1 ) i ( ) n""< n+1 "- F E xi :n . 

The case tr= 't =1 is trivial and the case a-.e..1, 7:, 1 is 

not covered by 4.1 or 4.2. 
1 2 

.C. Normal distribution: F' (x)= .~ e-2 x , -oo< x < m. 
V 2,c 

1 1 
Here Ff5[f and 1-F(x) are both convex, so we find 

i-1 '- F( E x ) '- i n -i:n ~ n ' 

corresponding to o----+m and <T , l'---+00 in cases 
i-1 We note that in all three cases the bounds r1 

derived from 4.2 hold trivially for 1=1 and i=n 

4.3. The maximal chain of gamma distributions. 

A and B., 
i and -n 

respectively. 

In a partially ordered set we define a chain to be a subset 

in which any two elements are comparable. A maximal chain 

is a chain which is not included, in the strict sense, in 

any other chain. We recall KURATOWSKI 1 s lemma stating that 

any partially ordered set contains at least one maximal 

chain. 

If we start looking for a chain in the partially ordered 

class 1'' of standardized distribution functions (cf. section 

2) and keep in mind that the ordering is related, in a sense, 

to the skewness of the distributions (cf. section 3), a 

plausible candidate seems to be the class of gamma distributions 
( ) 1 ,x -t r-1 

F~ x = r[cr)" JO e t dt. 

We shall first sketch a proof that F (x)-<F (x) for O<<r<t:, 
't' <r 
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i.e. the gamma distributions follow one another with 

decreasing values of the parameter. 

This means we have to prove that ~x)=G-z:-Fo-(x)., 0<<T<r, 

is concave for O" x .c ro ., where Gz,( y) denotes the inverse 

of Fr(x). The rather forbidding appearance of f(x) leads 

to the following indirect approach. 

Consider the function '/J(x)=FO"'(x)-F-r(b(x+a)), b > O, a ;ii, O, 

and 0-'X-< oo. As Fcr(x)-Fr(sP(x))= O, and F't'(x) is strictly 

increasing, If (x) has the same sign as sqx)-b(x+a) for 

all x~O. Also tp'(x)=F~_(x)-b F~(b(x+a)) has the same sign 

as X(x)=log F~(x)-log F~(b(x+a))-log b, and 
X'(x)=(b-'1)+ r-'1 - r-'1 

x x+a · 
A detailed study of the sign of ?l' ( x) for x ~ 0 and 

different values of a,b,<r andr, and of the signs of X(x) 

and tjl(x) for x=O and x~oo reveals that f(x), and hence 

p(x)-b(x+a), can have at most two distinct zeros and is 

positive between these zeros. For b > O, a< 0 a comparison 

with the case b > 0, a=O shows that y,(x)-b(x+a) can have 

at most one zero, whereas for b " 0 the same holds sine e 

f(x) is strictly increasing. Thus the graph of ~(x) lies 

above any chord which proves concavity of sP(x). 
To construct a maximal chain we add the normal distribution 

F (x) and the class of distribution functions 
CD . . 

F (x)='1-F (-x), rr>0, -ro<x-' O, to the family of gamma 
-(T (T 

distributions Fir(x), <r >O. 

Now G F (x)=G ( '1-F,,.(-x) )=-GrF_.(-x) is convex for 
-?: -(1" -r U V 

0<<r<-c, x~O, so F_a-(x)-<F_r(x) for 0<o-<T:. Also 

FcJx)< Fcr(x) for all q- > 0 since G00 FO'"(x) is the limit of 

the (standardized) concavefunctions G't" Fcr(x), 0<<r<r, 

l:----tCD; F (x)< F (x) for all (1'>0 follows by the same -er ro 
argument. Hence the class Fcr(x), -OJ<O",+ro, is indeed a 

chain in 'F' ' , where 

F (x)-< F (x) 
(f' 't' 

'1 '1 for-~-er ~ 

To show that this chain is maximal we remark that 
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Fo-(x)-< F(x)--< Fr(x) for fixed <T and all ; > ~ , implies that 

G F (x)= lim G F?(x) is convex as well as concave, and <r 7:--+(1" .. 

