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1 Int~oduction and summary 

Distributions arising from the random division of an 

interval have been studied for a long time. The distribu-

tion function of e.g; the length of the largest interval was 

computed by Wl-ii tworth [10] in 1897 and by Giraul t [2] in 1962. 

These and most other computations are based on combinatorial 

methods. The relation between the random division of an in

terval and the Poisson process is well known, but has not 

been used very extensively, although it provides an often 

effective alternative approach. 

It is used - not in a very efficient manner - by Moran [6] 
in connection with the distribution of the sum of the squared 

interval lengths. Dwass [1] uses an other form of this rela

tion to obtain the distributions of linear combinations of 

interval lengths. These distributions have also been studied cy 
Mauld on ( [4] and [5]), who uses a spec ia 1 type of integra 1 

transform. In this paper, which is of an expository charac

ter, we use the relation between the random division of an 

interval and the Poisson process in a manner that unifies 

and generalizes the methods of Maulden and Dwass. Some appli

cations are given, most of which are known. 

2. Definitions and notations 

We consider the following situation: 

the interval (o,t] is divided into n sub-intervals by n-1 

random points, i.e. points, which are drawn independently 

from a rectangular distribution on (o,t]. Denoting the 

coordinates of these points (in increasing order) by 

Y( 1 )(t), .. .,y(n-1 )(t) 1 ) and putting Y(o)(t) = O, y(n)(t)=t 
for the lenghts x1(t), ... ,~n(t) of the sub-intervals we have 

( j=1,2, ... ,n). 

1 ) Random variables are denoted by underlined symbols. 



-2...: 

We will be concerned with the distributions of functions 
of the x . ( t) . 

-J 

x( 1 )(t), ... ,x(n)(t) will denote the xj(t) in increasing 
order. As we will often take t=1 it will be convenient to 
omit the argument in that case. So we write e.g. 

x. = x.(1) 
-J -J 

For the same reason we write u.=u,(1) etc. for the functions 
-J -cl 

of~ we ~ill meet in the following sections. 

3 Relation with Poisson process 

The content of the following lemma is well known: 

Lemma: if u1(T), ... ,u0 (~) are independent random variables 
with the common distribution function 1-e-Tu 

(u~O, -c a positive constant) and if ~1(t), ... ,x0 (t) 
are random variables as defined in section 2, then 
the conditional distribution of 

(u1(,), u1(T) + ~2(r), ... , ~1 (T) + ... +un_1(r)), given 
that ~1(r)+ ... +un(r) = t, is the same as the distri
bution of (x1(t), x1(t)+~2 (t), ... ,x 1(t)+ ... +xn_ 1,(t)) = 

= (y1(t), ·· .,yn-1(t)) · 

proof: considering the dens.ity functions f(z 1 , ... ,zn_1 ft), 

g(z 1 , ... ,zn) and h(zn) of 

( u 1 ( T) , ... , u 1 ( T) + ... +~n _ 1 ( T) I u 1 ( T) + ... +~n ( T) = t ) , 
(u1(,), ... ,u1 (r)+ ... +un(r)) and u1(r)+ ... +un(r) respectively, 
we have 

--------= 
h(t) 



From this lemma we immediately have the well known 

Theorem 1: if u1(r), ... ,u0 (r) are independent random 
variables with distribution function 1-e- Tu 

( 1 ) 

(u~O, Ta positive constant) and if x1(t), ... ,xn(t) 
are random variables as defined in section 2, then 

the conditional distribution of (u1(.r), ... ,un(-z-)) 
given that £1(,)+ ... +u0 (,)= tis the same as the 
distribution of (x1(t), ... ,x0 (t)), i.e. we have 

Pix1(t).cx1 , ... ,x0 (t).1.x \= 1.- - - - n J 

= P{u1 ('r)~x1 , ... ,un('r)ixnju1(r)+ ... +un(-r)=tJ. 

