# STICHTING <br> MATHEMATISCH CENTRUM <br> 2e BOERHAAVESTRAAT 49 <br> AMSTERDAM <br> <br> AFDELING MATHEMATISCHE STATISTIEK 

 <br> <br> AFDELING MATHEMATISCHE STATISTIEK}

Report S 304 (VP 18)

On Markov chains, the transition function of which is a finite sum of products of functions of one variable

by<br>J.Th. Runnenburg<br>and<br>F.W. Steutel<br>Preliminary report

## 1. Introduction

In most literature on waiting time and renewal theory it is assumed that the intervals $\underline{x}_{1}, \underline{x}_{2}, \ldots$ ) between successive arrivals (renewals) are independent random variables having the same distribution function $G(x)$. More generally one may consider a sequence of Markov-dependent random variables $\underline{x}_{1}^{*}, \underline{x}_{2}^{*}, \ldots$ having $G(x)$ as invariant distribution. Some information about this matter is contained in Runnenburg [1960] and [1961] : In Runnenburg [1960] as an example the following type of stationary Markov chain is considered: the chain starts in some initial position $\mathrm{x}_{\mathrm{O}}$, while the transition function

$$
\begin{equation*}
A(y \mid x) \stackrel{\operatorname{def}}{=} P\left\{\underline{x}_{n+1} \& y \mid \underline{x}_{n}=x\right\} \quad(n \geqslant 0) \tag{1.1}
\end{equation*}
$$

has the form

$$
\begin{equation*}
A(y \| x)=\sum_{j=1}^{r} A_{j}(x) B_{j}(y), \tag{1.2}
\end{equation*}
$$

where $r$ is finite。
Markov chains of this type have the advantage of being more general than finite Markov chains without involving greater computational difficulties.

In the sections 2 and 3 of this paper some general aspects of these Markov chains are studied. In section 4 for a given invariant distribution function the effect of variation of the transition function on the correlation coefficient is considered for $r=2$.

[^0]
## 2. Definitions and elementary properties

Concerning the functions $A_{j}(x)$ and $B_{j}(y)$ we make the following assumptions:
(a) the $A_{j}(x)$ are complex-valued functions defined on a Borel-measurable set $B$ on the real axis. They have bounded variation on B, i.e. for each $j(1 \leqslant j \& r)$ we have: if $x_{1}, x_{2}, \ldots, x_{N+1} B, x_{1} \& x_{2} \& \ldots x_{N+1}$, then $\sum_{n=1}^{N}\left|A_{j}\left(x_{n+1}\right)-A_{j}\left(x_{n}\right)\right|$ is bounded for all $N$.
(b) the $B_{j}(y)$ are complex-valued functions defined for all real $y$. They have bounded variation on ( $-\infty, \infty$ ) and are continuous from the right.
(c) $A(y \mid x)$ is for all $x \in B$ a probability measure ${ }^{1)}$ on a Borel field on B containing all sets of the form ( $-\infty, y$, $O$. This may be interpreted as: for all $x \in B A(y \mid x)$ is a distribution function with $\int_{B} d A(y \mid x)=1$.
(d). the representation 1.2 of $A(y \| x)$ is minimal, i.e. $A(y \| x)$ cannot be represented as a sum of less than $r$ terms.

Lemma 2.1: the representation 1.2 is minimal if and only if both the $A_{j}(x)$ and the $B_{j}(y)$ are linearly independent.

Proof: clearly if either the $A_{j}(x)$ or the $B_{j}(y)$ are linearly dependent $A(y \mid x)$ can be written as a sum of less than $r$ terms.

Conversely, suppose that $A(y \mid x)$ can be written as a sum of $r-1$ terms, then

$$
\begin{equation*}
\sum_{j=1}^{r} A_{j}(x) B_{j}(y)=\sum_{j=1}^{r-1} A_{j}^{*}(x) B_{j}^{*}(y) \tag{2.1}
\end{equation*}
$$

[^1]for all $x \in B$ and all $y$. Nor for every $r$-tuple $x_{1}, x_{2}, \ldots, x_{r} \in B$ there exist complex numbers $c_{1}, c_{2}, \ldots, c_{r}$ not all zero, such that $\sum_{k=1}^{r} c_{k} A_{j}^{*}\left(x_{k}\right)=0 \quad(j=1,2, \ldots, r-1)$. It follows from (2.1) that
\[

$$
\begin{equation*}
\sum_{j=1}^{r} \sum_{k=1}^{r} c_{k} A_{j}\left(x_{k}\right) B_{j}(y)=0 \tag{2.2}
\end{equation*}
$$

\]

for all y, which means that either the $B_{j}(y)$ are linearly dependent or that

$$
\begin{equation*}
\sum_{k=1}^{r} c_{k} A_{j}\left(x_{k}\right)=0 \quad(j=1,2, \ldots, r) . \tag{2.3}
\end{equation*}
$$

The equalities (2.3) imply that $\operatorname{det}\left[A_{j}\left(x_{k}\right)\right]=0$. If the $B_{j}(y)$ are linearly independent then for every $r$-tuple $x_{1}, x_{2}, \ldots, x_{r} \in B$ we must have $\operatorname{det}\left[A_{j}\left(x_{k}\right)\right]=0$, from which it immediately follows that the $A_{j}(x)$ are linearly dependent.

Lemma 2.2: it is no restriction to assume that both the $A_{j}(x)$ and the $B_{j}(y)$ are real-valued. We may even assume without loss of generality, that the $B_{j}(y)$ are distribution functions.

Proof: as the $A_{j}(x)$ are linearly independent there exist $x_{1}, x_{2}, \ldots, x_{r} \in B$ such that $\operatorname{det}\left[A_{j}\left(x_{k}\right)\right] \neq 0$. If we define the linear transformation $T$ by $T_{k j}=A_{j}\left(\mathrm{X}_{\mathrm{k}}\right)$ and write

$$
\left\{\begin{array}{l}
A_{k}^{*}(x)=\sum_{j=1}^{r} A_{j}(x)\left(T^{-1}\right)_{j k}  \tag{2.4}\\
B_{k}^{*}(y)=\sum_{j=1}^{r} T_{k j} B_{j}(y),
\end{array}\right.
$$

we have

$$
\begin{equation*}
A(y \mid x)=\sum_{k=1}^{r} A_{k}^{*}(x) B_{k}^{*}(y), \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{k}^{*}(y)=A\left(y \| x_{k}\right) \tag{2.6}
\end{equation*}
$$

is a distribution function. It now follows immediately from the linear independence of the $B_{k}^{*}(y)$, that the $A_{k}^{*}(x)$ must be real.