0ence that F(x) and F~(x) are equivalent and may be 

identified; for fixed rand all;"- ; , Fcr(x)-< F(x)-<Fr(x) 
implies that F(x) and Fr(x) are equivalent. Finally we 

note that lim F (E x(o-))=1, where x(cr) denotes a random 
<r---+O tr - -

variable with distribution Fcr(x), so Fcr(x)-<F(x) for all 
~ implies F(E x)=1. But this again implies that either 

Ex is not finite or 25.=E x with probability 1, and hence 

that F(x)¢T by (2.2) and (2.3) A similar argument shows 

that F(x)< Fcr(x) for all <T also implies F(x)¢ 'F'. This 
concludes the proof that the chain is maximal. 
To illustrate the results obtained in this section and in 

section 7 table 1 shows the values of F(E xi: 10 )., 1=1_,2, .. ,10, 
for the gamma distributions F (x), 0"'=1,2., ... ,5, and the 

-, tr 
normal distributi_on FCD(x). For gamma distributions up to 

CT=5 values of E xi:n are given by GUPTA [4], whereas the 

expected values of normal order statistics were taken from 

TEICHROEW [ 5]. 

TABLE '1. Values of F(E xi:'10) for gamma distributions Fo-(x). 

CT=1 cr=2 CT=3 cr=4 o-=5 0-=CD 

-
i=1 0,095 o, 080 0,075 0,072 0,071 o, 062 

2 O, 190 0,177 0,'172 0,'170 0,168 o., 158 

3 0.,285 0,274 0,269 0,267 0,266 0,256 

4 o, 381 o, 370 0,367 0,365 0,363 0,354 

5 o,476 o, 467 0,464 0,462 O, 46 '1 O, 45 '1 
6 0,57'1 0,563 0,560 0,559 0.,558 0,549 

7 o,666 0,660 0,657 0,656 0,655 o,646 

8 o, 760 0,756 0,754 0,753 0,752 0,744 

9 0,855 0,851 0,850 0,849 o, 848 0,842 

10 0,947 0,945 0,944 0,943 0,943 0,938 

We note that the inequalities derived from 4.'1 and 4.2 are 

indeed rather crude. On the other hand the¥smooth appearance 
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of curves of the tabled values for fixed i suggests that 

computation of Ex. for different values of~ may · -i:n 
perhaps largely proceed by interpolation for F(E ~i:n) 

with respect to~, for which the monotonicity proved 

in 4.3 provides a firm basis. 

5. A WEAK ORDERING FOR A CLASS OF SYMMETRIC DISTRIBUTIONS 

In the remaining part of this report we consider the 

subclass ~c~ of symmetric distributions F(x) defined by: 

( 5. 1) F( X) f 'f' 

( 5. 2) F(µ-x) +F(p.,+x) =1 for some real ,,-u, and all values of x. 

By (2.3) Ex =f x d F(x) exists and is therefore equal to~. 
I 

We adopt the same notation and conventions as in section 2. 

Condition (5.2) may also be written 

G( y )+G( 1-y )=2,fo 

so for F(x)€1 and F*(x)€ ! 

for O < y ~ '1, 

G*F(p-x)+G*F(µ,+x)=2,P-11- for all ,,,u-x€ I, 

where _1..1,* denotes the point of symmetry of F'1'°( x). Consequently 

convexity (c,q. concavity) of G*F(x) for x >.,,u- implies 

concavity (c.q, convexity) of G*F(x) for X""-/-4-, and conversely. 

This may also be expressed as follows: if F(x)ef and 

F*(x)ed' and G*(y) is convex (c.q. concave) in G(y) for ½ < y < '1 

then G*(y) is concave (c,q. convex) in G(y) for O "'Y < ½, and 

conversely. It follows immediately that F( x )€ ! , F'\ x )e :f and 

F(x)-< F~(x) implies F(x)rv F~(x), i.e. symmetric distributions 

are not comparable unless they are equivalent. 

We may however define a different order-relation on 1 which is 

better adapted to this situation: 

DEFINITION 4. If F(x)€1' and F~(x)E::f , then F(x) i F*(x) if 
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,\r, 

and only if'G*(y) is convex in G(y) for ½<y.c1, 

* We shall say in this case that F(x) s-precedes F (x) or 

that F*(x) s-follows F(x) and that the two ares-comparable. 

We shall also speak of s-ordering, s-comparison, etc .. 

