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1. Introduction 

Consider a sequence of n independent Bernoulli trials with 

fixed probability p for success; we assume O <·p < 1. 

Let S 1 ) be the number of successes inn trials, and let -n 
,.., S -n p "" -n . s = -n Vn p q' 

(q=1-p) 

be the normalized number of successes. We denote by 

_1. 2 
e 2 u du 

the normal distribution function and byq,'(u) the corresponding 

frequency function. 

Let x be a real number depending on n. If it is given that 

( 1. 1 ) 

then a well-known theorem asserts that 

( 1. 2) 

SMIRNOV ( 1934) has formulated the following theorem', which can 
2) . 

also be found in FELLER (1957) : 

If for a given number a> 0 we have 

( 1. 3) 3+a -½ n-+CO, X-+CO, X n ~0, 

then we can prove 

( 1. 4) 

A summary of Smirnov's proof can be found in MOLENAAR, 

pages 106-113. After replacing Pf s;>x} by an incomplete 
B-integral, this proof uses a cunning device of repeated 

1) Stoch~stic variables have been underlined. 
2) VII problem 12, page 180. In (6.8) lac.cit. xa should be 

replaced by x-a. 
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-1 partial integrations that yield a series of even powers of x , 

which we can stop as soon as the exponent has become larger 
1 _.l x2 

than a. This series, multiplied by x e 2 , is then with the 

desired accuracy equal to 1- ~(x); see the Appendix of this 

Report. SMIRN0V 1 s method is clever, but rather elaborate 

because of the numerous calculations. 

A second method, derived from the way in which FELLER 

(VII.5) proves a simpler limit theorem, is given in section 2. 

It proceeds by dividing the event fs~>x} in {x<S~4Pxd} and 
{ S~ > xJ . One has to choose xd in such a way, that the 
probability of the first component can be calculated according 
to the classical De Moivre-Laplace theorem, i.e. 

x3 n-t.+o 
d ' 

while the probability of the second event must be small 

compared to that of the first one (the quotient must be smaller 
than x-a). 

In his University course 1961- 162 RUNNENBURG has given 

quite a different proof of FELLER 1 s theorem VII.5. In section 

3 his method will be reproduced, and an analogous result for 
the Poisson distribution will be derived in the same way. In 

section 4 we shall see the difficulties that will arise if we 

try to improve RUNNENBURG 1 s method into a proof of (1.4). The 

Appendix (section 5) contains the proof of an auxiliary 
theorem.· 

2. A method based on FELLER 1 s proof. 

In this section, when we use n, x, 0 and a, we tacitly 

assume (1.3) to be given. 

First we want to apply STIRLING 1 s formula to the kth term 

of the binomial distribution. If we define xk by k=np+xk~' 
then n-k=nq-xkVnpq: Now let us assume that 

x~ n-4o; so k=O(n) and n-k=O(n); 
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then we have . 

1 
= --:======.. V2w k(n-k)o. 

n 

__ 1_+_(}_( n_-_1_)_ = 
k n-k 

(~) (n-k) 
np nq 

1 
=~v~,~·====x-k~VP~.~R~.===x=;~•p•¢-·. 

/2wn(p+ --)(q- k ) 
Vn Vb 

The logarithm of the denominator of the second factor is equal 

to 

~ ( )j- 1 xkl{q j ~ 1 xkifP j 
(np+xkVnpq0

) )___-
1 ~ ( ) -(nq-x~) L,_"7 (-"'-) = 

j=1 J \jnp j=1 J ~ 

= ½ x~ + r(xk,n). 

Conclusion: x~ n-½~ and k=np+xk Vnpq 0 imply 

( 2. 1) 

Below, we will say more about the remainder term R(xk,n). 

