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1. Introduction 

The title of this report suggests it being evident, that sea 

levels can be regarded as a statistical phenomenonc It may be~ that 

at present most people are convinced this to be the case, but only 

a few decades ago, one usually had another point of view. E.go in 

The Netherlandsi people, including most engineers of the Public Works 

Department, concentrated attention on the highest level of high tide, 

known from the past in making decisions about the heights of the 

dikes. 

The question is of course, whether a statistical model can be 

made of the situation, which on one hand leads to results, reasonably 

in agreement with the observations and giving us an instrument to 

adequately study certain problems on the other hand. It has been shown 

that in many situations a satisfactory statistical model can be con

structedo (cf. section 1.0.3 of [7] and [12]). Therefore, we now turn 

to the subject proper: Statistical Estimation of the Distribution of 

Sea Level. 

2. Some statistical notions and methods 

C, • • 1) . . ouppose .! is a random variable • The probability that x equals 

a value ~ x will be denoted by P [ 2S_ ~ x]. The function 

F( x) = P [ 2S. ~ x] ( 2 o 1) 

is the distribution function of,!• If F(x) is differentiable with a 

continuous derivative almost everywhere, we call F(x) a continuous 

distribution function and 

f ( X) = d~ F ( X) (2.2) 

the density function or frequency function of x. 

There are many different continuous distribution functions, 

runong which, we here mention: 

1) In this report random variables will be underlined. 
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the normal distribution function: 

i 
F (x)= ~ 

N( J.J ,o) ,::;-" 
(iYcTI 

X 

f [ (t-µ)2] exp - ----- dt 
- 2a 2 

-oo<x<+oo 

(2.3) 

the lognormal distribution function: 

F N( u,a) (x) = 0 if x<O log = 

F N(u,o)(x) 
1 l exp [-

(log t-u) 2jdt (2.4) = log om 202 t 
if X >0 

and 

the exponential distribution function: 

F (x) = 0 if X ~ 0 exp 

F (x) ->.x if X > 0 = -e exp 

(2.5) 

The mean value 
+oo 

I \) 
f(x)dx a = X 

\) 

-"" 
(2.6) 

called the th moment Of Xo Furthermore lS \) 

+co 

µ\) = I (x-a1)v f(x)dx 
-oo 

the th central moment of x. lS \) 

If a sample of n observations 1s given and we suppose these 

observations to be random and mutually independent drawings from a 

distribution function, a natural question is: "From what kind of 

distribution function may these observations be a sample"? 

There exists several general methods to examine whether a given 

set of independent observations can be regarded as random drawings 

from a given distribution function. We mention some of tnese methods 

briefly, the first one being a graphical method. 



A graphical method to test whether observations fit a given 

distribution function 

If we plot a normal stribution function with parameters 

cr=1 as a function of x on graphpaper with two linear scales" we 

get a graph as shown in figo 2a 11 c 

_________________ J f~(o, ,) (X) ______ _ 
0,9,, ---------~--

/ : oJs-7 
O,!io. 

" 
/--- 0,:tS" I 

/: 
---------- ---- c.:~~ ~:~-------<>--------) 

-2 -,d,., o ,o,lr +A, X 

The normal distribution with w=Oi.. o=1 plotted on g~,h pa..e,er with 

two linear scales 

In order to compare our observations 

x, ,, x? ~ c 0 o ~ x 
I - n 

with this distribution function~ we rank them in increasing magnitude; 

the ranked sample is denoted by 

'l'he probability 

X, ) ,n 

can be estimated by ½o Plotting the points (x(i)~ ½) in the graph of 

figure 2e1 should then give a series of points$ lying approximately 

on the curve of FN(Oj1)(x) if x ~coo,Xn are observations from a 

normally distributed random variable~ with u=O and o=1o 

Mostly it is rather difficult to see whether a series of points 

fit reasonably to a curved line, or noto Therefore a kind of paper -

"normal probability paper" - has been constructed on which the function 



F - - f X) ,. !:\ transformed into a 
N{Ot1}'" -~ ght line, as shown in figc 2c2c 

On this paper the points ( 

-11 
1· 
I 

1-
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on the 
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- - - O. ls· 

o. o:i. 

fig. 2.2 

The normal distribution function with µ=0 and,cr=1 plo!,ted on normal 

12r_obabili ty 12a_£er= 

straight line drawn in figo 2c2, 

Normal distribution functions with arbitrary values of the para

meters ii and 6 also become straight lines on normal probability paperi 

because 

(2 0 7i0) 

