STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

AFDELING MATHEMATISCHE STATISTIEK

Report S 303 (VP 17)

Two weak-order relations for distribution functions

Preliminary report

by

W.R. van Zwet

August 1962



1. SUMMARY

For the class F of distribution functions satisfying
(1) For 0<F(x) <1, F(x) is strictly increasing,

(ii) For 0 <F(x)< 1, F(x) is twice differentiable with

continuous second derivative,
(1ii) F(x) possesses a finite absolute first moment,

the following order relation is defined F(x)<F (x) if
G*F(x) is convex on the interval where 0< F(x) < 1, Here
G*(y) denotes the inverse of F*(x). The ordering is
independent of location and scale parameters.

Let E Xi n and E §;:n denote the expectation of the i-th
order statistic of a sample of size n from F(x) and F*(x)
respectively. It is shown that if F(x)< F*(x), then

F(E x4.,)¢ F*(E Ezzn) for all i and n, The converse is
proved if the inequalities hold for sufficiently large n.
For the subclass Y<¢F of symmetric distributions a different
order relation is defined: F(x)-g F¥(x) if G*F(x) is convex
on the interval where 3 < F(x) < 1, Here again the ordering
is independent of location and scale parameters., The same
inequalities hold in this case for i),Egi , Whereas the
theorem may be reversed in the manner mentioned above,
Examples of both order relations and inequalities for

expected values of order statistics are given.



-D-

2. A WEAK ORDERING AND AN EQUIVALENCE FOR A CLASS OF
DISTRIBUTIONS,

We shall consider the class F of all probability distribution
functions F(x) on R, satisfying:

(2.1) For O<F(x) <1, F(x) is strictly increasing,
(2.2) For 0<F(x)< 1, F(x) is twice differentiable with
continuous second derivative F"(x),

(2.3) F(x) possesses a finite absolute first moment
+00

Elxl= /f |x[dF(x).

-00
Conditions (2.1) and (2.2) imply that F(x) possesses a twice
differentiable, strictly increasing, inverse function G(y)
with continuous secénd derivative, unlquely defined for
0<y<1by G F(x)=x. We shall denote distribution functions
belonging to T by F(x), F(x),..... , the corresponding
(finite or infinite) open intervals where they increase
strictly by I, I*, ..... , their inverse functions by G(y),
¢ (y),....., and random variables possessing these
distributions by x,x%,..... 1) '
If F(x)EF and F¥(x)€F then G F(x) is also uniquely defined
on I where the function is strictly increasing and twice
differentiable with continuous second derivative., We shall
Csaj that G (y) is convex in G(y) for 0<y ¢y4y, <1 1if
G"F(x) is convex for G(yq)c X <G(y2), or equivalently, if
G F¥(x) is concave for G“(y1)< X«<G*(y2). Throughout this
report we shall use the concepts of convexity and concavity
in the weak sense thus referring to non-negative and non-
positive second derivative respectively.
In the first part of this report we shall be concerned with

the following order relation on F ,

1) We distinguish random variables from algebraic variables
and numbers by underlining their symbols.
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DEFINITION 1, If F(x)et and F*x)ET , then F(x)=< F¥(x)
(or equivalently F*(x)» F(x)) if and only if G*(y) is
convex in G(y) for O<y <1,

We shall say in this case that F(x) precedes F¥(x) or that
F*(x) follows F(x) and that the two are comparable,
Clearly F(x)<F(x) for all F(x)EF ; since an increasing
convex function of a convex function is ggain convex,
F(x)<F*(x)=<F"*(x) ylelds F(x)<F™(x) for F(x), F¥(
and F*¥(x)€TF . The relation < is thus a weak ordering on

x)
F . Hence by defining an equivalence relation ~ by

DEFINITION 2. If F(x)eF and F*(x)ET , then F(x)mnF*(x)
if and only if F(x)=<F*(x) and F*(x)<PF(x),

and passing to the collection F' of equivalence classes
we may define a partial ordering on F' by ordering
equivalence classes according to the ordering of their
representatives., The structure of the equivalence classes

is given by

THEOREM 1., F(x)~ F (x) if and only if F*(x)=F(ax+b) for

some constants a»> O and b,

PROOF. F(x) ~ FY(x) if and only if G*F(x) is convex as
well as concave on I and hence linear, Since it is also

strictly increasing on I the result of the theorem follows.

In statistical parlance theorem 1 asserts that the ordering
is independent of location and scale parameters and that we
may consequently restrict our attention to a comparison of

standardized distribution functions,
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3. A NECESSARY AND SUFFICIENT CONDITION FOR ORDERING

To establish the significance of this weak ordering in
statistical terms we shall need a well known result on
convex functions and some equally well known properties
of order statistics., Moreover we shall have to prove
the latter properties for a slightly more general class
of random variables than order statistics only.

The result on convex functions 1s the celebrated JENSEN
inequality [1].

