# STICHTING <br> MATHEMATISCH CENTRUM <br> 2e BOERHAAVESTRAAT 49 <br> AMSTERDAM <br> AFDELING MATHEMATISCHE STATISTIEK 

## S 317 (VP 22)

MUTUAL CHOICES
by
F. Göbel


## Mutual Choices

## 1. Introduction

Let a group of $n$ persons be given. Each person chooses $k$ other persons ( $1 \leqslant k \leqslant n-2$ ) at random, i.e. such that the $\binom{n-1}{k}$ ways in which a person can choose, have the common probability $\binom{n-1}{k}^{-1}$; the persons choose indeperdently of each other. We will consider the problem of determining the distribution of the number of mutual choices.

It was a remark in Hofstatter's booklet $[1]$ that led to the formulation of this problem. 1) Hofståter refers to his book [2] for the probabilistic background, but the treatment given there is limited to the derivation of the (binomial) distribution of the number of times that a given person is chosen.

It is immediately clear ${ }^{2}$ ) that the expected value $\mathcal{E} \underline{w}$ of the number $w$ of mutual choices is given by

$$
\begin{equation*}
\varepsilon_{\underline{w}}=\binom{n}{2}\left(\frac{k}{n-1}\right)^{2}=\frac{n k^{2}}{2(n-1)} \tag{1}
\end{equation*}
$$

In the greater part of this preliminary report, our considerations will be limited to the case $k=1$ 。
2. The distribution of $w$ for $k=1$

On determining the distribution of w for $\mathrm{k}=1$, we will make use of some well-known identities, which we will

1) $p .112$
2) Stochastic variables will be denoted by underlined letters.
recapitulate here. The notation is virtually the same as in Feller's book (Chapter IV in the second edition).

Let $A_{1}, \ldots, A_{i}$ be an arbitrary collection of events, and let $\left\{i_{1}, \ldots, i_{r}\right\}$ be any subset of $\{1, \ldots, N\}$. We thendefine

$$
\begin{align*}
& p_{i_{1}}, \ldots, i_{r}=P\left[A_{i_{1}}, \ldots, A_{i_{r}}\right]  \tag{2}\\
& S_{r}=\sum p_{i_{1}}, \ldots, i_{r} \tag{3}
\end{align*}
$$

where the summation is over all $r$ - tuples from \{1,....,N\}. Then each of the quantities $S_{r}$ and the probability $Q_{r}$ that exactly $r$ of the events $A_{1}, \ldots, A_{n}$ are realized, can be expressed in the other, as follows:

$$
\begin{align*}
& Q_{r}=\sum_{j \geqslant r}(-1)^{j+r}\binom{j}{r} S_{j}  \tag{4}\\
& S_{r}=\sum_{i \geqslant r}\binom{i}{r} Q_{i} \tag{5}
\end{align*}
$$

In order to apply these identities, we define $A(i, j)$ as the event "persons $i$ and $j$ choose each other". (Hence a "p with $r$ indices" will become a "p with $r$ pairs of indices"). The probability that two given persons choose each other is $(n-1)^{-2 w}$, and therefore, because of the independency, the p's with w pairs of indices are equal to $(n-1)^{-2 w}$ provided all 2 w indices are different. Obviously, if not all indices are different, $p$ will be zero. $S_{w}$ will therefore be equal to $(n-1)^{-2}$ times the number of ways in which $w$ disjoint pairs may be chosen from the set of all persons:

$$
\begin{equation*}
S_{w}=\frac{n!}{2^{w} w!(n-2 w)!(n-1)^{2 w}} \tag{6}
\end{equation*}
$$

Formula (4) can now be applied to yield the following expression for the distribution of $w$ :

$$
\begin{equation*}
P[\underline{w}=w]=\frac{n!}{w!} \sum_{j \geqslant w} \frac{(-1){ }^{j+w}}{(j-w)!(n-2 j)!2^{j}(n-1)^{2 j}} \tag{7}
\end{equation*}
$$

3. The limiting distribution of $w$ for arbitrary $k$.

For $k=1$, the limiting distribution of $w$ when $n$ tends to infinity can be found from (5) and (6) as follows. According to (5), the quantities $r$ : $S_{r}$ are just the factorial moments of $\underline{w}$, whereas from (6) we have

$$
\lim _{n \rightarrow \infty} r!S_{r}=\frac{1}{2^{r}}
$$

Hence, the factorial moments of the limiting distribution are $\frac{1}{2 r}$, i.e. the limiting distribution is Poisson with mean $\frac{1}{2}$.