Probability paper transforming other types of distr' 

functions into straight lines can be constructed as well" Just ,:;:ne 

other example~ to see whether observations fit an exponential 

distribution function~ we plot the points 

on paper with the ordinate on a linear scale and the abscissa on a 

logarithmic scale~ for 

log Pr_. _! __ > i1 = log n =F ( x )7 = = AX - ':..l ._ exp ~ (2o 12) 

1.s a straight line on this type of paper,, 

In practice, plotting the points (x(i)j) ;) or (x(i)~1- ¼) has 

some drawbackso Therefore plotting the points 
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! Z?o n) 

or 

(2o14) 

,1)) 
may be recommended if we want to fit a distribution function~ o This 

method has the property, that with a very good approximation 

f, ( ) i-0, 3 ] , 
P LF .!( i) ~ n+O, 4 = 2 (2o15) 

implying that the probability of finding a point below the straight 

line equals the probability of finding a point above this lineo This 

property is independent of the distribution function we are sampling 

from ( cf [fJ ) o 

Graphical methods have the advantage that they learn us a lot 

about an unknown distribution function, but they have the disadvantage 

that one always can dispute, whether a given fit is good or noto This 

difficulty can be avoided by using an analytical method; the oldest 

one is due to Ko PEAR$0No 

PEARSON°s method to fit a distribution function 

PEARSON observed that many density functions 

d 
y= f(x) = - F(x) dx 

satisfy the differential equation 

0 y 

(2o16) 

and started from this equation to build up a system of density 

functionso The nature of the roots of the denominator in the right 

2) If one has another aim, other plotting - positions may be 

preferable (cf. section 1 o2 o 7 of [7]) o 
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hand side of (2.17) determines the main types of the system, to which 

a.oo belong the distribution functions (2o3) and (2.5). 

We can fit a curve from the PEARSON-~ystem by estimating the 

constants a, b0 ,b 1 and b2 from the observations, which is done by 

equating the moments (2.6) and the corresponding sample moments 

1 n 
a' = - I 

v n i=1 

\) 
X, 

1 

The method is extensively described by W.P. ELDERTON in 1906 

(cf. [6]) o As drawbacks of the method, we mention: 

1. one limits oneself a priori to a specific class of distribution 

functions, i.e. the class satisfying (2.17), 
2. if one takes only a few constants, there is a very limited choice, 

whereas if one takes many constants, the estimations for them, are 

very sensitive for the actual observations, because the higher moments 

are, 

3. no attention is paid to problems of extrapolation. 

One of the most frequently used analytical methods is: 

2 The :X - method to test whether observations fit a given distribution 

function 

In applying this method, we first divide the range of possible 

values of the observations into disjunct intervals(= classes or 

cells), supposer intervals. If the distribution function Fis 

completely specified, we can find the probability p., that a random 
. i . th 

drawing from this distribution will have a value in the 1 class, 

whereas in a ~ample of n observations, the expected number in this 

class will be n p .• 
l 

The actual number of observations in a class is 

a random variable, denoted by f. for the 
-1 

.th 
1 class. 

As statistic to·test the goodness of fit between the distribution 

function F of our hypothesis and the observations, we use 
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r 
t = I 

i=1 

( f. -n p.) 2 
-1 1 

n 

It is clear that if our hypothesis is true, the f. will haYe 
-1 

values f. not deviating too much from the expected values n p. and 
1 .. l 

if this is the case, we find a not too large value t for our test-

statistic ta 

More precise, one can proof the following theorem~ 

if we are sampling from a distribution function F, having a 

probability p. for an observation in class i. then for n~00 ~ the . 1 , 

density function oft tends to 

1 
f(t) = ----- t 

r-1 .r-1) 
2 2 :i::,,(T 

(2o20)t 

which is the density function of the so called Y...2 distribution with 

r-1 degrees of freedomo For finite n, (2.20) is a good approximation 

of the density function of! e.g. as long as r >2, all n pi> 1 and 

some n pi >5 (cf [11, §56J and [2])0 
The procedure is as follows: one computes the value t oft for 

the sample and finds the probability 

P[_t ~t]= --1--r-1 
2 

2 r r !:=--~~) 
2 

co 

I X 

t 

r-3 
2 

If this is smaller than a pre-assigned. value c1., e.g. a=0,01 or 

a=0,05, the hypothesis that the sample is drawn from the distribution 

function Fis rejectedo Otherwise we conclude that the observations 

are compatible with our hypothesiso 

In the case our hypothesis is not a completely specified 

distribution function, but only states it to be a distribution func= 

tion of a certain class, eogo the class of normal distribution func

tions, then the pi are functions of the unknown parameters n 1,ooo,ns. 