LEMMA 1, Let X be a real valued random variable assuming
values in a (finite or infinite) interval I with
probability 1, and let ¢(x) be a real valued continuous

convex function on I, Then,

¢(E x) ¢ E ¢(x) ,

provided both expectations exist.

PROOF. Let L(x) be a line of support of ¢(x) through the
point (E x, ¥ E x)). Since L(x)¢ Ax) on I and L(x) is
linear

E ¢(x)» E L(x)=L(E x)= ¢(E x).

We define the following extension of the concept of an order

statistic.

DEFINITION 3. A random variable X,:n with distribution

function H3°n(x) satisfying

I(n+1) F?;

1
Tl = TRy T

[1-F(x)]"ar(x),
where n=1,2,... and a 1s any real number 1< A &n will be

called a generalized order statistic from the distribution
F(x).

Clearly the 1-th order statistic Xi.n of a random sample of

°
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X, .,) from the distribution F(x)

satisfiles the above definition for integer values of =a .

N

1 € oo
slze n (§4zn$'§2;n‘ ° =

We do not claim that for non-integer values of =& these
generalized order statistics have any statistical meaning
whatsoever and they are merely introduced to facilitate
the proof of theorem 2,
If F(x)e€F condition (2.3) asserts that Elxz:nl< oo for all
n=1,2,... and 1¢ * ¢n., If G(y) and I are defined as in
section 2
1

E X, ., =/I R, () = [ 0()b(ysantt-2)ay,
where b(y;a,n+71-2) denotes the density function of the beta-
distribution with parameters a and n+71-2A, Concerning E X,

in
the following properties will be needed in the sequel,

LEMMA 2. For fixed n and F(x)EF, E X,., Is a continuous and

strictly increasing function of A for T¢a<&n,

PROOF, For 1<a <n, b(y:a,n+1-a) is a continuous function

of A, uniformly for O¢y< 1. Since, by (2.3),
/]
S 1a(y)|ay = [ 1x)aF(x) < @,
0 I

E X n is a continuous function of a for 1<a<n, For a=1
(or n), b(y;a,n+1-2a) is continuous to the right (c.q. left)
in A, uniformly in y as long as y 1s bounded away from O
(c.q. 1). Since the function remains bounded if y tends to
O (c.q. 1) this suffices to prove continuity of E Xoin to
the right (c.q.left) also for a=1 (c.q. n).

Strict monotonicity is proved by noting that for fixed a

(1¢2¢n)

é% b(ysa,n+7-ﬁ)=[- PEE?% + P;%211:23+1og y—log(ﬂ—y)]Uynﬂﬁﬂ~ﬂ

>0 for y» Va

<O for y« Yo
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for some O <y$<1, since the expression within brackets
increases strictly from -oco to +oo for O<y <1, As G(y)
is strictly increasing E Xoin increases strictly for

1€ A &n,

LEMMA 3, If F(x)eF and x,€ I then there exists an

integer N 2 1 and a unique sequence of real numbers Aj

satisfyingaﬂs Ajs N+j, E zﬂj:N+j = X for j=0,1,2,...,
. J -
and lim = = =F .
j—oo N+J Yo (Xo)

PROOF. To prove the lemma we shall make use of a result
due to HOEFFDING [ 2] stating that if F(x)€TF and 1, 1is a

sequence of integers satisfying 1€ ins n and lim ih/n=yo=
/ Nn—--00

F(x_), then HE&E %, .,=X,. In fact Hoeffding proved this
theorem for a far morg general class of distribution functions
but we shall restrict ourselves to the class F .

In the first place this theorem asserts that E x,, ~ and

E X, ., converge towards the end-points of the open interval

I. As E x . 1s a continuous and strictly increasing

function of A , this establishes the existence of an integer

. . A < . N _
N and a uniquely defined sequence 1 £ j< n with E éﬁzj:N+j X
j=0,1,2,..., for any point xos I.

Now if.AJ/N+j would not converge towards yO=F(XO), a
subsequence “jk/ijk would exist converging towards some
value yé=F(xé)%F(xO), since the sequence is bounded, As a
result the sequences ijyN+jk and [Ajk]+1/N+jk would also
converge towards yé. (Here [ 2] denotes the largest integer
¢ ), Applying Hoeffding's result for the second time and

using the monotonicity of E Xa.n W€ should find

Xé=lim E X, . &lim E x ¢lim E x ; =x/
K —00 [jk:]:N-%-jk' K—c0 N+, k—oo [jk]+’l:N-+jk

This contradicts E EJB:N+j=XO’ which proves the lemma.

We are now in a position to prove



THEOREM 2., If Xan and'§;_n denote generalized order

statistics from the distributions F(x)€F and F (x)EF

respectively, then the followling statements are

equivalent:
. »
(1) F(x) < F (x)
11) F(E x. )< FY(E x- ) for all n=1,2,... and 1€A&n
—2A:n * —A:n
(111) F(E x4, )¢ F (E 5ﬁ,n) for all n=1,2,... and
: L i=1,2,...,n
(1111) F(E x4, )¢ F¥(E x,. ) for all n=M,M+1,... and
—1lin — 1:n .
l=/|,2,,..31’15

where M denotes an arbitrary integer,.

