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1. Introduction 

In-most literature on waiting time and renewal theory it is assumed 

that the intervals ~1 ,~2 , •.• l) between successive arrivals (renewals) 

are independent random variables having the same distribution function 

G(x). More generally one may consider a sequence of Markov-dependent 

random variables ~;,~2~ .•. , having G(x) as invariant distribution. Some 

information about this matter is contained in Runnenburg LJ.96<?] and 

(i.96i] . In Runnenburg ~96aj as an example the following type of 

stationary Markov chain is considered: the chain starts in some initial 

position x, while the transition function 
-o 

(1.1) (n ~O) 

has the form 

r 
(1. 2) A(ylx) = L A . (x) B . (y) , 

J J j=l 

where r is finite. 

Markov chains of this type have the advantage of being more general 

than finite Markov chains without involving greater computational dif

ficulties. 

In the sections 2 and 3 of this paper some general aspects of 

these Markov chains are studied. In section 4 ~or a given invariant 

distribution function the effect of variation of the transition 

function on the correlation coefficient is considered for r=2. 

1) Underlined symbols will denote random variables. 
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2. Definitions and elementary properties 

Concerning the functions A.(x) and B.(y) we make the following 
J J 

assumptions: 

(a) the A.(x) are complex-valued functions defined on a Borel-measurable 
J 

set Bon the real axis. They have bounded variation on B, i.e. for 

each j ~1 ~ j ~ r) we have: if x1 ,x2 , ..• ,xN+l (£ B, x1 ~ x 2 ~ .. . ~$ xN+l, 

then LjA.(x )-A.(x) I is bounded for all N. 
n=l J n+l J n 

(b} the B.(y) are complex-valued functions defined for all real y. 
J 

They have bounded variation on (-00,00) and are continuous from 

the right. 

1) 
(c) A{y!x) is for all x~B a probability measure on a Borel field 

on B containing all sets of the form (-oo,y] cfil B. This may be in

terpreted as: for all x~B A(y!x) is a distribution function with 

J dA(yjx) all 1. 
B 

(d): the representation 1.2 of A(yjx) is minimal, i.e. A(y!x) cannot be 

represented as a sum of less than r terms. 

Lemma 2.1: the representation 1.2 is minimal if and only if both the 

A.(x) and the B.(y) are linearly independent. 
J J 

Proof: clearly if either the A.(x) or the B.(y) are linearly dependent 
J J 

A(ylx) can be written as a sum of less than r terms. 

Conversely, suppose that A(yix) can be written as a sum of r-1 terms, 

then 

(2.1) 
r r-1 
~ ~. fl!, ~ 
L,_ A.(x) B.(y) =L....,_ A.(x) B.(y} 
j=l J J j=l J J 

1) It follows from (a) that the usual condition of measurability of 
A(yjx) for fixed y with respect to this measure is satisfied. For 
a general definition see Doob (}95:I} page 190. 
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for all x ~ B and all y. Nor for every r-tuple x1 ,x2 , .. ,.xr4!!. B there 

exist complex numbers c1 ,c2 , ... ,cr not all zero, such that 

r * L ckA.(xk) = 0 (j=l,2, ... ,r-1). It follows from (2.1) that 
k=l J 

(2 .2) 

for ally, which means that either the B.(y) are linearly dependent 
J 

or that 

(2.3) ( j =1 , 2 , . . . , r) . 

The equalities (2.3) imply that det[Aj(xkil = O. If the Bj(y) are 

linearly independent then for every r-tuple x1 ,x2 , ... ,xr E B we 

must have det [Aj(xkD = O, from which it immediately follows that 

the A.(x) are linearly dependent. 
J 

Lemma 2.2: it is no restriction to assume that both the A.(x) and 
J 

the B.(y) are real-valued. We may even assume without loss of 
J 

generality, that the B_(y) are distribution functions. 
J 

Proof: as the A.(x) are linearly independent there exist 
J 

x1 ,x2 , •.. ,xr€ B such that _det [Aj(xkil i O. If we define the linear 

transformation T by Tkj = Aj(xk) and write 

(2.4) 

we have 

(2.5) 

where 

(2.6) 

[
A: (x) = t:., A. (x) (T-l) .k 

j=l J J 

1't r 
Bk(y) = L Tk .B .(y) 

j=l J J 
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is a distribution function. It now follows immediately from the linear 
~ ,I;!. 

independence of the Bk(y), that the Ak(x) must be real. 