Given the quantity x, that increases with n in the way 

defined in (1.3), we can determine positive integers c and d 

such that 

(2.2) 

As x~oo, it follows that X , 
C 

xd, c and d increase with n and x. 
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Now we have x~ n -½ ); 0 for every k with c < k~ d, because 

O<x3 n-½~ x3d n .... ½~ (x+log x)3 n-½, 
. k 

while we have x3 n -½= O' ( x-a) according to ( 1. 3). Thus we may 

apply (2.1): 

From a more exact computation of R(xk,n) one can easily see 
that 

(c<k~d), 

where we can take for Ma constant not depending on k,x or n, 
_.1. 

provided that x and n are sufficiently large and that xdn 2 

is sufficiently small. Using this uniform estimate one finds 
that 

The definition of xk yields that 

1 
X1-X1=-; 

k+2 k-2 Vnpq' 

hence the first mean value theorem of differential calculus 

implies the existence of numbers 5 k that satisfy 

from the last statement it follows that fxk- ski< '1 
2Vnpq 

Now 

and 
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because we have k .~ d. 

Combination of these results leads to 

(2.3) 

Now we will use FELLER 1 s result proved in section 5: 
for every integer b~O we have for y~ro 

From 

So 

-'I_ lfi ( ) _1_ -½ y2{ 1 _ j_ + Ll _ +(_-'I )b 1.3.5 .. {2b-1 )} 
i 'f' y v:;i ,~=-. e y 3 5 . . . i . '2 b+1 , 

y2U y y y 

the choice of C and d in ( 2. 2) we see that 

Xe+..!. 1 xd+½ 1 
~ = 1+d(n-2 ); = 1 +rf( n -2). 

X x+log x 

1-p(xc+½)=f1-p(x)} f 1+U(x-a)} , and 

1 _ log x + log2x-1 +tJ( log3x) 
____ x ____ x_2 _____ x_3_.(1+~n~= 

1 (} 1 1- 2 + (4) 
X X 

for in the long run x will be larger than the fixed positive 

number a~ We use the last inferences in (2.3): 
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P {c < Sn,,; d}={f-¥xc+½il-[1-p(xd+½D} { 1+0(x-a)} = 

(2,4) = {1-p(x)} {1- 1~~i~f-')}f+a(x-a)} = 
= f1- 4)(x)} f 1+0(x-a)}. 

Finally, we will show that P {sn > d} becomes negligibly 
small 1 ). It is trivial that 

n k-1 n-k+1 = 
( k-1) p q 

( n-k+1 ).p 
kq ' 

and thus 

( n ) d+~ n-d-~ V 
d+l? p q . _t: [(n-d)p} 

(~)."Ad q n-d < P='1 dq 
. 
J 

th · for the .V term of the sum is the product of v quotients of 

subsequent binomial terms, and (2.5) states that eve'ry factor 
~ of this product is not larger than dq . Now we majorize 

the finite geometric series by summing from V =0 to oo : 

1 dq 
(n-d)p = dq-np+dp = 

dq 

npq +xdq '{ripq 

xdv;;;;; 

= Vnpq' f1+O(xd)} = Vnpq' {1+aix-a)} . 
xd \,In Kd 

= 

Next we use the estimate (2.1) for P{Sn=d} =(~)pdqn-d: 

1) This1needs a separate proof, because we can not yet state 

that P [~> d}= {1- p(xd~ { 1+0(x-a)} . 
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1 2 
'1 -2Xd 

[ :l I e { '1 H1( x - a ) 1 
P ~ > dJ~ xdV277 J 

'1-q>( X) -'"'-'1-----1 X-::2:,---f-'1--'1--'1-.-?---}- = 

~ e 2 x - x3 + x - ... 

= x-x e-½ log2x {'1+0'(x-a)} = O'(x-a) ; 

xd 1 
here we have used that x+log x = '1+0(n- 2 )='1+d(x-a), cf·. (2.2) 

and ('1.3). Now we have proved 

( 2. 6) Pf.e.n>d}_O( -a). 
'1-,( X) - X , 

combining (2.4) and (2.6) we see that 

This completes our proof of Smirnov 1 s result ('1.4). 
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3. RUNNENBURG 1 s method. 

Again we haven independent Bernoulli trials with 

probability p for success, O<p < 1. If ( 1.1) is given,. 

RUNNENBURG proves ( 1.2) in the following way. 