Clearly F( x) i F( x) for all F( x )€ :f> ; since a*F( x) maps fo 

on fo, and an increasing convex function of a convex 
function is again convex, F(x)-< F*(x) ..( F**(x) yields s s 
F(x) 1 F**(x) for F(x), F·*(x), F*~(x)€.:f. The relation i 
is thus a weak ordering on J. Defining an equivalence 

relation ~ by 

DEFINITION 5. If F( x )E: ';f and F*( x )l :t, then F( x) 's F*( x) 

if and only if F(x) 1 F*(x) and F~(x) ~ F(x), 

and passing to the collection ~ 1 of equivalence classes, 
the relation -< defines a partial ordering on ~ 1 • Again 

s 
we have 

THEOREM 3. F(x),....., F*(x) if and only if F*(x)=F(ax+b) for 
s 

some constants a > 0 and b. 

PROOF. F(x)'s F*(x) if and only if a*F(x) is concave-convex 

as well as convex-concave about,/"-, and thus linear on I and 
strictly increasing. 

Hence this order relation is also independent of location 

and scale parameters. The symbol's' is superfluous and may 
be replaced by rv . 

6. A NECESSARY AND SUFFICIENT CONDITION FORS-ORDERING. 

To obtain a theorem analogous to theorem 2 for the weak-order 

relation ~ , we only have to prove an analogue of lemma 1 

for the symmetric case. 
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LEMMA 4. Let x be a real valued random variable assuming 

values in a (finite or infinite) interval I with probability 

1, with distribution function H(x) satisfying 

dH(x +x))-d H(x -x) for some x l I and all x},0. Let 9\x) 
0 0 0 

be a real valued continuous function on IJ convex for x ~ x 0 , 

x E: I, and satisfying ,,,,r x +x) +nix -x )=2 f\ x ) for all x -x € L ~, o n o o o 
Then 

provided both expectations exist. 

We remark that the condition d H( x +x) i d H( x -x) for all 
0 0 · 

x ~ 0 ensures that, if x 0 -x € I, then also x 0 +x € I. The 

condition ~x0 +x)+f(x 0 -x)=2St:(x 0 ) for all x 0 -x € I is therefore 

compatible with the fact that ip(x) is only defined on I. 

PROOF, Since d H(x +x) ~d H(x -x) for x ;,.O, it follows that 
0 0 

EE ).X 0 • Let L(x) be a line of support of 'f(x) for x ~ x 0 

through the point (EE, f(E ~)). Then 

{f(x +x)-L(x +x) ;► 0 for x ~ O, x+x € I, and 
0 0 0 

L(x 0 +x)+L(x 0 -x)=2L(x0 )~ 2f(x0 )=5'{x 0 +x)+St'(x 0 -x) for x 0 -xE I, 

or L(x 0 -x)-r(x0 -x)~ ~x 0 +x)-L(x 0 +x) for x 0 -x€ I. 

Therefore 

~ [ 1(x)-L(x)J d H(x) = 

CD (X) 

= 6 [ ~ XO +x ) - L ( XO +x ) } d H ( XO +x ) - [ [ L ( XO - X ) - r( XO - X ) } dH ( XO - X ) ~ o, 

or E sP( X) ~ E L( x) = L( E X) = Y,( E X) • 

We may now pass immediately to 

THEOREM 4. If x and x* denote generalized order statistics 
-")..:n -).:n * 

from the distributions F(x)€ '.f and F (x)€:t' respectively, then 

the following statements are equivalent: 
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(i) F(x) ~ F*(x) 

( ii) F( E x ) ~ FM-( E x* ) for all n=1, 2,... and -?.:n -1':n 

n+'1 ~ "'' n 2 

(iii) F(E x. )~ F~(E x~ ) for all n=1,2, ... and 
-1:n -1:n 

· t 1 f · n +1 · .,/ in eger va ues o 1, - 2--' 1 ... n 

(iiii) F(E xi·.n. ).f F*(E x~ ) for all n=M,M+1, ... and 
-1 :n , 1 

integer values of i, n; -6 i ~ n, where !VI denotes 

an arbitrary integer. 

PROOF. From the proof of theorem 2 we recall 

Ex* = E G*F(x ) . 
-}.:n -i\.:n 

n+1 
For - 2-~ ~ ~ n the distribution function HA:n(x) of 

x (cf. definition 3) satisfies d H (µ+x) ➔ d H (µ-x) 
-"i :n i'\: n ;\ :n 
for x ~ O, since/-'- is the point of symmetry of the 

distribution F(x). Also (cf.section 5) 
a*F(p--x) + G~F(;4,+x) = 2?* = 2 G~F(µ) for .,a-x CI. 