In the sequel we assume the A.(x) and B.(y) to be real-valued. 
J J 

Remark: by applying the transformation S with elements S.k=B.(yk) we 
** J J*""' may transform the Ak(x) into Ak (x) == A(ykjx), such that O=S-" Ak (x)~ 1. 

** The resulting Bk (y) are not necessarily distribution functions. 

By assumption (b) 

def 1 . 
B. (y) 

f 
= 1m 

y..-+=00 J 
(2.7) 

b. 
def 1 . 

B. (y) = 1m 
J 

Y-➔ oo 
J 

exist, while it follows from the linear independence of the A.(x) 
J 

that 

(2. 8) 

Clearly 

. (2. 9) 

for all x ~ B. 

r 

a.= 0 
J 

( j =1 , 2 , ••• , r) . 

Lb .A .(x) = 1 
j=l J J 

We now introduce the matrix C with elements cjk defined by 

(2 .10) 

It is easily seen that every finite Markov matrix P can be represented 

by (2.10): if Pis a Markov matrix with elements pjk (l~j~r; l~k~r) 

we define 

(2 .11) 

1) When not otherwise indicated, integration is over the set B. 



where 

(2 .12) b(x) 

We now find from (2.10) that 

(2.13) 
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-- { 01 
for x ~ 0 

for x.). 0 

It is noted however, that in the case of det P = 0 the functions A.(x) 
J 

as defined by (2.11) are linearly dependent, i.e. the representation 

(1.2) is not minimal. 

Returning to the general case we define 

(2 .14) {
A(l)(ylx) = 

A(n+l)(ylx) 

from which it follows that 

(2.15) A (n+l) (yjx) 

A(y/x) 

= f (n)(yjz)dA(z~x) 

c~~) denoting the elements of en 
0 

(C =I, the unit matrix). 

(n ~1), 

(n ~ 0), 

* ~ 1 Remark: the linear transformation Ak(x) = L_A.(x)(T-) .k and 
j=l J J 

(2.16) 

It now follows from Lemma 2.2 that C may be transformed in such 
"N 

a way that the cjk satisfy 

(2.17) ~ *(n) 
L__ cjk = 1 
k=l 

(j :::1 , 2 , . • . , r ; n :). 0) . 
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3. General results 

From (2.15) it is seen that the asymptotic behaviour of A(n)(yfx) 

for large n is governed by the asymptotic behaviour of en, which is 

determined by the eigenvalues of C. We therefore will now study the 

properties of these eigenvalues. 

Theorem 3,1: the matrix Chas an eigenvalue equal to 1 and no eigen

values with modulus exceeding unity. 

r 
Proof: as it is no restriction to assume that,;;:-- c = 1 for all J. 

L....., jk 
(1 ~ j ~ r) ..- C admits of an eigenvalue 1. 

k=l 

Generally if A is an eigenvalue and J'1 , ~, •.. , Jr a corresponding 

eigenvector we define an eigenfunction Cf(x) by 

(3.1) 
def r J' <f (x) L .A . (x) , 

j=l J J 

which is easily seen to satisfy 

(3,2) A(f(x) = J(f(y)dA(yfx). 

From(2.19)it follows that IA! l<f'(x)f ~ sup !f(y)j, whence by the i\\ 
boundedness of (p (x) we have U I ~ 1. 

Remark: Theorem 3.1 might suggest that for every matrix C there 
-1 

exists a non-singular linear transformation T such that TC T is a 

Markov matrix. The following example shows that this is not true: if 

we take B = {x1 ,x2 ,x3 ,x4} 

(1 ~ j $ 3; 1~ k~ 4) 

for the 

(~ 0 

0 

1 

matrix with elements Aj(xk) 

1 1 

) -1 0 

1 0 

and B1 (y) = ½f t..(y-x1 )+ t.(y-xn)}, B2 = ½{&.(y-x1 )+ l..(y-x2>}, 
B3 = ½ft., (y-x2)+ I.. (y-x3)} , we find 
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h . h h . 1 1 l+i w 1c as e1genva ues , 2 while for a Markov matrix with 3 rows and 

3 columns the non-real eigenvalues are restricted to the domain bounded 
+ 11U. 

by the triangle with vertices 1, e---r. This example has been constructed 

by considering a Markov matrix of 4 rows and 4 columns having one eigen

value zero and an eigenvalue outside the abovementioned triangle. For more 

information concerning this matter we refer to Dmitriev and Dynkin [194~. 