In the sequel we assume the $A_{j}(x)$ and $B_{j}(y)$ to be real-valued.
Remark: by applying the transformation $S$ with elements $S_{j k}=B_{j}\left(y_{k}\right)$ we may transform the $A_{k}(x)$ into $A_{k}^{* * p}(x)=A\left(y_{k} \| x\right)$, such that $0 \leqslant A_{k}^{* *}(x) \leqslant 1$. The resulting $B_{k}^{*}(y)$ are not necessarily distribution functions.

By assumption (b)

$$
\left\{\begin{array}{l}
a_{j} \stackrel{\text { def }}{=} \lim _{y \rightarrow \infty} B_{j}(y)  \tag{2.7}\\
b_{j} \stackrel{\text { def }}{=} \lim _{y \rightarrow \infty} B_{j}(y)
\end{array}\right.
$$

exist, while it follows from the linear independence of the $A_{j}(x)$ that

$$
\begin{equation*}
a_{j}=0 \quad(j=1,2, \ldots, r) \tag{2.8}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
\sum_{j=1}^{r} b_{j} A_{j}(x)=1 \tag{2.9}
\end{equation*}
$$

for all $\mathrm{x} \in \mathrm{B}$.
We now introduce the matrix $C$ with elements $c_{j k}$ defined by

$$
\begin{equation*}
c_{j k}=\int A_{k}(x) d B_{j}(y)^{1)} \tag{2.10}
\end{equation*}
$$

It is easily seen that every finite Markov matrix $P$ can be represented by (2.10): if $P$ is a Markov matrix with elements $p_{j k}(1 \leqslant j \leqslant r ; 1 \leqslant k \leqslant r)$ we define

$$
\left\{\begin{array}{l}
\left.B=f x_{1}, x_{2}, \ldots, x_{r}\right\}  \tag{2.11}\\
A_{j}\left(x_{k}\right)=p_{k j} \\
B_{j}(y)=\measuredangle\left(y-x_{j}\right)
\end{array}\right.
$$

1) When not otherwise indicated, integration is over the set $B$.
where

$$
b(x)= \begin{cases}0 & \text { for } x \& 0  \tag{2.12}\\ 1 & \text { for } x \geqslant 0\end{cases}
$$

We now find from (2.10) that
(2.13)

$$
c_{j k}=p_{j k}
$$

It is noted however, that in the case of $\operatorname{det} P=0$ the functions $A_{j}(x)$ as defined by (2.11) are linearly dependent, i.e. the representation (1.2) is not minimal.

Returning to the general case we define

$$
\left\{\begin{array}{l}
A^{(1)}(y \mid x)=A(y \mid x)  \tag{2.14}\\
A^{(n+1)}(y \mid x)=\int A^{(n)}(y \mid z) d A(z \mid x) \quad(n \geq 1)
\end{array}\right.
$$

from which it follows that
(2.15)

$$
A^{(n+1)}(y \| x)=\sum_{j=1}^{r} \sum_{k=1}^{r} A_{j}(x) e_{j k}^{(n)} B_{k}(y) \quad(n \geqslant 0),
$$

$c_{j k}^{(n)}$ denoting the elements of $C^{n} \quad\left(C^{o}=I\right.$, the unit matrix).
Remark: the linear transformation $A_{k}^{*}(x)=\sum_{j=1}^{r} A_{j}(x)\left(T^{-1}\right)_{j k}$ and $B_{k}^{*}(y)=\sum_{j=1}^{r} T_{k j} B_{j}(y)$ results in

$$
\begin{equation*}
\mathrm{C}^{*}=\mathrm{TCC}^{-1} . \tag{2.16}
\end{equation*}
$$

It now follows from Lemma 2.2 that $C$ may be transformed in such a way that the $c_{j k}^{k}$ satisfy

$$
\begin{equation*}
\sum_{k=1}^{r} c_{j k}^{*(n)}=1 \quad(j=1,2, \ldots, r ; n \geqslant 0) . \tag{2.17}
\end{equation*}
$$

## 3. General results

From (2.15) it is seen that the asymptotic behaviour of $A^{(n)}(y \mid x)$ for large n is governed by the asymptotic behaviour of $\mathrm{C}^{\mathrm{n}}$, which is determined by the eigenvalues of $C$. We therefore will now study the properties of these eigenvalues.

Theorem 3.1: the matrix $C$ has an eigenvalue equal to 1 and no eigenvalues with modulus exceeding unity.

Proof: as it is no restriction to assume that $\sum_{k=1}^{r} c_{j k}=1$ for all $j$ ( $1 \leqslant j \leqslant r$ ) , C admits of an eigenvalue 1 .
Generally if $\lambda$ is an eigenvalue and $J_{1}, J_{2}, \ldots, \mathscr{J}_{r}$ a corresponding eigenvector we define an eigenfunction $\phi(x)$ by

$$
\begin{equation*}
\varphi(x) \stackrel{\operatorname{def}}{=} \sum_{j=1}^{r} \vartheta_{j} A_{j}(x) \tag{3.1}
\end{equation*}
$$

which is easily seen to satisfy

$$
\begin{equation*}
\lambda \varphi(x)=\int \varphi(y) d A(y \mid x) \tag{3.2}
\end{equation*}
$$

From (2.19) it follows that $|A||\varphi(x)| \leqslant \sup \| \varphi(y) \mid$, whence by the boundedness of $\varphi(x)$ we have $\|A\| 1$.