(u and o for the class of normal distribution functions)o 
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So 1n stead of (2o19) 3 we have 

t 
r 
\ 
l 

i=1 

, f. -n p. ( 1T 1 '° .. , n ) ) 2 
-1 1 S 

n p.(1T 1 , ••• ,n) 
l S 

(2.22). 

If we estimate n1, ••• ,1Ts in such a way from the sample, that (2.22) 

is minimized, then we can proceed in the same way as outlined above and 

only have to replace the number of dei:;;rees of freedom in (2.20) by 

r-s~,s being the number of parameters estimated from the sample. 

In practice minimizing (2.22) leads to very complicated equations 

in almost all cases. Therefore this method is replaced very often by 

the method of equating moments, giving not too bad approximations 

usually. 

This analytic method of testing is more oljective than the graphical 

method, mentioned before. However, we should realize that fixing the 

value of a and choosing the number of classes as well as the 

boundaries of the classes introduce rather arbitrary elements. 

Another drawback is, that in fact we do not test whether the 

tample is from a distribution F, but only whether it may be a sample 

from a distribution, having probabilities p 1, ••• ,pr for the classes 

1, ••• ,r. So, we never can differentiate between distribution 

functions with the same values of the p .• Of course, if the p. of the 
1 l 

F of our hypothesis are not correct, ,:e want to re,iect this hypothesis. 

The freedom in choosing the number of classes can be used to maximize 

the probability of rejecting an hypothesis which is not correc, (cf 

[2] and [9]) o In [9] some suggestion~, to standardize the procedure 

are given also. 
l, • • -v2 Tr1ere ex1 st general tests, al ternat 1 ve to the ,.,__ - test, but 

these too have many drawbacks. 

3. Fitting a distribution function to levels of high tide 

In decision problems connected with dike construction, we are 

interested in the distribution function of levels of high tide and 

more particularly in the distribution function of high high tides. 
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In this section, which is mainly an account of work done for the 

so called "Delta - Commissie" ( cf. L4]), we shall therefore limit 

our discussion to this problem. 

Usually the data will. consist of the levels of high tides~ 

observed during a number of years, say N years. For each level h 

we can find the number N(h) of high tides, which exceeded h during 

these N years. Then 

n(h) = N(h) 
N 

1s the mean number of exceedances of the level h per year. 

Already in 1939 WEMELSFELDER drew attention to the fact, that 

if we compute the values n(h) for Hook of Holland for the period 

1888-1937 and then plot log n(h) as a function of h, we get a curve 

which in the middle of the range of observations fits very good to a 

straight line (cf [12]). The same holds true if we take the longer 

period 1888-1956; see fig. 3.1. 

There is a strong deviation from this line for low values of h, 

because for sufficient low h, almost all high tides will exceed hand 

n(h) tends to a constant value. Furthermore the straight line becomes 

vaguer for high values of h. 

In solving decision problems, we are more interested in the 

probability that a level.!:!_ of high tide will exceed a value h, or rn 

the probability that a value h will be exceeded during a certain 

period, than in the mean number of exceedances per yearo Therefore 

we shall not examine n(h), but the probability distribution F(h) of 

h. If we know F(h), the exceedance prcbability of a given level h 

during a c~in period can be found if we know the number of random 

drawings from F(h) during that period. Moreover it can easily be 

proved, that for high values of h, n(h) is approximately equal to the 

probability of a value of.!:!_ larger then h during a year. 

In most cases fitting a distribution function to observations 

can best be started by plotting pointf on different kinds of 

probability paper. If we are not too unlucky, the behaviour of the 
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of Holland during the period 1888-1956 
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different graphs will suggest what types of distribution functions 

may be relevanto 

The results of WEMELSFELDER's work suggest that in Hook of 

Holland, levels of high tide agree with an exponential distribution 

function for high values of h. Therefore, after rankinp: all 

observations, larger or equal to a level ho" in decreasing order 

we plot the points 

(h(i"), i-0,3) 
n+0,4 

(3,2) 

(3.3) 

on paper with the ordinate on a linear scale and the abscissa on a 

logarithmic scale. If the observations~ h0 are random drawings 

from an exponential distribution, we should find, denoting the 

number of high tides, higher than h by i(h), 

log i(~l~Ol3 ~ah+ b, 

' 
or 

i(h)-0,3 ah+ b ---"!'---~ e 
n+0,4 

For h=h0 , we have 

thus 

and 

For htt 

so 

ea ho+ b = 

a h 0 + b = 0 

we have 

a(h-ho) e -1-0, 

lim 

ht 00 

1 , 

- 00 

\3.4) 