We note that (1i), (iii) and (iiii) are independent of
location and scale parameters as indeed they should be
(cf section 2),

PROOF., By substitution we find

/]
Exy, = /' x d H*: (x) =.é' G*(y) bly:a,n+1-a)dy =

(x) = E G"F(x,

) 3

I A:n n
where Hz-n(x) and HZ,H(X) denote the distribution functions
° * : . . .
of x,. and x_. ~ (cf definition 3).

Al :
If F(x)<F*(x), or G*F(x) is convex on I, .application of lemma

1 to the random variable x and the function G F(x) glves

A:n
* * %
G'F(Ex,,, )< EGFZXx,,.)=Ex,., ,or
* *

which proves (i)=(ii). As (ii)==(1ii) ==y(iiii) is trivially
true it remains to be proved that (i1iii) yields (1).

Suppose that (1) i1s false and hence that ¢(x)=G F(x) is not
convex on I, Since ¢(x) is twice differentiable on I and

¢"(x) 1s continuous (cf.section 2) there exist an open
interval J,l and a closed interval K, such that J_,¢ K¢ I and

/]
#'(x) < 0 on J,. We consider an arbitrary point ¢ €J, and
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denote the tangent to ¢(x) at x=% by L(x,3%). Then
y(x,§)=L(x,§)- ¢(x)>0 for x €7, , x#% , and Y(3,3)=0
According to lemma 3 we may choose an integer N and a

sequence <Aj(3)< N+j in i?%?)a way that E X (3):N+j=}
for j=0,1,2,..., and lim —Ni;rj—— =7 =F(Z).

—00 '
We note that N may be chosen independent of E€ J,l as Jq

is bounded away from the endpoints of the open interval
I by K. Now

E )U( a(} N+j’3) =

r 1) (%) )
r(zj(;)rméﬁgi: A (%)) j, P(x,3) (x)(1-F(x)) dFOQ—

-1
-on [ Wy (a3 4R

(3 -4 (%
where CJ(S) >0 and fj(x,3)= Fﬁﬁ( )(x) (’I-F(x))1 /3( )

' A (F)-
with 'AU(S) = W and hence ;Eﬂ; /3(3)=~7=F(3).

Furthermore, since E X :n is a continuous and strictly

increasing function of a , AJ(S) and /3(3) are continuous
and strictly increasing functions of ¥ ., Hence f,(x,3) is

J

continuous in x and 3 and so of course is

£(x,3)= 1im £,(x,3) = F(x) (1-F(x))""?

J—oo
For fixed ¥ eJ,, 3 say, f(x,so) possesses a single maximum
at x= 30. Therefore we can find a non-degenerate open
interval J2C Jq, with :306 JE’ and constants A> 0 and §>0

satisfying
max f(x,}o)<AAA+S< inf  f(x,3 ).
x gJ x€J
1 2
Since m&x f(x,%) and inf f(x,3) are continuous functions

of € J2 these inequalitiés will continue to hold for some
interval 3¢ 3 <:§2, 3,‘, 326 Jos Or, which is exactly the



same,

max fj(x,3)<A<A+J'< inf f£,(x,3)

- J
xsf-‘J1 x €7,

will hold for 73,]=F(31) < fej(S) < F(32)=722, j=0,1,2,...

Now for j—oo this interval tends to 3,]< 3‘32, SO we

can find an open interval J3 C(Z’s,], 32)5 J, such that the
inequalities hold for 3 € J3 and sufficiently large j(= IM,).

Thus for j> lVI,I and 3 € J3

Ny

; x,S)dF(x)}

= 0,(3). pl+3- { (1+ )

where A(x,3) = min {gb(x,'j), O}é 0,
B(3) =/J Y(x,3)d F(x) > 0, and

2
p3) = -/  a(x,3)a F(x) » o.
I—Jq

Since W(x,}) and X(x,3) an continuous in x and 3 and the
latter integral converges uniformly for all 3 € J3, B(3) and
D(¥) are continuous on J,. Hence for some non-degenerate open

3
3

inf B(3¥) = B» 0, and
IeJ4

interval JH cJ

Os sup D(3)sD
3€J4
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For 3€J) and J» M,

N+ -1
) “D},v

=loq

E W(-&aj(s):Nﬁ’}) > CJ.(‘S). ANtI-T {B,(’l+

so for sufficiently large j;:M2> IVI/I and for all SE.JM
E ’”(3{-7\3(3) :N+j’§)> 0.