Remark: Theorem 3.1 might suggest that for every matrix $C$ there exists a non-singular linear transformation $T$ such that $T \mathrm{C}^{-1}$ is a Markov matrix. The following example shows that this is not true: if we take $B=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, for the matrix with elements $A_{j}\left(x_{k}\right)$ ( $1 \leqslant \mathrm{j} \leqslant 3 ; 1 \leqslant \mathrm{k} \leqslant 4$ )

$$
\left(\begin{array}{rrrr}
0 & 0 & 1 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

and $B_{1}(y)=\frac{1}{2}\left\{b\left(y-x_{1}\right)+b\left(y-x_{n}\right)\right\}, B_{2}=\frac{1}{2}\left\{b\left(y-x_{1}\right)+b\left(y-x_{2}\right)\right\}$, $B_{3}=\frac{1}{2}\left\{b\left(y-x_{2}\right)+b\left(y-x_{3}\right)\right\}$, we find

$$
\mathrm{C}=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & 1
\end{array}\right)
$$

which has eigenvalues $1, \frac{1+i}{2}$, while for a Markov matrix with 3 rows and 3 columns the non-real eigenvalues are restricted to the domain bounded by the triangle with vertices $1, \mathrm{e}^{ \pm \frac{2 \pi i}{3}}$. This example has been constructed by considering a Markov matrix of 4 rows and 4 columns having one eigenvalue zero and an eigenvalue outside the abovementioned triangle. For more information concerning this matter we refer to Dmitriev and Dynkin [1946].

As in the case of finite Markov matrices the eigenvalues of modulus 1 are of special interest. It can be proved that the number of independent eigenvectors corresponding to an eigenvalue of modulus 1 is equal to the multiplicity of that eigenvalue (for a proof in the case of a finite Markov matrix, which is easily generalized, we refer to Van Dantzig [1956] page 38.

We first consider the case of a multiple eigenvalue 1: Now there exists an eigenfunction $\varphi(\mathrm{x})$ not identically equal to a constant. As $\varphi(\mathrm{x})$ is bounded we may assume that

$$
\begin{equation*}
\sup _{x \in B}|\varphi(x)|=1 . \tag{3.3}
\end{equation*}
$$

1) 

We now assume that to every eigenfunction $\varphi(x)$ corresponding to an eigenvalue of modulus 1 there exists a value $x_{0} \in B$ with $\left|\varphi\left(x_{0}\right)\right|=1$. This is trivially true for instance if $B$ is finite or if $B$ is a bounded closed interval, on which the $A_{j}(x)$ are continuous.

Without loss of generality we may now assume that $\varphi\left(x_{0}\right)=1$. We define

$$
\begin{equation*}
\mathrm{B}_{\mathrm{o}} \stackrel{\operatorname{def}}{=}\left\{\mathrm{x} \mid \varphi\left(\mathrm{x}_{\mathrm{o}}\right)=1\right\} . \tag{3.4}
\end{equation*}
$$

For all $\mathrm{x}_{\mathrm{o}} \in \mathrm{B}_{\mathrm{o}}$ we now have

$$
\begin{equation*}
\int\{1-\varphi(y)\} d A\left(y \| x_{0}\right)=0, \tag{3.5}
\end{equation*}
$$

1) See footnote on page 9.
from which it follows that for all $x_{0} \in B_{0}$

$$
\begin{equation*}
\int_{B_{0}} d A\left(y \mid x_{0}\right)=1 \tag{3.6}
\end{equation*}
$$

i.e. $B_{o}$ is an absorbing set.

Considering the eigenfunction $\quad \Psi(x)=1-\varphi(x)$ we find in the same way (after norming $\boldsymbol{\psi}(x)$ in such a way that $\sup |\boldsymbol{\psi}(x)|=1$ ) an other absorbing set $B_{o}^{\prime}$, which is disjoint from $B_{o}$.

Next we consider the case $|\lambda|=1, \lambda \neq 1$ :
1)

As before we assume that a value $x_{0} \in B$ exists with $\boldsymbol{\varphi}\left(x_{0}\right)=1$. For all $x_{0} \in B_{o}$ (as defined by (3.4)) we now have

$$
\begin{equation*}
\int\left(1-\frac{\varphi(\mathrm{y})}{\lambda}\right) d A\left(\mathrm{y} \mid \mathrm{x}_{\mathrm{o}}\right)=0 \tag{3.7}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\mathrm{B}_{1} \stackrel{\operatorname{def}}{=}\{\mathrm{x} \mid \varphi(\mathrm{x})=\lambda\} \tag{3.8}
\end{equation*}
$$

satisfies
(3.9)

$$
\int_{B_{1}} d A\left(y \mid x_{0}\right)=1
$$

for all $x_{0} \in B_{0}$. Further evidently $B_{o}$ and $B_{1}$ are disjoint. Defining generally

$$
\mathrm{B}_{\mathrm{k}} \stackrel{\operatorname{def}}{=}\left\{\mathrm{x} \mid \varphi(\mathrm{x})=\lambda^{\mathrm{k}}\right\}
$$

and supposing

$$
\begin{equation*}
\lambda^{k} \neq 1 \quad \text { for } \quad 1 \leqslant k \leqslant N \tag{3.10}
\end{equation*}
$$

we find sets $B_{o}, B_{1}, \ldots, B_{N}$ with the properties

1) See footnote on page 9.

Remark: (iii) follows from (3.9), as we might (by proper norming of $\varphi(x)$ ) have taken $B_{1}$ instead of $B_{0}$.

We shall prove that $N$ cannot exceed $r-1$. Suppose $N \geqslant r$, then we have by (i) and (ii) that the functions $A\left(y \mid x_{k}\right)\left(x_{k}\right.$ an arbitrary element of $B_{k}$, $\mathbf{k}=0,1, \ldots, r-1$ ) are linearly independent. From this it follows, that $\operatorname{det}\left[A_{j}\left(x_{k}\right)\right] \neq 0$. By (ii) however we have

$$
\begin{equation*}
\int_{B_{0}} d A\left(y \mid x_{k}\right)=\sum_{j=1}^{r} A A_{j}\left(x_{k}\right) \int_{B_{0}} d B_{j}(y)=0 \quad(k=0,1, \ldots, r-1) \tag{3.11}
\end{equation*}
$$

where by (iii) $\int_{B_{0}} \mathrm{~dB}_{\mathrm{j}}(\mathrm{y})$ is not zero for all j . Thus (3.11) requires
$\operatorname{det}[\mathrm{A}(\mathrm{x})]=0 . \mathrm{B}_{\mathrm{o}}$ From this contradiction it follows that $\mathrm{N} \leqslant \mathrm{r}-1$, $\operatorname{det}\left[A_{j}\left(x_{k}\right)\right]=0 .{ }^{B} \quad$ From this contradiction it follows that $N \leqslant r-1$, i.e. $\lambda^{k}=1$ for some $k \leqslant r$. From (ii) we now see that $B$ contains $k$ cyclically moving subsets $\mathrm{B}_{\mathrm{O}} \rightarrow \mathrm{B}_{1} \rightarrow \ldots \rightarrow \mathrm{~B}_{\mathrm{k}-1} \rightarrow \mathrm{~B}_{\mathrm{o}}$.