(3.6). 
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and a must be negative. If we put 

a=->- (>.>O) 

and substitute (3.6) and (3~7) in (3.5;, we find as an estimation of 

the ccnditional probability P[.!!, ~ hlh ~ h0 ]: 

->-(h-h0) 
e • (3.8) 

Whether the observations~ h0 really fit an exponential 

distribution function, can be tested with the ~-method, described 

in section 2. The unknown para.meter A is estimated by the so-called 

maximum likelihood estimation 

... 1 1 ;\' = = n 
.!}: (hj-hO) h - ho 
nj=1 

(3.9). 

If the range of values~ h0 is divided into r intervals, then the 

test-statistic 1 is X.2 - distributed with r-1-1=r-2 degrees of 

freedom. 

It turns out that not only in Hook of Holland, but also in 

many other stations along the Dutch coast, exponential distribution 

functions fit quite satisfactory to the observations, though with 

different values of the parameters >.(cf. [13)). Higher up in the 

estuaries the situation is different ( cf also [13]). 

There is some arbitrariness in choosing the point h0• Ho~ever, 

one can easily proof that if the observations~ h0 are drawings from 

an exponential distribution function, the same is true for the 

observations~ h0 ' if h0 1 >h0• In practice one should choose the level 

h0 not too low, because of the bending off of the curve for low 

values of hand on the other hand not too high in order to include 

as many observations as possible. 

In the literature one finds many publications in which not 

exponential, but logarithmic normal distributions are fitted to 



the observations in problems, we are discussing here (cf. aoo. [8])c 
One may therefore ask the question, whether the observations are 

also compatible with a logarithmic normal distribution, or not. 

Since we concentrate our attention to high levels of high tide, 

it is obvious to fit a logarithmic normal distribution, which is 

truncated on the left, let us say at the value a: 

a+h 

Flog N(u,o)(hlh,;:-,a)=[1-Flog N(u,o)(a)J-1 o/27 ! t e 

(log t-µ) 2 

20 2 
dt 

(3o 10}. 

Comparing the observations in Hook of Holland with this distribution, 

after estimating the parameters a,11 and a also gives a very satis

fying result. 

This is not surprising, because of the following property. 

Suppose 

F (h) = 1 - e-).h (h>O) 
exp 

(3.11) 

1.s a given exponential distribution. 'l'hen one can prove, that for 

every pre-assigned value E and for every finite interval O ~ h ~ 1, 

there exist values a0 , u0 and o0 of tre parameters a,u and o 1.n 

(3.10), such that 

(3c12) 

for every h satisfying O ~ h ~ 1 (cf [4]). An arbitrary exponential 

distribution can thus be approximated by a truncated lognormal 

distribution to any degree of precision. The approximation is at its 

wo1st for high values of h. 

As the class of truncated lognormal distributions has three 

parameters to be chosen, it is of a more general nature than the 

class of exponential distribution functions. We can therefore always 

find a truncated lognormal distribution fitting a finite number of 

observations as least as well as an exponential distribution. This 
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implies for the case in which an exponential distribution gives a 

good fit, it being impossible to distinguish statistically between 

these two distribution and thus both distributions can be used from 

the statistical point of viewo However, the exponential distribution 

is much more tractable mathematically and this may be a strong 

argument in favour of using this distribution function. 

The most important property with respect to extrapolation 

problems, vhich can be proved is the following one. Suppose 

!!.(1)~ l!.(2) ~-••~ h(n) 

are ordered random drawings~ h0 from an exponential distribution 

function with parameter A. We define v. by 
-1 

(i=1, ••• ,n) (3.13) 

with l!.(n+ 1) being equal to h0 with probability one. Then the ,!i are 

also independent random drawings from an exponential distribution 

function with parameter A (cf. [3]) and the statistic 

.Y.1 + • 0 0 +_yk 
B = --------v 1 + •••••••• + v 

- --n 
(3.14) 

has a S-distribution with parameters k and n-k, 1.e. its density 

functions equals 

f(x)= _____ (_n_-_1 __ )! __ 

(k-1)!(n-k-1)! 

k-1 ( )n-k-1 
X 1-x (3.15). 

