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Mutual Choices 

1. Introduction 

Let a group of n persons be given. Each person chooses 
k other persons (1 ~ k ( n-2) at random, i.e. such that 
the (nk1) ways in which a person can c,r,ioose, .have the 
common probability (n;1)-1 ; the persons choose indeper.d­
ently of each other. We will consider the problem of 
determining the distribution of the number of mutual 
choices. 

It was a remark in Hofst~tter' s bookletL1 J that led to the 
formulation of this problem. 1 ) Hofstl!itter refers to his 
book [ 2] for the probabilistic background, but the treat­
ment given there is limited to the derivation of the 
(binomial) distribution of the number of times that a 
given person is chosen. 

It is immediately clear 2) that the expected value 
of the number w of mutual choices is given by 

["t!.. k 2 'n k2 
= (~) <n-1) = 2-(n-1) 

In the greater part of this preliminary report, our 
considerations will be limited to the case k = 1. 

2. The distribution of!'.!. fork= 1 

[~ 

On determining the distribution of !!.for.k=1, we will 
make use of some well-known identities, which we will 

p. 2 
Stochastic variables will be denoted by underlined 
letters. 

( 1) 
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recapitulate here. The notation is virtually the same as 
in Feller's book (Chapter IV in the second edition). 

Let A1 , ••• ,A be an arbitrary collection of events, and 
l. 

let {i1 , ••• , irJ be any subset of {1, ••• , NJ • We thm define 

where the 
Then each 
exactly r 
expressed 

p . = P[A A ] 
j 1 , • • · , ir i1 ' • • • , ir · 

(2) 

s = I Pi . 
r 1' · · · ' 1 r (3) 

summation is over all r - tuples from {1, ••. ,N}. 
of the quantities Sr and the probability~ that 
of the 
in the 

events A1 , ••• ,An are realized, 
other, as follows: 

can be 

(4) 

(5) 

In order to apply these identities, we define A i,j) as 
the event "persons i and j choose each other". ~Hence a "p 
with r indices" will become a "p with r pair~ of indices"). 
The probability that two given.persons choose each other· 
is (n-1)-2w, and therefore, because of the independency, the 
p's with w pairs of indices are equal to (n-1)-2w provided 
all 2w indices are different. Obviously, if not all indices ., 
are different, p will be zero. ~w will therefore be equal 
to (n-1)-2 times the number of ways in which w disjoint 
pairs may be chosen from the set of all persons: 
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2w w! (n-2w) ! (n-1) 2w 
n! (6) 

Formula (4) can now be applied to yield the following 
expression for the distribution of~: 

L (-1) +w 

j~w (j-w)! (n-2j)! 2j(n-1) 2 j (7) 

3. The limiting distribution of u for arbitrary k. 

For k=1, the limiting distribution of~ when n tends 
to infinity can be found from (5) and (6) as follows. 
According to (5), the quantities r! Sr are just the 
factorial moments of w, whereas from (6) we have 

lim r! S = ~ 
n➔CD r 2r 

Hence, the factorial moments of the limiting distribution 
1 are~, i.e. the limiting distribution is Poisson with 
2r1 

mean 2 . 

Fork )1 it is no longer true that all non-zero pTs 

with w indices are equal to each other. As a consequence, 
it is no longer feasible to give manageable formulae 
for Sw. (Even a seemingly simple case like n=7, k=3 
leads to a total of about 150 different values of 
p's). However, it is still possible to find the limit­
ing;, distribution of~, because for every value of~, 
there is only one value of p that makes a significant 
contribution in the limiting case, as will be shown now. 

Suppose aj given persons are involved in exactly j 
mutual choices (j=O, .•• , k ; ~jaj = 2w). In such a 
situation we have 



p. i 
1 1 ° • • w 
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~ \(n-1-j)la, 
= \ l ~ k-~ l J 

j=O \ (n~ ) / 

Consider the persons that are involved in at least 
one mutual choice. This group consists of a1+ ••• +ak= 
n-a0 persons, who may be chosen in ln~a) ways from 

0 

the whole group. As n-a0 = a1+ ••• +ak < 2w is bounded, 
we have 

( n ) = U(n n-ao) 
n-a 

0 

Finally, the number of ways in which the above-mentioft,$ 
~ed a1 + ••• + ak persons can allocate their mutual 
choices is independent of n, and hence S is the sum 

("- -2w+n-aw 
of a number of terms that are U(n °), and not, 
as is easily verified~(n-2w+n-a@ ). The exponent is 

maximal when a 0 is minimal, i.e. when a 0 =n-2w, a1=2w, 
a2= .•• = ak = O, as is easily seen. Now the leading 
term in Sw can be determined in exactly the same way 
as was done for k=1, and we find 

lim 
n---+co 

(8) 

Therefore, also for k)1 ~he limiting distribution of 
w is Poisson (with mean~) 

4. The variance of w 

For very low values of wit is still possible to deter­
mine Sw, for arbitrary values of k and n. For example, 
if one wants to calculate s2 , only two cases have to be 
considered: 



1. 

2. 
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A and B choose each other, and C and D choose each 
other, 
A and B choose each other, and A and C choose each 
other. 