For $k>1$ it is no longer true that all non-zero $\mathrm{p}^{\dagger}$ s withwindices are equal to each other. As a consequence, it is no longer feasible to give manageable formulae for $S_{W}$. (Even a seemingly simple case like $n=7, k=3$ leads to a total of about 150 different values of p's). However, it is still possible to find the limiting distribution of $w$, because for every value of $\underline{w}$, there is only one value of $p$ that makes a significant contribution in the limiting case, as will be shown now.

Suppose $a_{j}$ given persons are involved in exactly $j$ mutual choices ( $j=0, \ldots, k ; \sum j a_{j}=2 w$ ). In such a situation we have

$$
p_{i_{1} \ldots i_{w}}=\prod_{j=0}^{k}\left\{\frac{\binom{n-1-j}{k-j}}{\binom{n-1}{k}}\right\}^{a_{j}}=O\left(n^{-2 w}\right)
$$

Consider the persons that are involved in at least one mutual choice. This group consists of $a_{q}+\ldots+a_{k}=$ $n-a_{0}$ persons, who may be chosen in $\left(\begin{array}{c}n-a_{0} \\ \text { ) }\end{array}\right.$ ways from the whole group. As $n-a_{0}=a_{1}+\ldots+a_{k} \leqslant 2 w$ is bounded, we have

$$
\binom{n}{n-a_{0}}=O\left(n^{n-a_{0}}\right)
$$

Finally, the number of ways in which the above-mentionned $a_{1}+\ldots+a_{k}$ persons can allocate their mutual choices is independent of $n$, and hence $S_{w}$ is the sum of a number of terms that are $O\left(n^{-2 w+n-a_{0}^{W}}\right)$, and not, as is easily verified $\theta\left(n^{-2 w+n-a_{0}}\right)$. The exponent is maximal when $a_{0}$ is minimal, i.e. when $a_{0}=n-2 w, a_{1}=2 w$, $a_{2}=\ldots=a_{k}=0$, as is easily seen. Now the leading term in $S_{W}$ can be determined in exactly the same way as was done for $k=1$, and we find

$$
\begin{equation*}
\lim _{n \rightarrow \infty} r!S_{r}=\left(\frac{k^{2}}{2}\right)^{r} \tag{8}
\end{equation*}
$$

Therefore, also for $k>\uparrow$ the limiting distribution of $\underline{w}$ is Poisson (with mean $\frac{k^{2}}{2}$ )
4. The variance of w

For very low values of $w$ it is still possible to determine $S_{W}$, for arbitrary values of $k$ and $n$. For example, if one wants to calculate $S_{2}$, only two cases have to be considered:

1. $A$ and $B$ choose each other, and $C$ and $D$ choose each other.
2. A and B choose each other, and $A$ and $C$ choose each other.
When $S_{2}$ is known, $\sigma^{2}$ can be found from the formula

$$
\sigma^{2}=2 S_{2}+S_{1}-s_{1}^{2},
$$

and after some calculations one finds

$$
\begin{equation*}
0^{2}=\frac{n k^{2}(n-k-1)^{2}}{2(n-1)^{3}} \tag{9}
\end{equation*}
$$

This expression remains unchanged when $k$ is replaced by $\mathrm{n}-\mathrm{k}-1$, as is proper.

## 5. Extension to cycles of length greater than 2. $(k=1)$

Beside mutual choices, which can be interpreted as cycles of length 2, one might also consider cycles of length 3 (A chooses B, B chooses C, C chooses A) or greater. If $\frac{m_{i}}{i}$ denotes the number of cycles of length $i^{1}$ ), the following

$$
\begin{align*}
& \text { relations can be proved. } \\
& \qquad \underline{m}_{i}=\frac{n!}{(n-i) i(n=1)^{i}}  \tag{10}\\
& P\left[\underline{m}_{i}=m\right]= \frac{n!}{m!} \sum_{j \geqslant m} \frac{(-1)^{j+m}}{(j-m)!(n-i j)!\left\{i(n-1)^{i}\right\}^{j}}  \tag{11}\\
& \lim _{n \rightarrow \infty} \sum_{j \geqslant m} \frac{j!}{(j-m)!} P\left[m_{i}=j\right]=\frac{1}{i^{m}} \tag{12}
\end{align*}
$$

From (12) it follows that the limiting distribution of the number of cycles of lenght $i$ is Poisson with mean $\frac{1}{i}(i \not 22)$ Hence, the number of persons involved in a cycle of length $i \geqslant 2$ is 1 on the everage in the limiting case.

1) It will be convenient to have both $\underline{m}_{2}$ and $\underline{w}$ as symbols for the number of mutual choices.