If we fit a distribution function to observations of high water 

levels, then the fitted distribution function is mainly determined 

by the bulk of not so very high observations. The statistic~ gives 

us a method to test, whether the highest observations are deviating 

too much from the fitted distribution function in comparison with 

all observations, if we assume the observations to come from an 

exponential distribution function. 
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Remark 3o1o 

In this section we supposed h 1,o•o,hn to be independent 

observationso The cause of dangerous high tides are depressions 

and as more than one high tide may occur during a single depression, 

the observations are not necessarily independent if we use all high 

tides. Being especially interested in high high tides, the best one 

can do seems to choose the highest high tides during the separate 

depressions as observations. This procedure assumes the depressions 

to be statistically independent, which is not completely true ( cf [1 J]). 

Remark 3.2. 

The level of high tide in Hook of Holland on February 1, 1953 

was 0,57 m higher than the highest level observed before in Hook of 

Holland. This large difference is in agreement with the properties of 

an exponential distribution. According to (3.8) the distribution of 

h, subject to the condition that his larger than a certain value 

hO 1.s 

[ I J -11(h-h ) 
P E, ~ h E, ~ ho = 1 - e 0 

The difference between the highest high tide observed and a new, 

higher high tide is thus again exponentially distributed with the 

same parameter II and the distribution is independent of the value of 
... 

h0 • For Hook of Holland 11 = 2,97; the probability of a difference 

of 0,57m or more equals e-2 , 97 • o, 57~0,18, which certainly is not 

extremely smallo 

Remark 3.3. 

Fitting PEARSON-curves, as described in section~, to the 

observations in Hook of Holland gives rather unrealistic results 1.n 

some cases. E.g. if we fit a curve with 4 parameters to the high 

tides ~ 200 cm 1.n the period 1901-1950, we get a density function of 

h with as a range 199 ~h~ 331, so with an upperlimit, being 54cm 

lower than the high tide of 385cm in February 1953! 



4o Extrapolation of a fitted frequency curve 

In decision problems in connection with dike construction, we are 

not only interested in the range of levels of high tide in which we 

have observationso More important are questions concerning the possibil

ity of high tides, higher than observed during the past. 

The statistical study of this question can be done along two 

different lineso First we can investigate problems of extreme values 

and analyse the distribution function of e.g. the highest observation 

of a series of n observations, or the distribution function of the 

highest observation during a given period. A second line of attack is 

trying to extrapolate the distribution function, fitted to the 

observed values. In this section, we shall only make a few remarks 

about the latter problem, referring for the first one to [7]. 
Both, computations about extreme levels of high tide and 

extrapolation of a fitted distribution function, start from the 

hypothesis that the mathematical model and the estimations made of the 

parameters will remain correct in the future, anyhow during a not too 

remote future, As long as there are no arguments against it, this is 

a generally accepted procedure in applying mathematical models in 

empirical scienceso 

Extrapolation of a curve fitted to observations is always a very 

delicate tasko In this case, extrapolB,tion means, making a prediction 

about the curve we would fit to the ohservations, if we have not only 

observations for a period of 69 years, but for a much longer period. 

Therefore we should work as carefully as possible. 

The most dangerous thing we can do is extrapolating, which is not 

the curve from one distribution function, but the curve of a mixture 

of distribution functions. Let us suppose that the observations are 

generated by two different exponential distribution functions I and II. 

Separating the observations and plotting them as explained in 

section 2 would then give two different straight lines; cf fig 4.1. 

These two lines may approximately coincide, but nevertheless give 

highly different results in extrapolating them. 
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log P[b_ ~ 1U 

fig. 4.1 

Two exponential frequency curves and their extrapolations 

If we mix both distributions, we get another line, giving again 

different results in extrapolating it. In the case I and II are 

really straight lines on semi-logpaper, theoretically the line 

representing the mixture can never be a straight line. 

One may raise the question, whether there are arguments for 

expecting the observations in Hook of Holland, being generated from 

two different populations. In fact the high tides in summer are much 

lower high tides than those in winter. If we split the observations 

of high tide in let us say ,Jt_,t.ooservations" ( e. g ~ during the 

months November, December and January) and "summerobservations", we 

we get two different straight lines, suggesting that both the 

"winterobservations" and the "summerobservations" are random drawings 

from exponential distribution functions, though with different values 

of the parameters. Also getting a straight line if we mix both 

populations (cf fig. 3.1) is a consequence of the fact that for the 

actual values of the parameters, the curvature of the new line is too 

small to be perceptable. The slope of the new line is somewhere between 

those of the two old ones and extrapolation of this line gives too 

optimistic estimations of the exceedance probabilities of high tides. 