As in the case of finite Markov matrices the eigenvalues of modulus 

1 are of special interest. It can be proved that the number of independent 

eigenvectors corresponding to an eigenvalue of modulus 1 is equal to the 

multiplicity of that eigenvalue (for a proof in the case of a finite Markov 

matrix, which is easily generalized, we refer to Van Dantzig {2;95EQ page 

38. 

We first consider the case of a multiple eigenvalue 1: Now there 

exists an eigenfunction <p(x) not identically equal to a constant. As 

<p<x) is bounded we may assume that 

(3.3) 

l.) 

sup fq;'(x) I= 1 , 
x EB 

We now assume that to every eigenfunction tp(x) corresponding to an 

eigenvalue of modulus 1 there exists a value x 0 €. B with jq'(x0 )f= 1. This 

is trivially true for instance if Bis finite or if Bis a bounded closed 

interval, on which the A.(x) are continuous. 
J 

Without loss of generality we may now assume that (f(x0 ) = 1. We 

define 

(3. 4) B d~f { x ! (f(xo) = 1} 0 

For all X € B we now have, 
0 0 

(3 .5) f{1- o/(y1 dA(y~x) = 0 ' 0 

1) See footnote on page 9. 
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from which it follows that for all x EB 
0 0 

(3 .6) J dA(ylx) = 1, 
B o 

0 

i.e. B is an absorbing set. 
0 

Considering the eigenfunction 'f'(x) = 1-<p(x) we find in the same way 

:(after norming cr<x) in such a way that sup I 'f' (x) J =1) an other absorb

ing set B', which is disjoint from B. 
0 0 

Next we consider the case IAl =1, A ~1: 

1) 
As before we assume that a value x0 £ B exists with tp(x0 ) = 1. For all 

x € B (as defined by (3 .4)) we now have 
0 0 

(3. 7) 

from which it follows that 

(3 .8) 

satisfies 

(3 .9) J dA(yfx) = 1 
B o 

1 

for all x EB. Further evidently B and B1 are disjoint. Defining 
0 0 0 

generally 

and supposing 

(3 .10) _.\k ~ 1 for l.$k$N, 

we find sets B0 ,B1 , ••• ,BN with the properties 

(i) 

(ii) 

(iii) 

B0 ,B1 , ••• ,BN are disjoint 

J dA(yfxk) = 1 for all xk€ Bk (k=0,1, ... ,N-1) 

Bk+l 

J dA(ylx) is not identically zero. 
B 

0 

1) See footnote on page 9. 
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Remark: (iii) follows from (3.9), as we might (by proper norming of(/)(x)) 

have taken B1 instead of B0 • 

We shall prove that N cannot exceed r-1. Suppose N ~ r, then we have by 

(i) and (ii) that the functions A(y!xk) (xk an arbitrary element of Bk, 

k=0,1, ... ,r-1) are linearly independent. From this it follows, that 

det [Aj (xkfj i O. By (ii) however we have 

(3 .11) JdB .(y) = 0 
B J 

0 

(k=0,1, ... ,r-1), 

where by (iii) J dB.(y) is not zero for all j. Thus (3.11) requires 
B J 

det [Aj (xk1} =0. o From this contradiction it follows that N ~ r-1, i.e. 

Ak=l for some k' r. From (ii) we now see that B contains k cyclically 

moving subsets B0 _., Br···~Bk-l~ B0 , 

Summarizing we have 

l) 
Theorem 3.2: If for every eigenfunction <p(x) (of A(ylx)) corresponding 

to an eigenvalue of modulus 1 max i<p(x)J exists we have 
XE B 

I if 1 is a multiple eigenvalue then B contains (at least) two dis

joint absorbing sets. 

II An eigenvalue of modulus one is a root of unity of an order k~r 

and implies the existence of k cyclically moving subsets. 