## 6. Persons that do not belong to a cycle $(k=1)$

The expected value, $\varepsilon m_{q}$, of the number of persons that do not belong to a cycle, can immediately be found from (10):

$$
\varepsilon \underline{m}_{1}=n-\sum_{2}^{n} i \varepsilon \underline{m}_{i}=n-\sum_{2}^{n} \frac{n!}{(n-i)!(n-1)} i
$$

This expression can also be written as follows

$$
\begin{equation*}
s_{m_{1}}=\frac{n^{2}}{n-1}-\frac{n!}{(n-1)^{n}} \psi(n-1) \tag{13}
\end{equation*}
$$

where $\psi(n)=\sum_{0}^{n} \frac{n^{j}}{j!}$
It can be verified by partial integration that

$$
\sum_{0}^{n} \frac{e^{-n_{n}}}{j!}=1-\frac{1}{\Gamma(n+1)} \int_{0}^{n} t^{n} e^{-t} d t
$$

The right hand is asymptotically $\frac{1}{2}+\frac{1}{3 \sqrt{2 \pi n}}+\theta\left(\frac{1}{n}\right)$, whence

$$
\psi(n) \approx\left(\frac{1}{2}+\frac{1}{3 \sqrt{2 \pi n}}\right) e^{n}
$$

From (13) we then have

$$
\begin{equation*}
\xi \underline{m}_{1}=n-\sqrt{\frac{\pi n}{2}}+\theta(1) \tag{14}
\end{equation*}
$$

To determine the distribution of $\underline{m}_{9}$, we need the following lemmata.

Lemma 1. If $m$ is the number of persons that do not belong to a cycle, then these persons can choose in $\gamma(m, n)$ ways, where $\gamma$ is given by

$$
\begin{equation*}
\gamma(m, n)=n^{m}-m \cdot n^{m-1} \tag{15}
\end{equation*}
$$

Proof: Let $A$ be the set of all persons that do not belong to a cycle, $C$ is the set of the persons that do belong to a cycle, and $B$ the subset of $A$ of persons that choose somebody in C. Suppose A is not empty. As no cycles occur in $A$, neither $B$ nor $C$ can be empty. Let $b$ be the number of elements in $B$. Then there are $\binom{m}{b}$ possibilities for the set $B$, and the persons belonging to it can make their choices in $(n-m)^{b}$ ways. In order to determine the number of ways in which the $\mathrm{m}-\mathrm{b}$ persons belonging to $A-B$ can choose, we notice that this question is equivalent to the original problem, $A-B$ playing the role of $A$, and $B$ that of $C$. For, the persons belonging to A-B choose nobody from $C$ (or else b would be larger), and they choose without cycles. Hence we may apply induction

$$
\begin{equation*}
\gamma(m, n)=\sum_{b=1}^{m}\binom{m}{b}(n-m)^{b} \gamma(m-b, m) \tag{16}
\end{equation*}
$$

Now, by substituting (15) into the right hand side of (16), the desired expression for $\gamma(m, n)$ reappears. We still have to show the correctness of (15) for $m=0$ and all n. This, however, is trivial.

Corrolary. Cayley's formula for the number of rooted trees that can be formed with m points, can be obtained from (15) as follows. The number is the same as the number of ways in which $m$ persons can choose, without cycles, if there is exactly one "outward" choice, i.e. $m \cdot \gamma(m-1, m)=m^{m-1}$.
1)

For this to be possible, it is also necessary that $\mathrm{m}-\mathrm{b}<\mathrm{m}$ and $\mathrm{m}<\mathrm{n}$, which follows immediately from the non-emptiness of $B$ and $C$.

Lemma 2. n persons who choose by cycles can do this in $D_{n}$ ways, where $D_{n}$ is $n$ subfactorial ${ }^{\text {9) }}$

Proof Number the $n$ persons 9,...., $n$. It is easily seen that there is a one-to-one correspondence between patterns consisting of cycles only and permutations without invariant elements, and the lemma follows.