Summarizing we have
1)

Theorem 3.2: If for every eigenfunction $\varphi(x)$ (of $A(y \mid x)$ ) corresponding to an eigenvalue of modulus $1 \max \|(x)\|$ exists we have

$$
x \in B
$$

I If 1 is a multiple eigenvalue then $B$ contains (at least) two disjoint absorbing sets.

II An eigenvalue of modulus one is a root of unity of an order $k \leqslant r$ and implies the existence of $k$ cyclically moving subsets.

The following theorem has been proved in Runnenburg [1960] with the use of generating functions. Here we give a proof analogous to the proof of the analogous theorem for finite Markov chains.

Theorem 3.3: if $C$ has a single eigenvalue 1 and no other eigenvalues of modulus 1 , then

$$
\begin{equation*}
G(y)=\lim _{n \rightarrow \infty} A^{(n)}(y \mid x) \tag{3.12}
\end{equation*}
$$

exists and is independent of $x . G(y)$ is the only invariant distribution function, i.e. the only distribution function satisfying

1) After the manuscript had been typed it was seen that this condition is always satisfied.

$$
\begin{equation*}
G(y)=\int A(y \mid x) d G(x) \tag{3.13}
\end{equation*}
$$

and is given by

$$
\begin{equation*}
G(y)=\sum_{j=1}^{r} \alpha_{j} B_{j}(y), \tag{3.14}
\end{equation*}
$$

where the $\alpha_{j}$ are the (unique) solution of

$$
\sum_{j=1}^{r} \alpha_{j} c_{j k}=\alpha_{k}
$$

$$
\begin{equation*}
\sum_{j=1}^{r} \alpha_{j} b_{j}=1 \tag{3.15}
\end{equation*}
$$

Proof: as in the case of a finite Markov matrix the existence of $\Gamma \stackrel{\text { def }}{=} \lim _{\mathrm{n} \rightarrow \infty} \mathrm{C}^{\mathrm{n}}$ follows from the well-known matrix decomposition

$$
\begin{equation*}
c=\Gamma_{o}+\sum_{j=1}^{k}\left(\lambda_{j} \Gamma_{j}+c_{j}\right), \tag{3.16}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ are the distinct eigenvalues $\neq 1$ of $c$, the $\Gamma_{j}$ are idempotent and orthogonal, the $\mathrm{C}_{\mathrm{j}}$ are nilpotent and satisfy $\Gamma_{\mathrm{j}} \mathrm{C}_{\mathrm{j}} \mathrm{C} \mathrm{C}_{\mathrm{j}} \Gamma_{\mathrm{j}}=\Gamma_{\mathrm{j}}$ (see e.g. Wedderburn [1934] page 29). Now it follows from (3.16) that $\Gamma=\Gamma_{0}$.
For $\Gamma_{j k}$ we evidently have
(3.17)

$$
\left\{\begin{array}{l}
\Gamma_{j k}=\sum_{1=1}^{r} \Gamma_{j 1} c_{1 k} \\
\sum_{k=1}^{r} \Gamma_{j k} b_{k}=b_{j}
\end{array} \quad(j=1,2, \ldots, r)\right.
$$

From (3.15) and (3.17) it follows that

$$
\begin{equation*}
\Gamma_{j k}=b_{j} \alpha_{k} \tag{3.18}
\end{equation*}
$$

From the existence of $\lim _{n \rightarrow \infty} C^{n}$ the existence of $G(y)=\lim _{n \rightarrow \infty} A^{(n)}(y \mid x)$ follows by (2.15). Clearly we have

$$
G(y)=\sum_{j=1}^{r} \sum_{k=1}^{r} A_{j}(x) b_{j} \alpha_{k} B_{k}(y)=\sum_{k=1}^{r} \alpha_{k} B_{k}(y) .
$$

It is easily seen that $G(y)$ is a distribution function satisfying (3.13), while its uniqueness as an invariant distribution follows from the fact that every distribution function satisfying (3.13) must satisfy (3.14) and (3.15).
4. Correlation coefficients for $r=2$

In order to compare the behaviour of sequences $\mathrm{x}_{\mathrm{n}}(\mathrm{n}=1,2, \ldots)$ and $\underline{y}_{\mathrm{n}}(\mathrm{n}=1,2, \ldots)$, where the $\underline{x}_{\mathrm{n}}$ are independent random variables all having the same distribution function $G(x)=P\{\underline{x} \leqslant x\}$ and the $\underline{y}_{n}$ are Markovdependent random variables with transition function $A(y \mid x)$ and invariant distribution $G(y)$, we have to search first for those transition functions admitting a given $G(y)$ as invariant distribution, Or, if we compute

$$
\begin{equation*}
H(x, y)=P\{\underline{x} \leqslant x, \underline{y} \leqslant y\}=\int_{-\infty}^{x} A(y \mid t) d G(t), \tag{4.1}
\end{equation*}
$$

we have to search for those bivariate distribution functions of random variables $\underline{x}$ and $\underline{y}$, which have $G(y)$ as marginal distribution function for both $\underline{x}$ and $\underline{y}$. The latter question has been considered in Fréchet [1951], Gumbel [1958].
It has been shown by Fréchet that all bivariate distribution functions $H(x, y)$ with prescribed marginal distribution functions $F(x)=H(x, \infty)$ and $G(y)=H(\infty, y)$ satisfy
(4.2) $\bar{C}(x, y) \stackrel{\operatorname{def}}{=} \max (F(x)+G(y)-1,0) \leqslant H(x, y) \leqslant \bar{D}(x, y) \stackrel{\operatorname{def}}{=} \min (F(x), G(y))$ for all $x$ and $y$, whatever $F(x)$ and $G(y)$. Moreover, $\bar{C}(x, y)$ and $\bar{D}(x, y)$ are always bivariate distribution functions. If we assume that