The following theorem has been proved in Runnenburg [196~ with 

the use of generating functions. Here we give a proof analogous to the 

proof of the analogous theorem for finite Markov chains. 

Theorem 3.3: if Chas a single eigenvalue 1 and no other eigenvalues of 

modulus 1, then 

(3.12) G(y) = lim 
n_,.oo 

A(n)(yjx) 

exists and is independent of x. G~y) is the only invariant distribution 

function, i.e. the only distribution function satisfying 

1) After the manuscript had been typed it was seen that this condition 
is always satisfied. 
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(3.13) G(y) =f(yix)dG(x) 

and is given by 

r 
(3 ~14) G(y) = L ~.B. (y), 

j=l J J 

where the o<. are the (unique) solution of 
J 

(3.15) 
r 

Lo<.b. = 1 • 
. 1 J J J= 

Proof: as in the case of a finite Markov matrix the existence of 

rd~f lim Cn follows from the well-known matrix decomposition 
n_.,.oo 

(3.16) 

where A 1 , .\2 , ... , ~r are the distinct eigenvalues il of C, the ~ are 

idempotent and orthogonal, the C. are nilpotent and satisfy r_c .=C. r.= r 
J J J J J J 

(see e.g. Wedderburn [193~ page 29). Now it follows from (3.16) that 

r= r. 
0 

For r;k we evidently have 

= t: 
1=1 

(3 .17) 
r 

L ~bk= b. 
k=l J 

( j =1 , 2 , • • • , r) . 

From (3.15) and (3.17) it follows that 

(3.18) 

From the existence of lim en the existence of G(y) = lim 
n~oo 

follows by (2.15). Clearly we have 
n-.+ro 

A(n)(yjx) 
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j=l 
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It is easily seen that G(y) is a distribution function satisfying 

(3.13), while its uniqueness as an invariant distribution follows from 

the fact that every distribution function satisfying (3.13) must satisfy 

(3.14) and (3.15). 

4. Correlation coefficients for r=2 

In order to compare the behaviour of sequences x (n=l,2, ..• ) and 
-n 

Zn (n=l,2, ... ), where the x are independent random -n 
variables all having 

the same distribution function G(x) = P{~ ~x} and the Zn are Markov-

dependent random variables with transition function A(y!x) and invariant 

distribution G(y), we have to search first for those transition functions 

admitting a given G(y) as invariant distribution~ Or, if we compu,te 

(4.1) A(yjt)dG(t), 

we have to search for those bivariate distribution functions of random 

variables~ and z, which have G(y) as marginal distribution function for 

both x and z. The latter question has been considered in Frechet [1951], 

Gumbel [}95~ 

It has been shown by Frechet that all bivariate distribution functions 

H(x,y) with prescribed marginal distribution functions F(x) = H(x,oo) 

and G(y) = H(oo,y) satisfy 

(4.2) C(x,y) d~f max(F(x)+G(y) - 1,0) ~ H(x,y)~ D(x,y) d~f min(F(x),G(y)) 

for all x and y, whatever F(x) and G(y). Moreover, C(x,y) and D(x,y) are 

always bivariate distribution functions. If we assume that 

(4.3) F(q-:-) = G(O-) = O, G x 2 < oo 
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then C~ z always exists and we have by F~bini's theorem 

(4.4) C~z =) £00 
{1 - F(x)-G(y) + H(x,y)}dx dy 

0 0 

and also 

(4.5) C ~ z - C ~ Cz = f00 J00 
{H(x,y)-F(x)G(y1" dx dy. 

O O ~ 

Hence the bivariate distribution function H(x,y) with prescribed F(x) 

and G(y) having the largest correlation coefficient is given by D(x,y), 

while that with the smallest correlation coefficient is given by C(x,y). 

We can use the conditional distribution function A(y!x) to a 

given bivariate distribution function with equal marginal distribution 

functions F(y) = G(y) as transition function for a Markov chain y1 , 

z2 , ... with invariant distribution G(y), i.e. from 

(4.6) D(x,y) = min(G(x),G(y)) 

we may take as a conditional distribution function 

(4.7) 

where 

(4: 8) 

~(yjx) = ~(y-x), 

~(x) = {: 
if X ~0, 

if X,( 0, 

In this case all mass is distributed on the line x=y, i.e. the 

Markov chain obtained is trivial. For 

(4. 9) C(x,y) = max(G(x) +G(y) - 1,0) 

we may take 

(4.10) Ac(yjx) = i(G(x) + G(y)-1), 

i.e. all mass now lies on the curve 



-13-

'(4 .11) G(x) + G(y) = 1. 