First of all he estimates one term of the binomial 

distribution, in the way we did it in section 2, He makes this 

estimation for r=np+x Vnpq; without loss of generality we may 

taker to be an integer. Because (1.1) is given, we find the 

analogon of (2.1): 

( 3. 1) ( n) rqn-r 1 p ~ ,-r;:::;;;:-_--~-
r r 2ffnpq 

Next we may put 

( n ) r+~ n-r-'-1' 
r+v P q (n) rqn-r ( 3. 2) 

(n) r qn-r 
r P 

. r p . 

Because of (2.5) we have 

( 3. 3) 

n r+P n-r-;:µi ~ 
(rH_,)p q =~ TT 

( n) r n-r ~ P q V=1 J0 =1 r . 

'V ~ 
(n-r)" p = Y, 

( r+)lll) !~ ql1' 

(n-r-j+1)p = 
( r+j )q 

i.e. we denote the last mentioned s~ by Y, and we use the 

notation a 1~ = a(a-1)(a-2) ... (a-V+1). 

Now the ~th term of Y is smaller than f(n~~)p}~; therefore 

Y is majorized by a finite geometric series, and a fortiori 

by the infinite one. Thus we find that 

( 3. 4) y~~ ((n-r)pl~ _ rq _ npg+xgV npq'G-? (nw' -.; ko t rq 1 - rq - ( n-r ) p - x V npq ' x 

In order to find a lower bound for Y, we break off the 
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series after N terms, with N < n-r. In that case we have for 

each term 

. , 

so 

(3.5) 

We choose N=cV npq: where c is a positive constant. Then for 

sufficiently large n we have n-r=nq-x V npq,>N, and on the 

other hand 

lo f ( n-r-N )p} N = c V npq o log 
g ( r+N )q 

=cVnpq"" {1og('1- p(x+c))-log(1+ q(x+c))} = -c(x+c)+C1(1). 
\fniq" V npq • 

But lim f -c ( x+c )} = -co, and thus 

1_ [( n-r-N )p1 ~~ 1 
( r+N)q J . , 

so the right hand member of (3.5) is asymptotically equal to 

(3.6) 

= (n-r-N)p = 
r+N-np 

= npq-p(x+c)v-;;;;; ~ VnI)q ~ ~ 
(x+c) V npq' x+c x 

Now we have upper and lower bounds for Y that are both 

asymptotically equal to ~ , so we may infer that 

(3. 7) Yr/.t [npq 
X 
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Finally we recall FELLER 1 s result for the normal 
distribution function p(y) mentioned in section 2 and proved 
in section 5: 

1- f (y Jc,o V~Ti' e -½ Y2 {; _ ~ + 3/ _ .. , +( _ 1) b 1,J5y~Jb+~ 2b-1 ~-

' 

We substitute b=O: 
2 

(3.8) 1-m(y)G,,:) 1 e-½ Y r Y '{2if' 

Now we combine (3.1), (3.2), (3.3), (3.7) and (3.8): 

(3.9) 

This proof by RUNNENBURG can also be adapted to prove the 
asymptotic normality of other discrete distributions. 
In this way we obtained the following result for the Poisson 
distribution. If 

(3.10) 

then 

(3.11) 

where 

~ ~oo, x~oo, 

P{k) ~+ x\/r} ~1-p(x), 

Without loss of generality we may assume that r= A+x\Jr 
is an integer. Then we have 
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P{k "i.\+x'it'-,rJ11)=)oo_p(r+~;>.) ( ~)Y' ( \) 
-'- tvJ: ( ~) .pr;~= .pr;,.; - ~ ~=1 Pr;~ 

log p( r; ~)~x~ -½ log 2Tf-½ logl-(~ +x\/! +½ )log( 11\fr)= 

\ 2 (J x3 
= -½ log 21!1\ -½x + (gr) ; 

(3.12) 
l 2 

( \) 1 -2 X 
p r jA ~ vf2frl"' e 

f(k;Ai = A so p(r+Vi~) = 
p k-1; ) k ' p ( r; ) 

(3.13) 

Take N=cV'f", where c is a positive constant; then we have 

~ f ( .\ )N} 
I _lL. ~V r+N t 1- r+N 

y ) ?r-,=,.., (r+N)w = \. 
IJJ' I l'j;;. 'f4!N" 

log (r~N )N = -c Vf 1og t1+ ,W-) = -c(x+c )+o( 1 )--->-00. 