Now Aj(3) being continuous in 3 maps J4 on an interval L..
2, (3) J

As 1im —f%rr-==@ = F(3) the length of L, tends to infinity
J—00 J J

for j— o, and as a consequence Lj contains an integer

ij= 1j(3), 3€7J), for sufficiently large ja]WBZ.ME. Hence

E ¢(x, . ,3) = ¢(E x. . 5
(—1J.N+J ) # Elj.N+j) - E ¢(§i :N+j) 0, or

» ”®
-’E-iJ.:N+j)> F(E 5ij:N+j)

P(E

for all j)M3
contradicts (1iii) which completes the proof,

and at least one integer ij’ 1£:ijélﬂ+j, This

Theorem 2 presents two equivalent approaches to the problem
of finding inequalities for expected values or order
statistics by comparison with distributions for which these
quantities are either analytically tractable or numerically
known, The equivalence of (i) and (i1ii) permits an approach
by means of a convexity proof whereas the equivalence of
(iiii) and (iii) enables us to start from known asymptotic

results,.

We conclude this section with two remarks, The first one is
simply that as F(x)<F"(x) implies F(E x) ¢ F (E x*) we may,
roughly speaking, expect distributions following on one
another to show a tendency for increasing skewness to the
left c.q. decreasing skewness to the right. The second remark
concerns conditions (2.2) and (2.3). We note that condition

(2.2) has only been fﬁlly exploited to prove (iiii)=(1) in
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theorem 2, For the remainder of the text continuity of
F(x) would have been sufficient. Condition (2.3) might
have been relaxed by replacing it by the condition

E Eio:no|<oo for some integers 1¢ ioé ngs and adding
"if both expectations exist" to statements (ii), (iii)
and (iiii) of theorem 2, The proof requires only minor

changes. We shall make use of this in example 4.2,

4, SOME EXAMPLES OF ORDERING.

In this section we shall give three examples of the

order relation considered in the preceding sections,
ranging from the almost trivial case of comparison with
the rectangular distribution to the more intricate problem
of mutual comparison of gamma distributions. Especially
the first two examples are meant to provide simple
illustrations of the theory rather than sharp inequalities

for use in specific cases.
4,1, Comparison with the rectangular distribution.

3 * . 1
We take F (x)=x, O¢x €1, or G (y)=y. Since E §;:n= =
application of theorem 2 gives a result mentioned by
BLOM ([3],p.68):
If the density function F'(x) is non-decreasing (F(x)
convex), then F(E ﬁi:n)é H%T for all n=1,2,... and 1=1,2,..,n;
if the density function F'(x) is non-increasing (F(x) concave)

the inequalities are reversed,.

4,2, Comparison with F*(x)= - % and F*(x)= 5§1:
%* 1 » 1 . .
For F (x)= - s -©0<x<« -1, or G (v)= - 3o e find for i3 2
* _ _ _n % * _i- *, .
Exi.,=-3-gand F(EX,, )= . Although EIX | is not

finite we may apply theorem 2 (cf. the remark at the end of
section 3) to obtain for all n=2,3,... and 1=2,3,...,n:
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1 . 1 1i-1
Ir F[x) s concave on I (- E3) convex) then F(E &i:n)$ =
1

if is convex on I the inequalities are reversed,
foi q

For F*(x)= §:15 1¢x<ay or G (y)= 795’ we find for i€ n-7

. _ n * *# _ 1 A -
Ex;. . =g-7andF (E Xi:n) = . Applying theorem 2 we
obtain for n=2,3,... and i=1,2,...,n-"1

1 ) 1, 1 :
If FoF(x) 1S convex on I then F(E xy.,)¢ &5 1f 557 is

concave on I the 1lnequalities are reversed,

Combining the results of 4,1 and 4.2 we may set up crude
bounds for the expected values of order statistics in terms
of the distribution quantiles for many distribution functions,
for instance

A, Gamma distributions: F'(x)= F%;7-e—x xrvﬂ, >0, Og x<o00,

For o<1, F'(x) is non-increasing and 4.1 is applicable,

Furthermore one easily shows by repeated differentiation that
1 . - 1 .

—T—j- is convex for all values of ¢ , and W:FTET 1s convex

F(x
for o 3»1. Summarizing we obtain

o> Llerex, )¢z
=1 (<)« F(Ex,, )¢ =
et R e s,
B. Beta distributions: F'(x)= g ;,t LV (1x ¥ a0,

>0, Osx< 1,

F'(x) is non-decreasing for a3 1, 1, and non-increasing

. NN g
for e<€1, T:1, ﬁRepeateﬁ differentiation shows that (%)
is convex for T3 1 and TF(X) is convex for & » 1,

Hence we obtain



a> 1, > 1 'L;l—/]'$F(E X:L:n)s%

a> 1, Tt= "1 }‘%14F(E -}ii:n)s }'l'iTL_—(< %1')
=1, > 1 (i—;;-«) ;1%;1-4 F(E x;.,)¢ %;

T3, T F(E x;.,)¢ Hi“q‘“ =)
<1, T3 (i-r'l—/]<) ni/]éF(E 2(-i:n)

The case =T =1 1s trivial and the case <1, T<7 1is

not covered by 4.1 or 4,2,

2
‘ -L
.C. Normal distribution: F'(x)= 1 e 2% | w<x<m
' V2x
Here Ff%T and ?t%TET are both convex, so we find
i-1 i
L CREx ¢

corresponding to ¢—w@ and ¢ ,z—00 1n cases A and B.-
We note that in all three cases the bounds iﬁi and %

derived from 4,2 hold trivially for i=1 and i=n respectively.
4,3, The maximal chain of gamma distributions.