$$
\begin{equation*}
\mathrm{F}\left(\mathrm{q}_{-}^{-}\right)=\mathrm{G}(0-)=0, \quad \mathcal{E}_{\underline{x}^{2}}<\infty, \dot{\mathcal{E}}_{\underline{\mathrm{y}}}{ }^{2}<\infty \tag{4.3}
\end{equation*}
$$

then $\mathcal{E}_{\mathrm{x}}^{\mathrm{y}}$ always exists and we have by Fubini's theorem (4.4)

$$
\mathcal{E}_{\underline{x} \underline{y}}=\int_{0}^{\infty} \int_{0}^{\infty}\{1-F(x)-G(y)+H(x, y)\} d x d y
$$

and also

$$
\begin{equation*}
\xi \underline{x} \underline{y}-\mathcal{E} \underline{x} \underline{y}=\int_{0}^{\infty} \int_{0}^{\infty}\{H(x, y)-F(x) G(y)\} d x d y \tag{4.5}
\end{equation*}
$$

Hence the bivariate distribution function $H(x, y)$ with prescribed $F(x)$ and $G(y)$ having the largest correlation coefficient is given by $\bar{D}(x, y)$, while that with the smallest correlation coefficient is given by $\bar{C}(x, y)$.

We can use the conditional distribution function: $A(y \mid x)$ to a given bivariate distribution function with equal marginal distribution functions $F(y)=G(y)$ as transition function for a Markov chain $\underline{y}_{1}$, $\underline{y}_{2}, \ldots$ with invariant distribution $G(y)$, i.e. from

$$
\begin{equation*}
D(x, y)=\min (G(x), G(y)) \tag{4.6}
\end{equation*}
$$

we may take as a conditional distribution function

$$
\begin{equation*}
A_{D}(y \mid x)=\ell(y-x) \tag{4.7}
\end{equation*}
$$

where

$$
G(x)= \begin{cases}1 & \text { if } x \geqslant 0  \tag{4.8}\\ 0 & \text { if } x \& 0\end{cases}
$$

In this case all mass is distributed on the line $x=y$, i.e. the Markov chain obtained is trivial. For

$$
\begin{equation*}
C(x, y)=\max (G(x)+G(y)-1,0) \tag{4.9}
\end{equation*}
$$

we may take

$$
\begin{equation*}
A_{C}(y \mid x)=b(G(x)+G(y)-1) \tag{4.10}
\end{equation*}
$$

[^2](4.11)
$$
G(x)+G(y)=1
$$

Here again the Markov chain obtained is trivial. If the chain starts with $\underline{y}_{1}=x$, then there is exactly one possible value $y$ for $\underline{y}_{2}$, i.e. $\underline{y}_{2}=y$, from which $\underline{y}_{3}=x, \underline{y}_{4}=y$, etc. are obtained. More interesting transition functions are those for which we start from a mixture of the bivariate distribution functions (Fréchet)

$$
C(x, y), G(x) G(y) \text { and } D(x, y) \text {, say }
$$

$$
\begin{equation*}
A(y \mid x)=p_{1} A_{C}(y \mid x)+p_{2} G(y)+p_{3} A_{D}(y \mid x) \tag{4.12}
\end{equation*}
$$

with $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3} \geqslant 0$ and $\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}=1$.
Consider the class $H_{r}(G)$ of bivariate distribution functions $H_{r}(x, y)$ for which we have

$$
\begin{equation*}
H_{r}(x, y)=\sum_{j=1}^{r} \bar{B}_{j}(x) B_{j}(y), \quad H_{r}(x, \infty)=G(x), H_{r}(\infty, y)=G(y), \tag{4.13}
\end{equation*}
$$

where $G(y)$ is a distribution function and the $\bar{B}_{j}(x)$ (as well as the $B_{j}(y)$ ) are linearly independent. Then for fixed $r \geqslant 2$ it is impossible to find $C_{r}(x, y) \in H_{r}(G)$ and $D_{r}(x, y) \in H_{r}(G)$ with

$$
\begin{equation*}
\mathrm{C}_{\mathrm{r}}(\mathrm{x}, \mathrm{y}) \leqslant \mathrm{H}_{\mathrm{r}}(\mathrm{x}, \mathrm{y}) \mathrm{D}_{\mathrm{r}}(\mathrm{x}, \mathrm{y}) \text { for all } \mathrm{x}, \mathrm{y} \text { and all } \mathrm{H}_{\mathrm{r}}(\mathrm{x}, \mathrm{y}) \mathscr{C} H_{\mathrm{r}}(\mathrm{G}), \tag{4.14}
\end{equation*}
$$

because the restrictions on $H_{r}(x, y)$ are such that we must have $C_{r}(x, y)=C(x, y)$ and $D_{r}(x, y)=D(x, y)$, but $C(x, y)$ and $D(x, y)$ do not belong to $H_{r}(G)$.
For $r=1$ there is no problem, because $H_{1}(G)$ only contains

$$
\begin{equation*}
H_{1}(x, y)=G(x) G(y) \tag{4.15}
\end{equation*}
$$

However, for $r \geqslant 2$ one may ask for those $C_{r}(x, y) \in H_{r}(G)$ (or those $\left.D_{r}(x, y) \in H_{r}(G)\right)$ which have smallest (largest) correlation coefficient. We shall solve this problem for $r=2$ in order to get more bivariate distribution functions to make a mixture from and also to see in how far the correlation coefficients obtained under the restriction $r=2$ fall short of the extreme correlation coefficients supplied by $C(x, y)$
and $D(x, y)$.
We assume in the remaining part of this section that $G(y)$ is an arbitrary continuous distribution function with finite second moment.