As to be expected the line fitted to the winterobservations is the 

one with the smallest slope. 

After this splitting one can ask the question again 9 whether we 

are extrapolating from homogeneous observations, i.e. observations 
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from one distribution function, or whether the data are still 

heterogeneouso Dutch meteorologists argued the observations still 

to be heterogeneous~ high high tides are caused by dangerous 

depressions and one can make a differentiation in all depressions 

in winter between potentially dangerous depressions from a 

meteorological point of view and the other ones (cf [4]. Splitting 

the winterobservations anew into those belonging to dangerous 

depressions and the other ones,(cfo also remark 3.1), leads again 

to two different straight lines on semi-logpaper. The line estimated 

from the levels of high tide, belonging to the observations during 

dangerous depressions from the meteorological point of view was the 

one, used ultimatelyo Evidently one can never be completely sure, 

whether a given set of observations is homogeneous or not. An argument 

in favour of this assumption lies in the fact, that the higher 

observations now fit much better to the fitted straight line than to 

the line fitted to all observations. 

Remark 4o1 

We tried making new splittings in the material, but did not get 

lines, differing significantly. These splittings were based on a) years 

with great activity of sun spots and years with low activity, and b) on 

potentially dangerous years and other years, respectively. 

There is one more argument, supporting the hypothesis that the 

observations are now homogeneous. This argument is based on the theory 

of extreme valueso 

If we are sampling from a distribution function F(h) and take a 

sample of n observations, then the distribution function G( 1)(h) of the 

highest observation l:.(,) is 

( 4. 1 ) 

or,denoting 

1 - F(h) = ¢(h) , 
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For high values of h, (4o3) is approximately equal to 

-n<t>(h) 
e o 

In the case of F(h) being an exponential distribution function, we 

find 
-Ah 

G(l)(h)~ 
-n e (4.5) e t 

which is the so-called limiting distribution function of the first 

type ( cf the classification in chapter 5 of [7] ) • As A > 0, ( li o 5) can 

be approximated for large values of has follows: 

2 -2Ah 
( ) -Ah n P 

G(1)h~1-ne +----
2! 

-Ah 
••• ~ 1- n e (4.6) 

From F(h} being an exponential distribution function with parameter 

A, it thus follows that G(l)(h) satisfies approximately (4.6). So if we 

plot the estimations (3.3) of log P[b_ ~ h] on semi-logpaper on one 

hand and the yearly maxima on probability paper for the limiting 

distribution function of the first type on the other hand, we should 

get series of points, lying approximately on two parallel lines. For 

Hook of Holland this turns out to be the case for the observations 

left after the splitting procedure, but not for all observations 

taken together. This result once more suggests the "selected" observat

ions to be a homogeneous sample. 

Remark 4.2 

We note that the derivation of G( 1) (h), given above does not 

depend on the stability equation used by GUMBEL. The double -

exponential distribution function (4o5) can be shown to be a good 

approximation for E.(l) for a large class of distribution functions, 

containing a.a. the Y-distributions and the normal distributions. 
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Extrapolation of a frequency curve, fitted to homogeneous 

observations seams reasonable for n not too long range above the 

obsprvationso However, we know that the fitted straight line must 

bendoff downwards for some value of hi because very high levels 

of high +ide are impossible physicallyo Fortunately we are only 

interested in extrapolation in a range of a few meters to estimate 

the corresponding probabilities of exceedance. As there are no 

arguments to expect the fitted line to bend off al1eady for these 

relatively low values of hand these levels are certainly possible 

fr_om a physical point of view, the fitted line was extrapolated 

· linearlyo 

Remark 4a3o 

GUMBEL's method of extreme values was not used straightfor

wardly, because of the following arguments. 

1o After the splitting procedure, discussed before, 166 

observations were left in R period of 63 yearso In applying the 

method of yearly maxima, cnly 63 observations would have been used. 

As a consequence of this neglect of available information, the 

results would be much less reliableo 

2o In this method there is no discussion about the homogeneity 

of the data, which is an esse1tial element in our treatment. 

3. If one considers the decisionproblem of dike building as an 

economic decision in which costs of dikebuilding are balanced 

against the present value of future losses, caused by floods, one 

needs the distribution function F(h) (cf. [5] ). Thjs distribution 

function can never be derived by only studying distribution functions 

which are approximations of the distributions of the extreme values, 

as whole classes of distribution functions lead to exactly the same 

approximating limiting distributions. 
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