Here again the Markov chain obtained is trivial. If the chain starts 

with z1=x, then there is exactly one possible value y for z2 , i.e. 

z2=y, from which z3=x, z4=y, etc. are obtained. More interesting 

transition functions are those for which we start from a mixture of 

the bivariate distribution functions (Frechet) 

C(x,y), G(x)G(y) and D(x,y), say 

(4.12) 

Consider the class H (G) of bivariate distribution functions 
r 

H (x,y) for which we have 
r 

r 
(4.13) H (x,y) = ~ B. (x) B. (y), H (x,oo) = G(x), H (co ,y) = G(y), 

r L_J J r r 
j=l 

where G(y) is a distribution function and the B.(x) (as well as the 
J 

B. (y)) are linearly independent. Then for fixed r ~ 2 it is impossible to 
J 

find G (x,y) EH (G) and D (x,y) € H (G) with 
r r r r 

(4.14) C (x,y)~ H (x,y)~ D (x,y) for all x,y and all H (x,y)€ H (G), 
r r r r r 

because the restrictions on H (x,y) are such that we must have 
r 

C (xry) = C(x,y) and D (x,y) = D(x,y), but C(x,y) and D(x,y) do not 
r r 

belong to H (G). 
r 

For r=l there is no problem, because H1 (G) only contains 

(4.15) H1 (x,y) = G(x)G(y). 

However, for r ~2 one may ask for those C (x,y)E H (G) (or those 
r r 

D (x,y)E H (G)) which have smallest (largest) correlation coefficient. 
r r 

We shall solve this problem for r=2 in order to get more bivariate 

distribution functions to make a mixture from and also to see in how 

far the correlation coefficients obtained under the restriction r=2 

fall short of the extreme correlation coefficients supplied by C(x,y) 
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and D(x,y). 

We assume in the remaining part of this section that G(y) is an 

arbitrary continuous distribution function with finite second moment. 

We first show that any 

2 
(4.16) A(ylx) =L A.(x) B.(y) 

J J j=l 

satisfying the conditions (a),(b),(c) and (d) of section 2 and having 

invariant distribution G(y) may be written 

(4.17) A(yix) = G(y) + R(x)S(y), 

where S(-oo) = S(oo) = 0 and R(x) and S(y) are of bounded variation. 

It is known that 

(4.18) 

and hence 

(4.19) 

where 

(4.20) 

indicating that A1 (x)-o<1 and A2 (x)-o<2 are linearly dependent (because 

B1 (co)= B2 (oo) = 0 is impossible). We may assume B1 (co) i O, i.e. 

(4.21) 

Thus 

(4.22) 

A(yjx) 

(R(x) 

\ s(y) 

satisfy our conditions. 

As 

B (y) 
1 



(4.23) 

we have 

(4.24) 
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foo A(yfx)dG(x) = G(y), 
-oo 

S(y) Joo 
R(x)dG(x) = 0 

-oo 
,for ally. 

The functions G(y) and S(y) are linearly independent, hence S(y)iO for 

some y and 

(4.25) f 00 R(x)dG(x) = 0. 

-oo 
Extreme values for the correlation coefficient occur for those 

R(x) and S(y) for which 

(4.26) 

xy d A(yf x) dG(x) -l ~ C x_ y 

= Joo 
x R(x)dG(x). 