We first show that any
(4.16)

$$
A(y \mid x)=\sum_{j=1}^{2} A_{j}(x) B_{j}(y)
$$

satisfying the conditions (a), (b), (c) and (d) of section 2 and having invariant distribution $G(y)$ may be written

$$
\begin{equation*}
A(y \mid x)=G(y)+R(x) S(y) \tag{4.17}
\end{equation*}
$$

where $S(-\infty)=S(\infty)=0$ and $R(x)$ and $S(y)$ are of bounded variation. It is known that

$$
\begin{equation*}
G(y)=\alpha_{1} B_{1}(y)+\alpha_{2} B_{2}(y) \tag{4.18}
\end{equation*}
$$

and hence

$$
\text { (4.19) } \quad A(y \mid x)=\alpha_{1} B_{1}(y)+\alpha_{2} B_{2}(y)+\left(A_{1}(x)-\alpha_{1}\right) B_{1}(y)+\left(A_{2}(x)-\alpha_{2}\right) B_{2}(y),
$$

where

$$
\left\{\begin{array}{l}
1=\alpha_{1} B_{1}(\infty)+\alpha_{2} B_{2}(\infty)  \tag{4.20}\\
1=A_{1}(x) B_{1}(\infty)+A_{2}(x) B_{2}(\infty)
\end{array}\right.
$$

indicating that $A_{1}(x)-\alpha_{1}$ and $A_{2}(x)-\alpha_{2}$ are linearly dependent (because $B_{1}(\infty)=B_{2}(\infty)=0$ is impossible). We may assume $B_{1}(\infty) \neq 0$, i.e.
(4.21)

$$
A(y \mid x)=G(y)+\left(A_{2}(x)-\alpha_{2}\right)\left(B_{2}(y)-\frac{B_{2}(\infty)}{B_{1}(\infty)} B_{1}(y)\right)
$$

Thus
(4.22)

$$
\left\{\begin{array}{l}
R(x) \stackrel{\operatorname{def}}{=} A_{2}(x)-\alpha_{2} \\
S(y) \stackrel{\operatorname{def}}{=} B_{2}(y)-\frac{B_{2}(\infty)}{B_{1}(\infty)} B_{1}(y)
\end{array}\right.
$$

satisfy our conditions.
As

$$
\begin{equation*}
\int_{-\infty}^{\infty} A(y \mid x) d G(x)=G(y), \tag{4.23}
\end{equation*}
$$

we have

$$
\begin{equation*}
S(y) \int_{-\infty}^{\infty} R(x) d G(x)=0 \text {. for all } y \tag{4.24}
\end{equation*}
$$

The functions $G(y)$ and $S(y)$ are linearly independent, hence $S(y) \neq 0$ for some $y$ and

$$
\begin{equation*}
\int_{-\infty}^{\infty} R(x) d G(x)=0 \tag{4.25}
\end{equation*}
$$

Extreme values for the correlation coefficient occur for those $R(x)$ and $S(y)$ for which

$$
\begin{equation*}
\xi_{\underline{x} \underline{y}}-\xi_{\underline{x}} \xi_{\underline{y}}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y d{ }_{y} A(y \mid x) d G(x)-\varepsilon_{\underline{x}} \varepsilon_{\underline{y}}= \tag{4.26}
\end{equation*}
$$

$$
=\int_{-\infty}^{\infty} x R(x) d G(x) \cdot \int_{-\infty}^{\infty} y d S(y)
$$

has an extreme value. One can easily indicate functions $R(x)$ and $S(y)$ for which

$$
\left\{\begin{array}{l}
I_{R} \stackrel{\operatorname{def}}{=} \int_{-\infty}^{\infty} x \operatorname{R}(x) d G(x)  \tag{4.27}\\
I_{S} \stackrel{\operatorname{def}}{=} \int_{-\infty}^{\infty} y d x(y)
\end{array}\right.
$$

are both unequal zero and of the same sign or unequal zero and of different sign. As we are interested in the product of $I_{R}$ and $I_{S}$, it is no restriction to assume that $I_{R} \geqslant 0$. Now let us assume that $S(y)$ is known and make $I_{R}$ as large as possible. We know that $R(x)$ is bounded, say
(4.28)

$$
-R_{1} \leqslant R(x) \leqslant R_{2} \quad \text { for all } x
$$

with finite nonnegative $R_{1}$ and $R_{2}$, because $-1 \leqslant R(x) S(y) \leqslant 1$ for all $x$ and $y$ and $S(y) \neq 0$ for some $y$. We take $R_{1}$ and $R_{2}$ as large as possible: If $G(y)+R S(y)$ is a distribution function, then we can
prove that there exists an $R_{2} 0$ such that $G(y)+R_{2} S(y)$ is a distribution function while $G(y)+\left(R_{2}+\varepsilon\right) S(y)$ is not, whatever $\varepsilon \infty$ we consider. We already noticed that $R$ is bounded from above. If $G(y)+R S(y)$ is a distribution function for some $R>0$, the same is true for all $G(y)+\theta R S(y)$ with $0 \leqslant \theta \leqslant 1$, because

$$
\begin{equation*}
G(y)+\theta R S(y)=(1-\theta) G(y)+\Theta\{G(y)+R S(y)\} \tag{4.29}
\end{equation*}
$$

If $G(y)+\left(R_{2}^{-\varepsilon) S(y)}\right.$ is a distribution function for all $\mathbb{E} \$ 0$ (such that $R_{2}-\& 0$ ) and not for any $\& 0$, then $G(y)+R_{2} S(y)$ is also a distribution function, as can easily be verified. Hence a largest $\mathrm{R}_{2} \mathrm{O}$ exists. In the same way we can prove the existence of a largest $\mathrm{R}_{1} \geqslant 0$ 。

Now the problem: "If $S(y)$ is given, for which $R(x)$ satisfying (4.25) and (4.28) has $I_{R}$ (as given by (4.27)) its largest value" has as solution

$$
R^{*}(x)= \begin{cases}-R_{1} & \text { for } x \leqslant \xi  \tag{4.30}\\ R_{2} & \text { for } x \geqslant \xi\end{cases}
$$

where from (4.25) we have that $\xi$ satisfies

$$
\begin{equation*}
-R_{1} \int_{-\infty}^{\xi} d G(x)+R_{2} \int_{\xi}^{\infty} d G(x)=0 \tag{4.31}
\end{equation*}
$$

or (as $R_{1}+R_{2}=0$ implies $r=1$ instead of $r=2$, hence $R_{1}+R_{2}>0$ )。
(4.32)

$$
\mathrm{G}(\xi)=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

Indeed for any other function $R(x)$ satisfying (4.25) we have

$$
\begin{aligned}
& \text { 1) Of course equation (4.32) need not determine } \xi \text { uniquely. }
\end{aligned}
$$

Because $R_{1}=0$ implies $I_{R}=0$, while we assumed $I_{R}>0$, we must have $R_{1}>0$. In the same way $R_{2} \$ 0$. It is thus no restriction to assume

$$
\begin{equation*}
R_{1} R_{2}=1 \tag{4.34}
\end{equation*}
$$

because we can replace $R^{*}(x)$ by $\propto^{-1} R^{*}(x)$ and $S(y)$ by $\propto S(y)$, without altering $A(y \mid x)$ and take $\alpha=\sqrt{R_{1} R_{2}} \Rightarrow 0$.