n 
From (1) we get, multiplying both sides by ' tn-"le-rt ( n-1) ! 
and integrating, 

n co 

( ) 't' J ( ) ( ) n -1 - "C't 2 (n-1 ) ! P{x1 t ~x1 , ... ,x0 t ,xn) t e dt = 
0 

If now f(x 1 , ... ,xn) is a Borel-measurable function and if by 
la we denote the expectation of~' then in the same way we 

prove 

n c.o 

(3) 't J Cf(x1 (t), ... ,xn(t)) tn- 1e-Ttdt=Gf(u1 (r), ... ,un('T)), 
(n-1)!o 

06 

if Jtlf(x1 (t), ... ,xn(t))j tn- 1e-Ttdt.(c:>o. Hence 
0 

()0 f C f(x 1(t), ... ,xn(t))tn-1e-Ttdt = 
0 

(4) = (n-1) ! 
-rn 

and therefore the left-hand side of (4) is in fact the Laplace-
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transform with respect to , 2 ) of cf(x1(t), ... ,xn(t))tn-'1_ 

The uj(T)are independent, so Cf(u1 (r), ... ,un(-z-)) is often 
easy to compute; Gf(x1(t), ... ,xn(t)) may then be obtained 
by an (often quite simple) inversion. Substituting in (4) 

(5) 
if g ( x 1 , ... , xn) {: z 

other wise 

we obtain the distribution function of g(x1(t), ... ,xn(t). 

A formula equivalent to the Laplace-inversion of (4) occurs 
in Pollaczek [BJ 3), where it is de~ived as a formal indentity 
without interpretation. A special case of (4) is used in 

Dwass f1]. 

4 Linear combinations 

Mauldon [4] , Cs] and Dwass [1] consider linear 

combinations of ~j(t) and x(j)(t). As for the ordered 
variables ~}T) we may write 

u-'oJ('r) u2 (-z-) u(j)(,) 
u ( j) (') = n + n-1 + · · · + n-j +1 

(see e.g. Renyi [9] ) we have by (2) the well known repre-
sentation 

x1(t) x2(t) X, ( t) 
(6) x(j)(t)= -n-·+ n-1 + ... + -J 

n-j+1 . 

2 ) Although relation (4) is derived for positive T iiJ 0 .may be 

extended (without interpretation) by analytic continuation 
to all complex values of T, for which the left-hand side 
of (4) is absolutely convergent. 

3 ) This was pointed out to me by Prof. Runnenburg, to whom 
I .am indebted for some useful suggestions. 
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Hence we need only consider linear combinations of the xj(t). 

If n 
~ (t)= L (;(..~.(t), 

n . 1 J J J= 

where the ~j are real constants, we have by (4) 
co 

( 7 ) J£e-san(t)tn-1e-Ttdt= (n-1)![e-s L~U,j(r)= 
rn 

r:., 

Dwass [1] uses 

n 
'1: 

(n-1) ! 
foo e-a ( ~1 + ... +xk) t 1 t k t n- ~ -T d t ( T ) = a+, 
u 

and the fact (not proved in ~]) that the density function 

ga,k(z) of a(x1+ ... +~n) is given by 

as is easily seen from (4) and (5). 
His results may be obtained from (1) by partial fraction 

expansion of the right-hand side followed by Laplace-Stieltjes

inversion with respect to sand Laplace-inversion with respect 

to T . The general formula is quite complicated and will not 
be given. 

As, on the other hand, an(t) and ~nt have the same distribu

tion, the first member of (7) may be written 
OD 00 cso 

J f e - sat d F n ( a ) t n - '1 e -JJ = ( n -1 ) ! f ( s a + T) - n d F n ( a ) , 
0 0 0 

F (a) de noting the distribution function of a , and so by (7) n -n 

(8) t ( sa + T) -n = 
-n 

which is a generalized Stieltjes transform. 
Relation (8) was obtained for special cases in Mauldon [4] 
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in a much more complicated way. The simplification is, 
of course, partly due to the fact that, be cause of (6), 
we have to consider only the independent x.(t). 

-J -n 
In Mauldon [6] the inversion of £.(s~ +1") is considered 

more generally. Analogous to the relation between the Stieltjes 

and Laplace transfor>ms (see e.g. Widder [11]) we have in the 
same way as above: if 

and 
'f (s)= teis~ 

then 60 n-1 ( ) J U ( ) -SU 
v s = 

0 
( n-'1) ! ? u e du. 