In a partially ordered set we define a chain to be a subset
in which any two elements are comparable. A maximal chailn

i1s a chain which is not included, in the strict sense, in
any other chain, We recall KURATOWSKI's lemma stating that
any partially ordered set contains at least one maximal
chain,

If we start looking for a chain in the partially ordered
class F' of standardized distribution functions(cf. section
2) and keep in mind that the ordering is related, in a sense,
to the skewness of the distributions (cf. section 3), a
plausible candidate seems to be the class of gamma distributions

1 X -t .-
F(T(X)_F(ﬂ_ 4 e t dt.

We shall first sketch a proof that Ft(x)< Fa.(x) for 0<o<T,
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i.e. the gamma distributions follow one another with
decreasing values of the parameter.

This means we have to prove that y{x)=GiFr(x), O<a<T,

is concave for O« x <« @, where Gt(y) denotes the inverse

of F_(x). The rather forbidding appearance of ¢(x) leads
to the following indirect approach.

Consider the function ¢ (x)=F.(x)-F.(b(x+a)), b>0, a=>0,
and O<x<o0o. As F_(x)-F_(¢(x))= 0, and Ft(x) is strictly
increasing, ¢ (x) has the same sign as ¢(x)-b(x+a) for

all x >0, Also ¢'(x)=F}(x)—b F (b(x+a)) has the same sign
as X(x)=log F (x)-log F/(b(x+a))-log b , and

1 (x)=(b-1)+ &1 - I

A detailed study of the sign of A '(x) for x 20 and
different values of a,b,r and z, and of the signs of A(x)
and ¢(x) for x=0 and x—o0 reveals that ¢(x), and hence
p(x)-b(x+a), can have at most two distinct zeros and is
positive between these zeros, For b >0, a< 0 a comparilison
with the case b >0, a=0 shows that ¢(x)-b(x+a) can have

at most one zero, whereas for b ¢« 0O the same holds since
¢(x) 1s strictly increasing. Thus the graph of ¢(x) lies
above any chord which proves concavity of y(x),

To construct a maximal chain we add the normal distribution
Faﬁx) and the class of distribution functions

F__( |
distributions Fr(x),0'>0.

X)zq_Fr(-x), T30, 403<x:sCL to the family of gamma

Now G_, F_r(x)=G_t(1-F¢(-X))=—GtFr(—x) is convex for
O¢<r<z , x¢0, so F__(x)<F__(x) for O<o<T, Also

FCO(X)=< F.(x) for all o> 0 since G F_(x) is the limit of
the (standardized) concave functions Gy F.(x), O<ea<z,

T —C0 ; F_T(x)<ﬁFa)(x) for all ¢>0 follows by the same
argument. Hence the class F,(x), -w<o¢ tm, 1s indeed a

chain in ¥ ', where

() BN

/I
Fa_(x)-< Fr(x) for =«

To show that this chain is maximal we remark that



ET(X)<iF(X)<IFt(x) for fixed ¢ and all ¢
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/]

g
>F

, lmplies that

G F¢(X)=:%E$- G F_(x) is convex as well as concave, and
hence that F(x) and Ff(x) are equivalent and may be

1

identified; for fixed v and all = <

g

a
T °

Foe(x) < F(

x)<FE(x)

implies that F(x) and F_.(x) are equivalent. Finally we

note that 1lim F _(E x(¢))=1, where x(o¢) denotes a random
g—0 7 - -

variable with distribution Fw(x), so F.(x)<F(x) for all
¢ implies F(E x)=1. But this again implies that either

E x 1s not finite or x=E x with probablility 1, and hence

that F(x)¢F by (2.2) and (2.3)

A similar argument shows

that F(x)<F_(x) for all ¢ also implies F(x)¢ F. This
concludes the proof that the chain is maximal,
To i1llustrate the results obtained in this section and in

section 7 table 1 shows the values of F(E ﬁi'ﬂO)’

for the gamma distributions Ff(x), c=1,2,...,5,

i=1,2,..,710,
and the

normal distributioﬂ ED(X). For gamma distributions up to
are given by GUPTA [4], whereas the

expected values of normal order statistics were taken from

=5 values of

TEICHROEW [ 5].

E x.
—i:n

gamma distributions F_(x).