From the foregoing it is clear that extreme correlation coefficients occur for

$$
A(y \mid x)= \begin{cases}G(y)-R_{1} S(y) & \text { for } x \& S  \tag{4.35}\\ G(y)+R_{2} S(y) & \text { for } x>\}\end{cases}
$$

where $A(y \mid x)$ is a distribution function for all values of $x$, while $R_{1}$ and $R_{2}$ are extreme values corresponding to $S(y)$ and $\xi$ follows from (4.32). Therefore we must certainly have

$$
\begin{equation*}
0 \leqslant G(y)-R_{1} S(y) \leqslant 1 \quad \text { and } \quad 0 \leqslant G(y)+R_{2} S(y) \leqslant 1 \tag{4.36}
\end{equation*}
$$

or

$$
\begin{equation*}
-\min \left(\frac{1-G(y)}{R_{1}}, \frac{G(y)}{R_{2}}\right) \leqslant S(y) \leqslant \min \left(\frac{1-G(y)}{R_{2}}, \frac{G(y)}{R_{1}}\right) \tag{4.37}
\end{equation*}
$$

It is not hard to verify (say by partial integration) that we obtain from the $S(y)$ (of bounded variation, satisfying (4.37) and having $R_{1}$ and $R_{2}$ as extreme values in the sense of (4.28)) the largest value for $I_{s}$, if we take

$$
\begin{equation*}
S(y) \stackrel{\operatorname{def}}{=}-\min \left(\frac{1-G(y)}{R_{1}}, \frac{G(y)}{R_{2}}\right) \tag{4.38}
\end{equation*}
$$

and the smallest value, if we take

$$
\begin{equation*}
S_{*}(y) \stackrel{\text { def }}{=} \min \left(\frac{1-G(y)}{R_{2}}, \frac{G(y)}{R_{1}}\right) \tag{4.39}
\end{equation*}
$$

Now $G(y)-R_{1} S^{*}(y), G(y)+R_{2} S^{*}(y), G(y)-R_{1} S_{*}(y)$ and $G(y)+R_{2} S_{*}(y)$ are all distribution functions.

Apart from trivial calculations we have now proved the following 1)

Theorem 4.1. Among the $A(y \mid x) \in H_{2}(G)$ the one with largest correlation coefficient (if it exists) is to be found among those for which

$$
A^{*}(y \mid x)= \begin{cases}G(y)-R_{1} S^{*}(y) & \text { for } x \leqslant \xi,  \tag{4.40}\\ G(y)+R_{1}^{-1} S^{*}(y) & \text { for } x>\}\end{cases}
$$

holds, where $R_{1}>0$ and $\xi$ satisfies

$$
\begin{equation*}
G(\xi)=\frac{1}{R_{1}^{2}+1} \tag{4.41}
\end{equation*}
$$

The corresponding bivariate distribution function is

$$
\begin{equation*}
H^{*}(x, y)=P\left\{\underline{x}^{*} x, \underline{y}^{*} y\right\}=G(x) G(y)+S^{*}(x) S^{*}(y) \tag{4.42}
\end{equation*}
$$

Assuming the random variables $\underline{x}^{*}$ and $\underline{y}^{*}$ to have zero expectation and unit variance, the corresponding correlation coefficient is given by

$$
\begin{equation*}
P\left(\underline{x}, \underline{y}^{*}\right)=\frac{\left\{\int_{-\infty}^{j} x \mathrm{dG}(\mathrm{x})\right\}^{2}}{G(\xi)\{1-G(\xi)\}} . \tag{4.43}
\end{equation*}
$$

The $A(y \| x)$ yielding the smallest correlation coefficient (if it exists) is to be found among those for which

$$
A_{*}(y \mid x)= \begin{cases}G(y)-R_{1} S_{*}(y) & \text { for } x \leqslant \xi,  \tag{4.44}\\ G(y)+R_{1}^{-1} S_{\$}(y) & \text { for } x>\xi\end{cases}
$$

holds, where $R_{1} \gg 0$ and $\xi$ satisfies (4.41). The corresponding bivariate distribution function is

$$
\begin{equation*}
H_{* \infty}(x, y)=P\left\{\underline{x}_{*} \& x, \underline{y}_{x \infty} \leqslant y\right\}=G(x) G(y)+S^{*}(x) S_{*}(y) . \tag{4.45}
\end{equation*}
$$

Assuming the random variables $\underline{x}_{\infty}$ and $\underline{y}_{8}$ to have zero expectation and unit variance, the corresponding correlation coefficient is given by 1) $G(y)$ is continuous with finite second moment.

where " satisfies

$$
\begin{equation*}
G(\eta)=\frac{R_{1}^{2}}{{R_{1}^{2}}^{2}+1}=1-G(\xi) . \tag{4.47}
\end{equation*}
$$

## Examples

A) Rectangular distribution G(y). Here

$$
\begin{equation*}
G(y)=\frac{y+\sqrt{3}}{2 \sqrt{3}} \text { for }-\sqrt{3} y \leq \sqrt{3} \tag{4.48}
\end{equation*}
$$

From (4.43) we have

$$
\begin{equation*}
P\left(\underline{x}^{*}, \underline{y}\right)=\frac{1}{4}\left(3-\xi^{2}\right) \tag{4.49}
\end{equation*}
$$

and hence $\xi=0$ leads to a largest correlation coefficient

$$
\begin{equation*}
P^{x}=\frac{3}{4} . \tag{4.50}
\end{equation*}
$$

From (4.46), (4.41) and (4.47) we obtain

$$
\left\{\begin{array}{c}
P\left(\underline{x}_{*}, \underline{y}_{k}\right)=-\frac{1}{4}\left(3-\eta^{2}\right)  \tag{4.51}\\
\xi+\eta=0
\end{array}\right.
$$

and hence $\xi=\eta=0$ leads to a smallest correlation coefficient

$$
\begin{equation*}
\theta_{*}=-\frac{3}{4} . \tag{4.52}
\end{equation*}
$$

Under Fréchet's restrictions, i.e. using $C(x, y)$ and $D(x, y)$ as bivariate distribution functions, we find a largest correlation coefficient $P_{\text {max }}$ and a smallest $\int_{\min }$ with

$$
\left\{\begin{array}{l}
\rho_{\max }=1  \tag{4.53}\\
\rho_{\min }=-1
\end{array}\right.
$$