If F(x) 1 F*(x), or G*F(x) is convex for x~/"', x€ I, 

application of lemma 4 to the random variable x , the -:>.:n 
point x 0 =,,a, and the function G*F(x) gives for 
n+1 ; , 

2 ~ A"' n 
111-x , or -,._ :n 

, 

which proves (i) l>(ii). The rest of the proof is an 

obvious modification of the proof of theorem 2. 

We note that for F(x)E:.':f, F(E ~,.,:n)=1-F(E xn+ 1-;>.:n). 

Consequently theorem 4 may of course also be formulated 
n+1 . n+1 for 1 ~ :>. ~ - 2- and 1, 1-' - 2- by reversing the inequalities 

in (ii), (iii) and ( iiii). 

At the end of section 3 we remarked that the order relation 

~ is related to the skewness of comparable distributions. 
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Theorem 5 shows that the relation i has implications 

for the even central moments of standardized s-comparable 

distributions. Let ,,u.k and fl'~ denote the k-th central 

moments of F(x) and F*(x), if they exist. We find 

THEOREM 5. If ,,.F(x)€$, F*(x)€1 and F(x) i F*(x), and 

if }b2k and .f"2k exist, then 

(k=1,2, ... ). 

PROOF. Without loss of generality we set 

E x= f x d F(x)=O, 
I 

E x* = j x d F '\ x) = / f( x) d F ( x) =0, 
- r* I 

where y:{x)=G*F(x) is concave-convex about x=O on I and strictly 

increasing, f(O)=O and hence f(-x)=- ct(x). We drop the trivial 

case F*(x) :! F(x), or r(x) = X on I. 

Now r(x)-x cannot be non-negative (or non-positive) for all 

x ➔ 0, x EI, for in that case f 2 (x)-x2=(So(x)-x)(4r1(x)+x) 

would be non-negative ( or non-positive) for all x £ I; since 

f(x) is continuous and we have supposed <f(x) '/1 x, this would 
* mean that µ 2- ,)J,2 would not be equal to zero. 

As <f(x)-x is convex for x ~ O, xf; I, and <f(O)=O, it follows 

that cp(x)-x" 0 for O 4' x <1: x and sP(x)-x ~ 0 for x ~ x ,xc I, 
0 2 2 0 

for some x > 0, x € I. Hence <f (x )-x & 0 for / XI~ x and 
2 2 0 0 0 

<f' (x)-x ~ 0 for I xi ~ x 0 ,x € I. Now 

.,u,,;k-_,µ 2k= / (sP2k(x)-x2k)d F(x)= f (f 2(x)-x2 ) cjJ(x)d F(x), 
I I 

k-'1 2· 2k 2j 2 
where </)(x)= L x J <p - - (x) ➔ 0 on I, and cp(x) is even 

j=O 
and increasing for x ~ O, x € I. So 
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· I 2 2 
= f(x 0 ) }_ (, (x)-x )dF(x)=O, 

I 

which completes the proof. 

The other remarks at the end of section 3 continue to apply. 

7. SOME EXAMPLES OF S-ORDERING. 

The first two examples given here are similar to those 

treated in section 4. They refer to s-comparison with the 

rectangular distribution and to mutuals-comparison of 

symmetric beta distributions. The third example treats 

the s-ordering of the normal and logistic distributions. 

7.1 s-Comparison with the rectangular distribution. 

We take F~(x)=x, 0, x ~ 1, or a*(y)=y, and E x~ :n= n~1 
For F(x) we consider the class of symmetric distributions 

having a density function F'(x) which possesses a single 

extreme, and is therefore either U-shaped (single minimum; 

F(x) concave-convex) or unimodal (single maximum; F(x) 

convex-concave). By theorem 4 we have: 

If F'(x) is symmetric and U-shaped, then F(E xi:n)' n~1 for 

i ~ n;\ If F' (x) is symmetric and unimodal, then 

i . n+1 
F(E xi:n)~ n+1 for i~ - 2-. 

BLOM ([3 J p.66) proved the latter inequality asymptotically 

for n~, which by theorem 4 is equivalent to the result 

stated here. 