TABLE 1. Values of F(E x,.,,) for
a=" a=2 =3 a=4 =5 J=m
i="1 0,095 | 0,080 | 0,075 | 0,072 | 0,071 | 0,062
2 0,190 | 0,177 | 0,172 | 0,170 | 0,168 | 0, 158
3 0,285 | 0,274 | 0,269 | 0,267 | 0,266 | 0,256
4 0,381 0,370 0,367 | 0,365 | 0,363 | 0,354
5 0,476 | 0,467 | 0,464 [ 0,462 | 0,461 | 0,451
6 0,571 0,563 | 0,560 | 0,559 | 0,558 | 0,549
7 0,666 | 0,660 | 0,657 | 0,656 | 0,655 | 0,646
8 0,760 | 0,756 | 0,754 | 0,753 | 0,752 | O, 74k
9 0,855 | 0,851 0,850 | 0,849 | 0,848 | 0,842
10 0,947 | 0,945 | 0,944 | 0,943 | 0,943 | 0,938

We note that the inequalities derived from 4,71 and 4.2 are

indeed rather crude. On the other hand the‘smooth appearance

v



-16-

of curves of the tabled values for fixed 1 suggests that
computation of E Xy .y fOT different values of o may

perhaps largely proceed by interpolation for F(E X .n
with respect to ¢ , for which the monotonicity proved

)

in 4.3 provides a firm basis.

5. A WEAK ORDERING FOR A CLASS OF SYMMETRIC DISTRIBUTIONS

In the remaining part of this report we conslder the
subclass £¢F of symmetric distributions F(x) defined Dby:

(5.1) F(x)eTF

(5.2) F(u-x)+F(sw+x)=1 for some real 4 and all values of x,.

By (2.3) E §_=_/ x d F(x) exists and is therefore equal to .
I
We adopt the same notation and conventions as in section 2,

Condition (5.2) may also be written
G(y)+G(1-y)=2 @ for O<y.<1,

so for F(x)€S and F¥(x)€E S

G¥F(p-x ) +GFF (pax ) =2 o for all u-x€1,

where /w*denotes the point of symmetry of F¥(x). Consequently
convexity (c.q. concavity) of G¥F(x) for x >« implies
Qoncavity (c.q. convexity) of G*F(x) for x<s , and conversely.
This may also be expressed as follows: if F(x)eSf and

F*(x)€4 and G*(y) is convex (c.q. concave) in G(y) for 1<y <1
then G*(y) is concave (c.q. convex) in G(y) for O <y <%, and
conversely. It follows immediately that F(x)€f , F (x)€S and
F(x)=< F¥(x) implies F(x)~ F'(x), i.e. symmetric distributions
are not comparable unless they are equivalent,

We may however define a different order-relation on £ which is

better adapted to this situation:

DEFINITION 4. If F(x)es and F¥(x)€¥ , then F(x)=< F¥(x) if
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and only if%G*(y) is convex in G(y) for 3 <y <1,

We shall say in this case that F(x) s-precedes F'(x) or
that F*(x) s-follows F(x) and that the two are s-comparable.
We shall also speak of s-ordering, s-comparison, etc,
Clearly F(x)‘g F(x) for all F(x)€¥ ; since G F(x) maps «
on,a: and an increasing convex function of a convex
function is again convex, F(x)-g F*(x)-é F**(x) yields

F(x) < F**(x) for F(x), F¥(x), F*(x)€¥ . The relation <

is thus a weak ordering on ¥ . Defining an equivalence

relation ~ by

DEFINITION 5. If F(x)€¥ and F'(x)€Y, then F(x)y F™(x)
if and only if F(x) < F*(x) and F(x) < F(x),

and passing to the collection ¥' of equivalence classes,
the relation ~§ defines a partial ordering on ¥', Again

we have

THEOREM 3, F(x)rg F¥(x) if and only if F*(x)=F(ax+b) for
some constants a > 0 and b.

PROOF, F(X)fg F*(x) if and only if G*F(x) is concave-convex
as well as convex-concave about 4, and thus linear on I and

strictly increasing.

Hence this order relation is also independent of location
and scale parameters. The symbolﬁy is superfluous and may
be replaced by ~ .

6. A NECESSARY AND SUFFICIENT CONDITION FOR S-ORDERING,

To obtain a theorem analogous to theorem 2 for the weak-order
relation -§ , we only have to prove an analogue of lemma -1
for the symmetric case.
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LEMMA 4, Let x be a real valued random variable assuming
values in a (finite or infinite) interval I with probability
1, with distribution function H(x) satisfying
dr*H(:xo+x) >d H(xo-—x) for some x € I and all x »0. Let A x)
be a real valued continuous function on I, convex for X» X,
x €I, and satisfying ¢(xo+x)+;v(xo—x)=29ﬂ(xo) for all x -x €1,
Then '

#(E x)¢ E ¢(x) ,

provided both expectations exist.