So (r!N)N becomes negligible compared to 1, and we see that 
asymptotically 

>. 
(3.14) Y' ~ r"+N _ >. _ vr ""'vr 

1 _ _!_ - r+N-A - x +c x · 
r+N 

From (3.13) and (3.14) we deduce: Y'v.> 'if['; combining this 
with (3.12), we infer that 
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4. Applicability of this method in our case. 

We will now investigate whether we can improve RUNNENBURG 1 s 
method into a proof of (1.4) from. (1.3), i.e. a solution of 
SMIRNOV 1 s problem. The proof of section 3 is not sufficient 
here, not even if we make a different choice for Nin (3.5). 
For the expressions of the form "A ~B" mentioned in (3.6), 

(3.7) and (3.8) cannot be just replaced by "A=B f1+a(x-a)}"· 

As can be seen from (2.1), the sharpened version of (3.1) 
is valid: 

( 4. 1) ( n) r n-r_ 1 -½ x2 { -a} r P q - ~pq"'e 1+U(x ) .• 

Next, FELLER 1 s result (5.1) and Remark 1 at the end of section 
5 give us that 

( 4. 2) 

if we put 

( 4. 3) b= [ ~] 

In order to reach the desired result 

we will apparently have to prove for the sum Y defined in (3.3) 
that 

( 4. 4) 

This step turns out to be very complicated. We can write 
for Y 

An obvious fir&t ~pproximation for Y is 
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_ (n-r)p f1-(npq-xp~· )n-r} = 
-, r+q-np npq +xq npq+q 

= npq-xp~ ['1-
xVnpq~+q 

( 1-
xp nq -x '( npq0 

, 

(ripq) } 
( 1+ _x_..q_ + _1_) nq-xVnpq' . 

v~pq' np 

We expand the logarithm of the last factor into a power series; 

substituting p+q=1, p2-q2=p-q, we see that it is equal to 
\,..,., 2 3 

_ x y nq + .L_ + (/( .L_) 
vP' 2p rn 

So from (4.6) we get 

Y 1= Vn_i {1- ~ + ac xl(ri'l} {1-exp( -1j;q' + ~: HY(x-a))J. 

Now for x and n sufficiently large, we have: 

log x, 

which gives 

Substituting this, we may conclude that 

Y1 = ~ {1+d(x-a)} . 

The next step should be an estimation of the difference 

A1=Y1-Y=f1(f1-f2)+f1(f;-r2f3)+f1(f~-f2f3f4) + 

( n-r-1 ) 
+ ... + f1 f1 -f2f3···fn-r 
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~J 

We would like to prove that ~ 1< r1: ~; next to estimate 

/12= r1- ~ 1 by 3~, etc. X 
. X 

Thus we would approximate Y by 

'fnw f1- __1_ + 1.3 _ 1.3.5 + J) • 
X 2 -zr ~ • • • ' 

X X X 

which would be (4.4) if we continued until the exponent has 
become 2b. But the difficulty of finding the desired estimations 

for fl 1, b. 2, etc. remains unsolved. 
Some calculation yields that for ¾ = O'( 1) 

f =1- _x_ + x2 - 1.::£ + 0 ( .d,_) +Cl(-1~) 
j Vnpq np npq n\/n n\fn 

2 
+O(.si;.) 

n 

After some more computations we find that the k th term of .6. 1 
is approximately equal to 

( 
k+1 r:: j-k) (npq)- 1 = 
j=2 

k(k+1) 
2 n p q ' 

but this is only valid if k=U(n), 

these estimations diverges. 

and besides, the series of 

The Poisson distribution presents analogous difficulties. 