-oo 

f oo 
yd S(y) 

-oo 

= 

has an extreme value. One can easily indicate functions R(x) and S(y) 

for which 

def 
R(x) dG(x) 

(4.27) 
def 

d S(y). 

are both unequal zero and of the same sign or unequal zero and of 

different sign. As we are interested in the product of IR and I 8 , it 

is no restriction to assume that IR>O. Now let us assume that S(y) 

is known and make IR as large as possible. We know that R(x) is 

bounded, say 

(4.28) -R ~ R(x)~ R 
1 2 

for all x 

with finite nonnegative R1 and R2 , because -1~ R(x)S(y)~ 1 for all 

x and y and S(y) i O for some y. We take R1 and R2 as large as pos

sible: If G(y) + R S(y) is a distribution function, then we can 
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prove that there exists an R2 ~o such that G(y) + R2 S(y) is a distri

bution function while G(y) + (R2+f)S(y) is not, whatever f.>O we con

sider. We already noticed that R is bounded from above. If G(y)+R S(y) 

is a distribution function for some R>O, the same is true for all 

G(y) + 9R S(y) with 0~9~1, because 

(4.29) G(y) + eR S (y) = (1-9) G(y) + 0 f G(y) + R S (y)) 

If G(y) + (R2-f)S(y) is a distribution function for all ,E},0 (such 

that R2- ~ ~ 0) and not for any ~<O, then G(y) + R2S(y) is also a 

distribution function, as can easily be verified. Hence a largest 

R2 ~o exists. In the same way we can prove the existence of a largest 

R1 ~O. 

Now "the problem: "If S(y) is given, for which R(x) satisfying 

(4.25) and (4.28) has IR (as given by (4.27)) its largest value" has 

as solution 

(4 .30) * -- r-RR12 R' (x) l 
for x ~ ~ , 

for x :> ! , 

where from (4.25) we have that S satisfies 

(4.31) -R1 _j\G(x) + R2 f'° dG(x) = 0 

s 
or (as R1 +R2 = 0 implies r=l instead of r=2, hence R1 +R2> 0). 

1) 

(4.32) G(~) = 

Indeed for any other function R(x) satisfying (4.25) we have 

J
00
"'x { R"(x)-R(x)} dG(x) = _J 1.{R*(x)-R(x)} dG(x) + 

l +f xfR*(x)-R(x)}dG(x) ~ 
ts J rR~(x)-R(x1 dG(x)+sffl~(x)-R(x~dG(x) = o. 

-----------=~---- l 
1) Of course equation (4.32) need not determine Suniquely. 

(4.33) 
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Because R1 =0 implies IR=0, while we assumed IR> 0, we must have R1> 0. 

In the same way R2 :> 0. It is thus no restriction to assume 

(4.34) 

* -1 ~ because we can replace R (x) by c< R (x) and S(y) by ~ S(y), without 

altering A (y f x) and take o( = V R1 R2° .). 0. 

From the foregoing it is clear that extreme correlation coefficients 

occur for 

(4.35) {
G(y) - R1 S (y) 

A(y!x) = 
G(y) + R2S(y) 

for 

for 

x~ 

X > 

s ' 
s ' 

where A(yfx) is a distribution function for all values of x, while R1 

and R2 are extreme values corresponding to S(y) and 5 follows from 

(4.32). Therefore we must certainly have 

(4 .36) and 

or 

(4.37) -minr--~(y) , G~y>) ~ S (y) ~ min(l-~(y) , G~y)). 
1 2 2 1 

It is not hard to verify (say by partial integration) that we obtain 

from the S(y) (of bounded variation, satisfying (4.j7) and having R1 

and R2 as extreme values in the sense of (4.28)) the largest value for 

I , if we take 
s 

(4 .38) 

and the smallest value, if we take 

(4.39) ( ) def . ..,/i-G(y) s* y = min . --"--
R2 

G(y)) 
' R 

2 

G(y)) 
' R • 

1 

* * Now G(y) - R1S (y), G(y) + R2S (y), G(y) - R1S*(y) and G(y) + R2S*(y) 

are all distribution functions. 
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Apart from trivial calculations we have now proved the following 
,l) 

Theorem 4.1. Among the A(yJx) E H2 (G) the one with largest correlation 

coefficient (if it exists) is to be found among those for which 

= {G(y) - R Sre(y) for X :$ s 
~ 

. 1 

(4.40) A (yix) -1 ~ 5 G(y) + R1 S (y) for x), 

holds, where R > 0 
1 

and~ satisfies 

(4.41) 

The corresponding bivariate distribution function is 

(4.42) 

. * {I;, Assuming the random variables~ and x_ to have zero expectation and 

unit variance, the corresponding correlation coefficient 

~~t4- * [_£5
x dG(x)} 2 

is given by 

(4.43) r<~. x..) = -------
G<t> {1-G(5)} 

The A(yjx) yielding the smallest correlation coefficient (if it 

exists) is to be found among those for which 

(4.44) 
{

G(y) - R1 S~(y) 