We remark that the condition d H(xo+x) > d H(XO—X) for all

x ¢ O ensures that, if XO—XG I, then also XO+X€ I. The
condition Sa(xo+x)+;o(xo-x)=2§dxo) for all x -x €I is therefore
compatible with the fact that 99(x) is only defined on I,

PROOF., Since d H(X +x) » d H(xo—x) for x 20, it follows that
E x»xg. Let L(x) be a line of support of ¢(x) for X3 X
through the point (E x, ¢(E x)). Then

¢(x +x ) - (xofx)> O for x»0, x+x_€ I, and
L(xo+x)+L(x -x) 2L( ) € 2;ﬂ(xo =¢(xo+x)+q?(xo—x) for x -x€1I,
or L(xo-x) (XO—X) ¢(xo+x)~L(xo+X) for x -x €I,

Therefore

J {Ax)-1x)]} a HGx) =

I
= f{;a(xo+x)—L(xO+x)} d H(xo+x)— ya
0 0
or E ¢(x)2E L(x) = L(E

We may now pass immediately to

THEOREM 4, If Xin and g;.n denote generalized order statistics
from the distributions F(x)€¥ and F*(x)E¥ respectively, then

the following statements are equivalent:
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(1) P(x) € F'(x)

(i1) F(E x,,, )€ F7(E x ) for all n=1,2,... and

; AN
n+

54 aén

(111) F(E ;)¢ F'(E x} ) for all n=1,2,... and

integer values of 1, 3514:1411

(1111) F(E x, )< F*(E xf. ) for all n=M,M+1,... and
integer values of 1, Egiéjusn, where M denotes

an arbitrary integer,

PROOF., From the proof of theorem 2 we recall

)

E x® =E ¢"F(x
—A:n —An

For E%j-é A ¢ n the distribution function Hx:n(x> of

X, (cf. definition 3) satisfies d HA:nQu+x)> d HA:nLu-x)
for x 30, since 4 is the point of symmetry of the
distribution F(x). Also (cf.section 5)

G*F(u-x) + G*F(p+x) = 2u*= 2 G"F(u) for u-x €.

If F(x)-é F*(x), or G'F(x) is convex for x>, X€I,

application of lemma 4 to the random variable Xoin? the
point x_ =4, and the function G*F(x) gives for
n+/l\< A& n
"F(Ex. )< EG*F(x_ ) =Ex* _, or
=a:n =a:n =x:n
F(E —}-(-x:n)é F*(E E-::n) ?

which proves (i)==(1i1). The rest of the proof is an

obvious modification of the proof of theorem 2,

We note that for F(x)€ ¥, F(E ﬁzzn)=1-F(E §n+1-z:n)'

Consequently theorem 4 may of course also be formulated
for 1¢2¢g n;ﬂ and 1< 1< le by reversing the inequalities

in (ii), (iii) and (iiii).

At the end of section 3 we remarked that the order relation
< 1s related to the skewness of comparable distributions,
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Theorem 5 shows that the relation =<é has implications
for the even central moments of standardized s-comparable
distributions, Let 4, and 4, denote the k-th central
moments of F(x) and F*(x), if they exist, We find

THEOREM 5. If F(x)€S, F (x)e$ and F(x)-< F¥(x), and

if m,, and ey exist, then .

Aok, ek
k = ®\k
()™ (H45)

7

(k=1,2,...).

PROOF., Without loss of generality we set

B _)g=/I x d F(x)=0, E _>g*=j1*x a F*(x)=/1 ¢(x)a F(x)=0,

/4'2=E _332:4 x2 d F(x)=1 and /—4«;=E §*2=‘{*x2d F*(X)=4 yz(x)dF(X)=’|;

where y(x):G*F(x) is concave-convex about x=0 on I and strictly
increasing, ¢(0)=0 and hence ¢(-x)=- ¢(x). We drop the trivial
case F*(x)a F(x), or ¢(x)=x on I,

Now ¢(x)-x cannot be non-negative (or non-positive) for all

x »0, x€I, for in that case ¢2(X)-X2=(¢(x)-x)(?(x)+x)

would be non-negative (or non-positive) for all x € I; since
¢(x) is continuous and we have supposed ¢(x)# x, this would
mean that /J-g— /”'2 would not be equal to zero,.

As ¢(x)-x 1is convex for x» 0, x€ I, and ¢(0)=0, it follows
that ¢(x)-x € O for O&x &x_ and2 cp(x);x >0 for X;XO,XE I,

for some x_> 0, x_ € I. Hence ¢ (x)-x"€¢ O for |x|¢ x, and

P

x)-x2; O for |x] 2 x ,x€1I. Now
ﬂ;k-ﬂgf,é (7K (x)-x"5)a F<x>=4 (#2(x)-x°) p(x)a F(x),

k-1 .

where ¢(x)= 2 %29 (pgk-g‘j_g(x); O on I, and ¢(x) is even
J=0

and increasing for x» 0, x€ I, So



= ¢(x,) /I (6%(x)-x2)aF(x)=0,

which completes the proof.