Gumbel's bivariate distribution functions

$$
\begin{equation*}
H_{a}(x, y)=G(x) G(y)\{1+a(1-G(x))(1-G(y))\} \quad(-1 \& a \leqslant 1) \tag{4.54}
\end{equation*}
$$

lead to a largest correlation coefficient $P_{G_{\max }}$ and a smallest $P_{G_{\min }}$ with
(4.55)

$$
\begin{cases}P_{G}=\frac{1}{3} & \text { for } a=1 \\ P_{\max }=-\frac{1}{3} & \text { for } a=-1\end{cases}
$$

B) Exponential distribution G(y). Here
(4.56)

$$
G(y)=1-e^{-y-1} \quad \text { for } \quad y \geqslant-1
$$

From (4.43) we have
(4.57)

$$
P\left(\underline{x}^{*}, \underline{y}^{*}\right)=\frac{\iint_{-1}^{5} e^{-x} d x \int^{2}}{e^{-\xi-1}\left(1-e^{-\xi-1}\right)}=\frac{\varepsilon^{2} e^{-\%}}{1-e^{-\varepsilon}}
$$

where $\vec{G}=\xi+1>0$. The largest value for $P(\underline{x}, \underline{y})$ occurs for $\bar{G}=\mathscr{E}_{0}$, where $\mathbb{C}_{0}$ is the (only) positive solution of

$$
F=2\left(1-e^{-E}\right) .
$$

It turns out that

$$
\mathbb{E}_{0}=0,20325
$$

and hence
(4.58)

From (4.46), (4.41) and (4.47) we obtain

$$
\begin{aligned}
& p\left(\underline{x}_{m}, \underline{y}_{m}\right)=-\frac{\left.\int^{\frac{p^{\xi}}{} x e^{-x-1} d x} \int_{-1}^{\left(1-e^{-\xi-1}\right.}\right)\left(1-e^{-y-1} d y\right.}{(1)}= \\
& =-\log \theta \cdot \log (1-\theta)
\end{aligned}
$$

wi th

$$
\theta \stackrel{\operatorname{def}}{=} 1-\mathrm{e}^{-\xi-1}
$$

Hence the smallest value for $P\left(\underline{x}_{\infty}, \underline{y}_{\infty}\right)$ is given by

$$
\begin{equation*}
P_{\substack{9}}=-(\log 2)^{2}=-0,480 \tag{4.59}
\end{equation*}
$$

and occurs for $\theta=\frac{1}{2}$, i.e. $\xi=\sqrt{g}=-1+\log 2$.
Under Fréchet's restrictions we find

$$
\begin{aligned}
p_{\max } & =1 \\
p_{\min } & =-\int_{0}^{\infty} x e^{-x} \log \left(1-e^{-x}\right) d x-1= \\
& =\sum_{n=1}^{\infty} \frac{1}{n(n+1)^{2}}-1=1-\frac{\frac{\pi}{6}}{6}=-0,645 .
\end{aligned}
$$

Gumbel's bivariate distribution functions lead to

$$
\begin{cases}\rho_{G_{\max }}=\frac{1}{4} & \text { for } a=1  \tag{4.61}\\ \rho_{G_{\min }}=-\frac{1}{4} & \text { for } a=-1\end{cases}
$$

The foregoing examples suggest that $P^{\infty}$ always occurs for $\xi=$
This is not true as may be verified by taking
(4.62)

$$
G(y)=\left\{\begin{array}{cl}
\frac{y+a+\frac{1}{6}}{3 a} & \text { for }-a-\frac{1}{6} \leqslant y \leqslant-\frac{1}{6}, \\
y+\frac{1}{2} & \text { for }-\frac{1}{6} \leqslant y \leqslant \frac{1}{6}, \\
\frac{y+2 a-\frac{1}{6}}{3 a} & \text { for } \frac{1}{6} \leqslant y \leqslant a+\frac{1}{6},
\end{array}\right.
$$

where a is a sufficiently large positive constant.
It is interesting to note that $\beta^{*}$ always occurs for a decomposable Markov chain, while $\rho_{\text {s }}$ sometimes occurs for a periodic Markov chain (if $\xi=\eta$ ) and sometimes for an aperiodic Markov chain (if $\xi \neq \eta$ ).

References

| Dantzig, D. van, | Markov Chains (stencilled notes, in dutch), Report S 156 (C 7) of the Mathematical Centre, 1956. |
| :---: | :---: |
| Dmitriev, N. and E. | Dynkin, On characteristic roots of stochastic matrices. Isvestija, Ser.Mat.10, 1946, pp.167-194. |
| Doob, J.L., | Stochastic Processes, John Wiley \& Sons, New York, 1953. |
| Fréchet, M., | Sur les tableaux de corrélation dont les marges sont donnés, Ann.Univ.de Lyon III ser.fasc. 14 A , pp. 53-77, 1951. |
| Gumbel, E.J., | Multivariate distributions with given margins and analytical examples, 31st Session of the Int.Stat. Inst., Brussels 1958, published in Bull.de l'Inst. de Stat., Tome XXXVII-3, Bruxelles, 1960. |
| Runnenburg, J.Th., | Markov Processes in Waiting-time and Renewal Theory, Poortpers, Amsterdam, 1960. |
| Runnenburg, J.Th., | An example illustrating the possibilities of renewal theory and waiting-time theory for Markovdependent arrival-intervals. Indag.Math.23, 5, 1961. |
| Wedderburn, J.H.M., | Lectures on Matrices, Am.Math.Soc. Coll.Publ., vol.17, 1934. |


[^0]:    1) Underlined symbols will denote random variables.
[^1]:    1) It follows from (a) that the usual condition of measurability of A(y|x) for fixed $y$ with respect to this measure is satisfied. For a general definition see Doob [1953] page 190.
[^2]:    i.e. all mass now lies on the curve