Using the lemmata, and the fact that the group of $n$ can be divided in two groups of $m$ and $n-m$ persons in $\binom{n}{m}$ ways, we find

$$
P\left[\underline{m}_{1}=m\right]=\left(n^{m}-m \cdot n^{m-1}\right)\binom{n}{m} D_{n-m}(n-1)^{-n}
$$

or, equivalently

$$
\begin{equation*}
P\left[\underline{m}_{1}=m\right]=\binom{n-1}{m} n^{m} D_{n-m}(n-1)^{-n} \tag{17}
\end{equation*}
$$

As $\sum_{m=0}^{n-2} P\left[\underline{m}_{1}=m\right]=1$, we have the corrolary

$$
\begin{equation*}
\sum_{m=0}^{n-2}\binom{n-1}{m} n^{m} D_{n-m}=(n-1)^{n} \tag{18}
\end{equation*}
$$

The asymptotic behaviour of $\underline{m}_{\uparrow}$ may be determined as follows

$$
P\left[m_{1} \leqslant m\right]=\sum_{0}^{m}\binom{n-1}{j} n^{j} D_{n-j}(n-1)^{-n}
$$

If $n-j$ is large for all $j$ between 0 and $m$ i.e. if $n-m$ is large, $D_{n-j}$ can be approximated by $(n-j)!e^{-1}$. Substituting this, we find after some calculations

$$
P\left[m_{1} \leqslant m\right] \approx \frac{(n-1)!}{e(n-1)^{n}} \frac{n^{m+1}}{m!}
$$

1) A for our purpose, convenient way to define $D_{n}$ is: the number of permutations of $n$ elements $9, \ldots, n$ such that element $i$ is not in the $i-t h$ place, $i=1, \ldots, n$.

For $n$ and $m$ large, Stirling ${ }^{\prime}$ s formula can be used:

$$
P\left[\underline{m}_{q} \leqslant m\right] \approx\left(\frac{n}{m}\right)^{m+\frac{1}{2}} e^{-(n-m)}
$$

By making the change of variable $m=n-y \sqrt{n}$, we find

$$
P[y \geqslant y] \approx\left(\frac{n}{n-y \sqrt{n}}\right)^{n-y \sqrt{n}+\frac{1}{2}} e^{-y \sqrt{n}} \approx e^{-y^{2}},
$$

provided $y / \sqrt{n}$ tends to zero when $n$ tends to infinity. To ensure that all approximations made are valid, it is sufficient to restrict the range of $y$ by

$$
n^{-\frac{1}{4}} \leqslant y \leqslant n^{-\frac{1}{4}}
$$

Indeed: $n-m=y \sqrt{n} \geqslant n^{\frac{1}{4}} ; m=n-y \sqrt{n} \sum^{\frac{3}{4}} n-n^{\frac{3}{4}} ; y / \sqrt{n} \leqslant n^{\frac{1}{4}}$. Finally, by making the change of variable $\mathrm{x}^{2}=\mathrm{z}$, we conclude that the asymptotic distribution of $\frac{\left(n-m_{1}\right)^{2}}{n}$ is exponential (with mean 1).

## 7. Persons that are not chosen

Katz [3] gives the following formula for the distribution of the number $\underline{r}_{0}$ of persons that are not chosen (arbitrary k)

$$
P\left[\underline{r}_{0}=r\right]=\sum_{j=r}^{n-1-k}(-1)^{r+j}\binom{j}{r}\binom{n}{j}\binom{n-j}{k}^{j}\binom{n-j-1}{k}^{n-j}\binom{n-1}{k}^{-n}
$$

For $k=1, r=0$ this expression reduces to

$$
P\left[\underline{r}_{0}=0\right]=\sum_{j=0}^{n-2}(-1)^{j}\binom{n}{j}(n-j)^{j}(n-j-1)^{n-j}(n-1)^{-n} .
$$

A second formula for this probability can be found using (17). For, though $\underline{r}_{0}$ is generally less then $\underline{m}_{\uparrow}$, we still have

$$
\underline{r}_{0}=0 \Leftrightarrow \underline{m}_{1}=0,
$$

as is easily seen. Therefore,

$$
P\left[\underline{r}_{0}=0\right]=P\left[\underline{m}_{1}=0\right]=D_{n}(n-1)^{-n},
$$

and we have the identity

$$
\sum_{j=0}^{n-2}(-1)^{j}\binom{n}{j}(n-j)^{j}(n-j-1)^{n-j}=D_{n},
$$

which can also be proved in more direct way by using $D_{n}=n_{n-1}+(-1)^{n}$ and Abel's generalized binomial formula.

Katz \& Powell [4] have also considered a more general case (where the number of choices made by the i-th person is a given number depending on i), and give some very complicated formulae for this case.

## 8. Some numerical results

Table 1 shows the distribution of the number of mutual choices for $k=1$ and some values of $n$. The distribution for $n=3,4,5,6,7$ was calculated with formula 20, section 9 . For $n=20$, formula (7) was used. Of course, $n=\infty$ corresponds to the Foisson distribution of the limiting case.

| , | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | . 250 | . 750 | - | - | - |
| 4 | . 370 | . 593 | . 037 | - | - |
| 5 | . 434 | . 508 | . 059 | - | - |
| 6 | . 471 | . 459 | . 069 | . 001 | - |
| 7 | . 495 | . 428 | . 074 | . 002 | - |
| 20 | . 574 | . 337 | . 079 | . 009 | . 009 |
| $\infty$ | . 607 | . 303 | . 076 | . 043 | . 002 |

Table 1. $P\left[\underline{m}_{2}=m_{2}\right], k=1$.