The other remarks at the end of section 3 continue to apply.

7. SOME EXAMPLES OF S-ORDERING.

The first two examples given here are similar to those
treated in section 4., They refer to s-comparison with the
rectangular distribution and to mutual s-comparison of
symmetric beta distributions, The third example treats
the s-ordering of the normal and logistic distributions.

7.1 s-Comparison with the rectangular distribution,

We take F¥(x)=x, 0 x £ 1, or G*(y)=y, and E 5;:n= H%? .
For F(x) we consider the class of symmetric distributions
having a density function F'(x) which possesses a single
extreme, and is therefore either U-shaped (single minimum;
F(x) concave-convex) or unimodal (single maximum; F(x)

convex-concave). By theorem 4 we have:

If F'(x) is symmetric and U-shaped, then F(E zi_n)é H%T for
iy'ggi; If F'(x) is symmetric and unimodal, then

i . . nt+1
F(E x4 .n)> 737 for 12 55

BLOM ([3] p.66) proved the latter inequality asymptotically
for n—00, which by theorem 4 is equivalent to the result
stated here.

VAN DANTZIG and HEMELRIJK [6] mention the result for all n
in connection with a comparison of TERRY's and

VAN DER WAERDEN's tests where respectively the quantities
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1

B Ei:n and G(n+’1
involved 1n the test statistic,.

) for the normal distribution are

7.2, The s-chain of symmetric beta distributions.

. r(ea) P 2.,0-"1
Consider the class F_.(x)= — (1-t%) dt,

>0, ~-1€x €1, representing an increasing linear transform
(x=2u-1) of the symmetric beta distributions.

We shall sketch a proof that Ff(x)«é F (x) for O<o<v7,
i.e. the symmetric beta distributions s-follow one another
with increasing values of the parameter,

Hence we have to show that ¢(x)=G, F,(x) is convex for

O<x <1, where G,.(y) denotes the inverse of F.(x). As in
4.3 we consider the function W(x)=F.(x)-F (b(x+a)), b=>0,
ba » -1, b(1+a) ¢ 1, which has the same sign as ¢(x)-b(x+a)
for O¢x «1, Also ¢'(x) has the same sign as

A(x)=log F;(x)-log Fé(b(x+a))—1og b .
2(r-1)x , 2 b-(z-1)(x+a)
1-x° 1—b2(x+a)2

A (x)= -

As in 4,3 we study the sign of A'(x) for O0<¢ x ¢ 1 and the
signs of A(x) and ¢(x) for x=0 and x=1, In this way we
find that ¢(x) and hence @(x)-b(x+a) can have at most
two zeros for O< x ¢« 1, in which case the function is
negative between these zeros, For b >0, ba <-1, b(1+a) ¢
the representation of ¢(X) remains valid for

-a-1/b¢ x ¢« 1, and we may prove the same result in this
interval., However, ¢(x)-b(x+a) <« O for O<€x ¢ -a and hence
the result continues to apply for O¢ x ¢ 1. For b » O,
b(1+a) > 1 a comparison with the case b >0, b(1+a)=1 shows
that ¢(x)-b(x+a) can have most one zero for O¢ x ¢ 1; for
b €0 the same holds since P(x) is strictly increasing.
Hence the graph of ¢(x) for O<x < 1lies below any chord,
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which proves convexity of ¢(x) for O0£x &1,

7.3. s-Comparison of normal and logistic distributions.,

2
dt, ~w<x<wm, and

1 X

A

, ~0<x <, Clearly F(x)€F and F (x)EY;

—%t

Consider F(x)=

F

%
(x)=
14+e”*

furthermore one easily shows by repeated differentiation
that G F(x)=log F(x)-log(1-F(x)) 1s convex for x» 0, s0
F(x) 5 F (x).

Now E Ez-n 1s simple to evaluate, giving
i-1
* 1 . . n+l
Ex.,. = > - for 1>
i:n k=171 k 2
_ . . _ n+1
= 0 ffor 1 = = -
Sin i .1 <1 .._j:.:.l&r find F*(E iod )‘ ..j.‘_:.% fo
ce T k€108 giip we ri £l )e SE ror
k=n+1-1
i> E%l and as a conseqguence
F(E x )¢ i-2 for 1 2]
—=i:n n 2

We note that BLOM [3] proved the corresponding asymptotic
result for n—,., The inequality can notlbe sharpened for
+1 i-5

all n and all i>-g§— since F(E Xy ) =—= for i=n, n-——m,

n n

The easy derivation of thils inequality (and of course also
of those proved in 4,71, 4.2 and 7.1) is a consequence of
the fact that G (y) is an incomplete beta function. The
properties of distributions F*(x) of this type (cf. [ 3])
make them particularly well sulted as standards for
comparison ans s-comparison, and a further study of
inequalities to be obtained in this way 1is in progress.

The author is indebted to Professor G.E. Noether for
drawing his attention to a problem which led to this research.
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