Here we have 

P( r,\)- 1 e-½ x 2 f1+0(i~)}, 
· '"" - V2rrX YA 

cf. the derivation of (3.12). Now because of (4.2) there 

remains to be prov~d that 

Y'= L ~11' = 1/f sb(x) { 1+Q(x-a)J , 
lJ=1 ( r+V) !P X 

if it is given that x 3 A-½=a(x-a). After a first approximation 

y \= f:: ii~ . = V3. { 1 + a ( x - a )} , 
V=1 · (r+1) V 
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the estimation of ~ 1=Y1-Y' leaves us in almost the same 

situation as in the binomial case. 

Another procedure that was investigated is the division of 

the series Y (or Y', for the Poisson distribution) into a large 

number of subseries, each of which can be approximated 
sufficiently closely by a geometric series. The fact that we 

cannot write th~ kth term of .. Y, fon somewhat large values 9f k, 
in a manageable form, appeared to be an obstacle for this 

method too. 

Summary 

Our proof given in section 2 is a short solution of 

SMIRNOV 1 s problem of proving (1.4) from (1.3). SMIRNOV 1 s proof 
is very ingenious, but somewhat elaborate; RUNNENBURG's method 

exposed in section 3, which seems so clear and elegant, does 

not appear tb furnish a solution for this particular problem 

just now. 

Appendix 

5, Proof of FELLER 1 s result. 

The normal distribution function p (y) has for every non

negative integer b and for y~oo the property 

'

- 1 _..l y2 
1- (y)~ . e 2 Sb(y) = 

yV7iil 
( 5. 1) 

= _j_ e -½ y2 { _1 _ ..l_ + 1.3 _ +( _,., )b 1.3.5 ... (2b-1 )· 
\~ y 3 5 · · · 1 2b+1 ' 
~CUB Y Y Y 

for each positive y, the right-hand side overestimates 1-t(y) 
if bis even and underestimates it if bis odd. 

This result is mentioned, but not proved, in FELLER (1957), 

VII.6 problem 1, p.179. For completeness' sake we will prove it 
here. 
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Differentiating the last member of (5.1) with respect to 

y, we get 

1 --
V21f 

f 1+(- 1 )b 1.3.5 .. 2t~~-1)(2b+1)} 
y 

. , 

this is equal to 

:y r 
y 

1 e-½t 2 {1+(- 1 )b 1.3.5 .... (2b+1)} 
V2rr' t2b+2 

dt. 

Both functions differentiated here tend to zero for Y-+00; so 

the functions are identically equal. The integrand of the last 

mentioned function is for even b larger, for odd b smaller 

than the normal frequency functionq,(x). Now if we assume that 

bis even, and put R(b,y) for the right-hand member of (5.1), 
then 

( 5. 2) R( b+1,y) < 1- «p(Y)< R( b,y), 

(. ) ( ) · (J( -2b-2) and the quotient of R b+1,y and R b,y is equal to 1+ y . 

If b is odd, we have the same formula with 11 > 11 instead of 11 < 11 • 

This proves (5.1) and also the assertion about over- and 

underestimation. 

Rem~rk 1: The series Sb(y) has more or less the same 
character as STIRLING 1 s series. For fixed y and b~oo it 

di verges, but for fixed finite b we have for every e > 0 a 

minimum-y, such.that the outer members of (5.2) do not differ 

more than E • Because 1-p(y) is alternately overestimated and 

underestimated, the error is always smaller in absolute value 

than the first neglected term. 

Therefore 

1- tfi(y)= 1 e-½y2 Sb(y) f1+ {}(y-2b-2)} . 
r yV2rr' 

For b=[~] we have 2b+2>a; so (4.2) is correct-. 

.... 
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Remark 2: FELLER 1 s result is not valid for y<O (y~-oo ), 

and our proof fails in that case because of the divergence in 

y=O. Here we can prove, in the same way, that 

,1 1 2 
~ ( y) ~ - -' - e -2Y Sb ( y) = 

yV2rr· 

= _j_e-½Y2 {- '1 +-; - ~ + ... +(-'1)b-'1 '1.3. 5 ..• (2b-'1)) 
\(2.ff' y y y y2b+'1 J. 
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