VAN DANTZIG and HEMELRIJK [6] mention the result for all n 

in connection with a comparison of TERRY 1 s and 

VAN DER WAERDEN 1 s tests where respectively the quantities 
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Ex. and G(ni+· ~) for the normal distribution are -l:n I 

involved in the test statistic. 

7.2. The s-chain of symmetric beta distributions. 

Consider the class F~(x)= 2~~~ 2 a-) 2 
2 (r(a-)) 

X f ( 1-t2)tr-1 dt, 
- 1 

<T > O, -1 4t x, 1, representing an increasing linear transform 

(x=2u-1) of the symmetric beta distributions. 

We shall sketch a proof that FIT( x) ~ Fr( x) f o'r O < er< ·c:, 

i.e. the symmetric beta distributions s-follow one another 

with increasing values of the parameter. 

Hence we have to show that f(x)=G~ F~(x) is convex for 

0 < x « 1, where G'l'( y) denotes the inverse of F.,;( x). As in 

4.3 we consider the function ~(x)=Fo-(x)-F'l:'(b(x+a)), b > 0., 

ba ~ -1, b( 1+a), 1, which has the same sign as St<.x)-b(x+a) 

for o,x~1. Also t/,J'(x) has the same sign as 

X(x)=log F'(x)-log F'(b(x+a))-log b. er ~ 

X' ( x ) = _ 2 ( a- - 1 ) x + 2 b 2 ( r - 1 ) ( x +a ) 
1-x2 1-b2 (x+a) 2 

As in 4. 3 we study the sign of X.' ( x) for O ~ x '= 1 and the 

signs of ~(x) and ~(x) for x=O and x=1. In this way we 

find that ~(x) and hence ~(x)-b(x+a) can have at most 

two zeros for O, x & 1, in which case the function is 

negative between these zeros. For b > O, ba <-1, b(1+a), 1 

the representation of ~(x) remains valid for 

-a-1/b, x .6 1, and we may prove the same result in this 

interval. However, 9'(x)-b(x+a)" 0 for OE x, -a and hence 

the result continues to apply for O ~ x ~ 1. For b > 0, 

b( 1+a) :>- 1 a comparison with the case b > O, b( 1+a)=1 shows 

that 9\X)-b(x+a) can have most one zero for 0~ x, 1; for 

b ~ 0 the same holds since f(x) is strictly increasing. 

Hence the graph of f(X) for O, x ~ 1 lies below any chord, 
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which proves convexity of r( x) for O * x ~ 1. 

7.3. s-Co~parison of normal and logistic distributions. 

1 X _l.t2 
Consider F(x)= ,r::::-:2 f__ e 2 dt, -CD< x < ro, and 

V 27C -ro * 1 . -if F (x)= --- , -co<x < ro. Clearly F(x)t:.:t' and F (x)€Y; 
1+e-x 

fuithermore one easily shows by repeated differentiation 

that G*F(x)=log F(x)-log( 1-F(x)) is convex for x ➔ 0, so 

F ( X ) i F* ( X ) • 

Now Ex~ is simple to evaluate, giving -i:n 

Since 

* E xi:n 
i-1 1 

= k=~-i k 

= 0 

f or i' ~ n+ 1 
~ 

for i 

i-1 1 . 1 • 1 
l-2 *( * ) l--~ - < log -~--r we find F E x. .,s .:::....2.. 

L- k "' n -i +-2.L ' -i : n n k=n+1-i 
n+1 
- 2- and as a consequence 

• 1 
F(E x. ).1, l-2 

-i:n n 
f . n+1 or i > - 2- • 

for 

We note that BLOM [3] proved the corresponding asymptotic 

result for n--+ro. The inequality can not be sharpened for 
n+1 i-l. all n and all i > - 2- since F(E x. )....., .:::....2.. for i=n, n~. -i:n n 

The easy derivation of this inequality (and of course also 

of those proved in 4.1, 4.2 and 7.1) is a consequence of 

the fact that a*(y) is an incomplete beta function. The 

properties of distributions F*(x) of this type (cf. [3]) 
make them particularly well suited as standards for 

comparison ans s-comparison, and a further study of 

inequalities to be obtained in this way is in progress. 

The author is indebted to Professor G.E. Noether for 

drawing his attention to a problem which led to this research. 
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