Hence the properties of v(s) should follow from the 
properties of the Fourier-Stieltjes and Laplace transforms. 

To obtain explicit results however it is often more 

practical to start from (4) than from (7) or (8), e-specially in the 

simpler cases. If, for instance, we wish to know the distri

bution function of x(n-k+'1)(t), we have by (4) 

t,O 

f J ( ) } n-1 -Tt 
0 P1x(n-k+'1) t {: z t e dt = 

k-1 
= (n-1)! L 

j=O 

Using 

where 

t(x) ~{~ 
we obtain 

p { x(n-k+1) (t) £: z} 

X .L 0 

X ~0 
, 

-TZ ( j +l) e 

-o<, 
e 
yP 

( <>< > 0 , p >0 ) , 
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as may be found in ['10] • 

With little more difficulty the result in Mauldon [4] 
may be obtained by inverting directly 

(n-1) ! { ( ) ( ) Tn P u(n)(r)+ u(n-1) r + ... +u(n-k+1) T ,z}, 
for which we may write 

X 
'tk' n-k 

(n)~ 
z 

k-2d 
z-u -TX ( - . ) 

J -TU f e 1-e 
dx. k k-2 ! e u u 

Tn-k 0 0 

5 More general functions 

The method used in section 4 is particularly suited to 
obtain the distributions of linear combinations of the ~j(t), 
for which the right-hand side of (4) is simple. We may use 
(4) to calculate the moments of more general functions. From 
( 4) we have at once, subs ti tut ing r = 1 

Theorem 2: if f(x1 , ... ,xn) is homogeneous of the order p, i.e. 

if f(Ax 1 , ... ,~xn)= ~p f(x1 ,, .. ,xn) and if 

[jf(x1 j •• ,,xn)\ is finite then 

( 9) c,, ) (n-1)! ca ( ) cf(x1 , ... ,xn =r(n+p) Cf u1 , ... ,un. 

From (9) we get for instance 

as given in Ke~dall and Moran [3], where it is derived by 
a geometrical method. 

Finally we consider the distribution of 
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as studied by Moran [6], f7J and others. 

Again the moments are easily obtained. Here (9) yields 

as given in Moran [6]. 

The use of (4) yields for the distribution function 

( 10) 

Using 00 

Ja(t-c)e-rtdt = 
0 

-re 
e J 

- ,( UA + ... ;l·-U )du (11] e --1 -n 1 ... -~· 

where o(t) denotes Dirac's b-function, by (10) we 
evidently have 

( 11 ) G n ( z ; t ) t n - 1 = ( n -1 ) ! J . . . . f du 1 ... dun_ 1 , 
2 2 u1+ ... +unb z 

u1+ ... +un= t 

u 1">0, ... ,un-,..0 

which may be interpreted geometrically as e.g. in Moran [6]. 

From (11) it ~allows that. 

2 z ( 2 2 
( ) ( ) ( ) { z -u \ n-2 12 Gn z = n-1 0 Gn_ 1 ( 1-u)2J (1-u) du. 

2 From (11) one may calculate Gn(z) for small values of n 
starting f~om G1(z) = l(z-1). The expressions become rapidly 
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awkward with increasing n. 

Finally, it is not difficult to prove by induction 

from (11) that 
n-1 n-1 

L(z-~Hn-1) ! TT-Y(z-J)-Y 
Gn(z)= -------,----- for zt.. 1 

Yri r( n;1) - n=-r 

An expression extenting to values of z 1::. n2 2 is obtained in 

Moran [7] by geometrical methods. On the whole the distri

bution function of ~n remains rather untractable. 

Concluding one may say that the method treated here yields 

most known results with little difficulty, while some of 

them, e.g. the distribution function of x(j)' are obtained 
with surprisingly little effort. In those cases, where the 

right-hand side of (4) is simple, the method will be success

fully applicable. In other cases, as in our final example, 

little seems to be gained. Perhaps the method may serve to 

give some more insight in the problems connected with the 

random division of an interval. 
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