-1 
G(y) + R1 Ssl\'I (y) 

for x ~ S, 

for x > ! 

holds, where R1 >0 and S satisfies (4.41). The corresponding bivariate 

distribution function is 

(4.45) 

Assuming the random variables ~'Ill'> and x..~ to have zero expectation and 

unit variance, the corresponding correlation coefficient is given by 

1) G(y) is continuous with finite second moment. 
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where 1? satisfies 

(4.47) G(7l) 

-19- l ~ f xdG(x) f ydG(y) 
-ro -ro 

R 2 
1 

Examples 

G(l) G(~) 

= 1-G( S) . 

A) Rectangular distribution G(y). Here 

(4.48) 

From (4.43) we have 

(4.49) 

G(y) = y+V3 
2 \/3 

for 

and hence 5 ~o leads to a largest correlation coefficient 

(4.50) F~= ¾ . 

From (4.46), (4.41) and (4.47) we obtain 

(4.51) 

and hence ~ = 12 =0 leads to a smallest correlation coefficient 

(4. 52) r~ = - ¾ . 

Under Frechet's restrictions, i.e. using C(x,y) and D(x,y) as 

bivariate distribution functions, we find a largest correlation coef

ficient I' and a smallest ~ . with 
J max Umin 

1' 
(4.53) 

-1. 
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Gumbel's bivariate distribution functions 

(4.54) Ha(x,y) = G(x)G(y) f1+a(l-G(x))(l-G(y))} (-1 ~ a~ 1) 

lead to a largest correlation coefficient f G and a smallest 
max 

fa 
min 

with 

FG 1 
for 1' = 3 a = 

max 
(4.55) 

1 
Pa - 3 

for a =-1. 
min 

B) Exponential distribution G(y). Here 

(4.56) G(y) = 1-e-y-l for y ~, -1. 

From (4.43) we have 

(4.57) 

1 I {xe-xdx 
f.> * <I,,; l .:_1 
I (~ •Z ) = --------

- $ -1 -)-1 
e (1-e ) 

2 

2 -?: 
~ e 

- t: ' 
1-e 

'F'= @*~ 'Ir where v,, = _')+1 > 0, The largest value for H (~ ,z ) occurs for ?: = ~ , 
0 

where 't' is the (only) positive solution of 
0 

It turns out that 

and hence 

-~ 
"t°=2(1-e ). 

~ = 
0 

0,20325 

(4.58) f * ,w, 
= sup f (x ,y~ = ¼ f; (1-r) = 0,648. 

~:»o - -- o o 

From (4.46), (4.41) and (4.47) we obtain 

(S -x-1 f ~ -y-1 
_ xe dx. J ye dy 

-1 -1 

-J-1 -~~-1 
(1-e )(1-e · ) 

= 

= -log e.log(l-e) 
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with 
def - 5-1 

e 1-e • 

Hence the smallest value for f (~~•X.i:t is given by 

(4.59) 
2 P*= -(log 2) = -0,480 .• 

and occurs for 9=½, i.e. S = 12 =-1 + log 2. 

Under Frechet's restrictions we find 

f' max = 1 

-r -x -x 
f min = xe log(l-e )dx-1 = 

0 
00 

1 if' 
=L -1 = 1 = -0,645. 

2 6 n=l n(n+l) 

Gumbel's bivariate distribution functions lead to 

f G = ¼ for a=l, 
max 

(4.61) 

f G . =-¼ for a=-1. 
min 

The foregoing examples suggest that f iG> always occurs for S = 11. · 
This is not true as may be verified by taking 

1 
y+a+ 

6 1 1 
3a 

for -a- -~y~ -
6 ' 6 

(4.62) G(y) y+½ 
1 1 

= for --~ y4j: -
' 6 6 

y+2a-
1 
6 1 1 

3a 
for 6$y~a +-

' 6 

where a is a sufficiently large positive constant. 

* ' It is interesting to note that f' always occurs for a decomposable 

Markov chain, while f t1 sometimes occurs for a periodic Markov chain (if 

l = l?) and sometimes for an aperiodic Markov chain (if l iTl,). 
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