Table 2 gives the distribution of the number of mutual choices for $\mathrm{n}=5,6,7, \infty$, and $\mathrm{k}=2$. The computations were done using formulae (2), (3) and (4). As we have said before, these computations are complicated by the fact that not all non-zero $p$ 's are equal for $k>1$.
For low values of $n$, the distribution has a very small variance.
$\mathrm{m}_{2} \longrightarrow$

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | . 003 | . 089 | . 401 | . 421 | . 085 | . 002 | - | - |
| 6 | . 014 | . 144 | . 386 | . 347 | . 101 | . 008 | . 000 | - |
| 7 | . 027 | . 176 | . 368 | . 308 | . 106 | . 014 | . 001 | . 000 |
| $\infty$ | . 135 | . 271 | . 274 | . 180 | . 090 | . 036 | . 012 | . 003 |

Table 2. $P\left[\underline{m}_{2}=m_{2}\right], k=2$.
Table 3 shows the distribution of the number of persons who do not belong to a cycle, for $n=3,4,5,6,7$ and $k=1$. In spite of the fact that all rows in table 3 are increasing, the distribution has, for large values of $n$, its mode at approximately $n-\sqrt{n}$.
$\mathrm{m}_{\uparrow} \longrightarrow$


Table 3. $P\left[\underline{m}_{1}=m_{1}\right], k=1$ 。
9. A different formula for the distribution of $w(k=1)$

Suppose $n$ persons choose in such a way that $m_{i}$ cycles of length i result ( $i \geqslant 2$ ), and that $m_{9}$ persons do not belong to any cycle. Using lemma 1 (section 6) it is easily seen that the number of ways in which this can be done, is given by

$$
f(y)=\frac{n!\left(n^{m_{1}}-m_{1} \cdot n^{m_{1}-q}\right)}{\left(1^{m_{1}} m^{m_{2}} \ldots\right)\left(m_{1}!m_{2}!\ldots\right)}
$$

Hence

$$
\begin{equation*}
P[w=w]=\sum_{\substack{\psi(n) \\ m f_{2}=w}} f(y) \cdot(n-1)^{-n} \tag{19}
\end{equation*}
$$

By collecting terms that correspond to the same value of $m_{1}$, (19) can be reduced to

$$
\begin{equation*}
P[\underline{w}=w]=\frac{n!}{(n-1)^{n_{2}} w_{w}!} \sum_{v} \frac{(n-v) n^{v-1}}{v!} \frac{T(n-v-2 w)}{(n-v-2 w)!} \tag{20}
\end{equation*}
$$

where $T(j)=j!\sum^{*} \frac{1}{\left(3^{m_{4}} m^{4} \ldots\right)\left(m_{3}!m_{4}!\ldots\right)}$
The summation $\sum^{i n}$ (21) is over all partitions of $j$ for which $m_{1}=m_{2}=0$.
According to (21), $T(j)$ can be interpreted as the number of permutations of $j$ in which no cycles of lengths 1 or 2 occur. Applying the principle of inclusion and exclusion to the permutations of $n$ without cycles of length 1, it can be shown that

$$
T(n)=n: \sum_{i}\left(-\frac{1}{2}\right)^{i} \frac{D_{n-2 i}}{i!(n-2 i)!}
$$

The first few non-trivial ${ }^{1}$ ) values $T(n)$ are:
$T(6)=160, T(7)=1940, T(8)=8988$.

This approach, however, seems to be even less promising than the one chosen in section 2 , when results for $k>1$ are desired.

Acknowledgement. I thank W. van Zwet, J. Kriens and F.W. Steutel for many helpful discussions and constructive remarks.

1) If $n \leqslant 5, T(n)=D_{n}$, because the exclusion of the partitions with 1-cycles, or 2-cycles, or both, excludes all but the permutation consisting of one cycle of length $n$.

## References

1. P.R. Hofstaitter, Gruppendynamik, R.D.E. 38.
2. P.R. Hofstaitter, Sozialpsychologie, 1956.
3. L. Katz,

The distribution of the number of isolates in a social group, A.M.S. 23 (1952), p.279-276.
4. L. Katz \& J.H. Powell, A.M.S. 28 (1957), p.442-448.