2 When s2 is known, <S can be found from the formula 

2 2 
<S = 2s2 + s1 - s1 , 

and after some calculations one finds 
2 2 

6 2_ n k (n-k-1) 
- 2(n-1)3 (9) 

This expression remains unchanged when k is replaced by 
n-k-1, as is proper. 

5. Extension to cycles of length greater than 2. (k=1) 

Beside mutuaJ choices, which can be interpreted as cycles 
of length 2, one might also consider cycles of length 3 
(A chooses B, B chooses C, C chooses A) or greater. If 
m denotes the number of cycles of length 11 >, the following 
-1 
relations can be proved. n! 

Em1 = (n-i) i (n-1) 1 

Prm =ml=~ L L=i. 1J m. ) , j). m (j-m • 

lim L _.ail_ 
n.- j). m (j-m) ! 

(-1 )j+m 

(n-ij)! {i(n-1)1}3 

P[ fili =j ]= -!m 

(10) 

( 11) 

(12) 

From (12) it follows that the limiting distribution of the 
number of cycles of lenght i is Poisson with mean ~-t (1')2) 

1. 
Hence, the number of persons involved in a cycle of length 
1)2 is 1 on the everage in the limiting case. 

1) It will be convenient to have both~ and was symbols 
for the number of mutual choices. 
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6. Persons that do not belong to a cycle (k=1) 

The expected value, fll½., of the number of persons that do 
not belong to a cycle, can immediately be found from (10): 

This expression can also be written as follows 

r- n2 n! 
?m ----- "'-V(n-1) 
·\,/!!!1 - n-1 (n-1)n I 

n nj 
where ~n) = f JT 

It can be verified by partial integration that 

n e -nn j . 1 in n -t f- J! = 1- r(n+1 ) O t e dt 

--{ ft/If( 1) 1 1 The right hand is asymptotically 2 + 
3V2rrn • 

V \n , 

whence 

From (13) we then have 

I E !!½ = n-ffj + (o/( 1) 

(13) 

(14) 

To determine the distribution of~., we need the following 
lemmata. 

Lemma 1. If mis the number of persons that do not belong 
to a cycle, then these persons can choose in o(m,n) ways, 

where i is given by 

O (m,n) 
m m-1 = n -m.n (15) 
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Proof: Let A be the set of all persons that do not 
belong to a oyole, C is the set of the persons that 
do belong to a oyole, and B the subset of A of persons 
that choose somebody inc. Suppose A is not empty. As 
no cycles occur in A, neither B nor C can be empty. Let 

m b be the number of elements in B. Then there are (b) 
possibilities for the set B, and the persons belonging 
to it can make their ohoioes in (n-m)b ways. In order 
to determine the number of ways in whioh the m-b persons 
belonging to A-B can ohoose, we notioe that this question 
is equivalent to the original problem, A-B playing the 
role of A, and B that of c. For, the persons belonging to 
A-B choose nobody from C (or else b would be larger), 
and they ohoose without cyoles. Hence we may apply 
induction 1 ): 

m b 
Y(m,n) = L. (~) (n-m) O (m-b,m) (16) 
0 b=1 

Now, by substituting (15) into, the right hand side of 
(16), the desired expression for t(m,n) reappears. We 
still have to show the correctness of (15) for m=O and 
all n. This, however, is trivial. 

Corrolary. Cayley's formula for the number of rooted 
trees that oan be formed with m points, can be obtained 
from (15) as follows. The number is the same as the 
number of ways in which m persons can choose, without 
cycles, if there is exactly one "outward1' choice, i.e. 

m-1 
m.~(m-1,m~ = m . 

1) For this to be possible, it is also necessary that 
m-b(m and m< n, which follows immediately from the 
non-emptiness of Band c. 
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Lemma 2. n persons who choose by cycles can do this in 
D ways, where D is n subfactorial 1 ) n n 

Proof Number then persons 1, ... ,n. It is easily seen 
that there is a one-to-one correspondence between 
patterns consisting of cycles only and permutations 
without invariant elements, and the lemma follows. 

Using the lemmata, and the fact that the group of n can 
be divided in two groups of m and n-m persons in(~) 
ways, we find 

P[m1=m]= (nm-m.nm-1 )(~) Dn-m(n-1)-n 

or, equivalently 

I p [ !1!-,=m ]= ( n ;1) n~ n-~ ( n-~~--=~ 

n-2 
As L P[m1=m)= 1, we have the corrolary 

m=O 
n-2 L (n-1)nm D = (n-1)n 
m= 0 m n-m 

The asymptotic behaviour of m., may be determined as 
follows 

(17) 

(18) 

If n-j is large for all j between O and m, i.e. if n-m 
is large, D j can be approximated by (n-j)! e-1 ~ n-
Substituting this, we find after some calculations 

( -1}, nm+1 
P[~,m J~ n ~ ~ 

. e(n-1) __ 

1 ) A for our purpose, convenient way to define Dn is: 
the number of permutations of n elements 1, •.. ,n 
such that element i is not in the i-th place, i=1, ••• ,n. 
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For n and m large, Stirling's formula can be used: 
1 

m~ ( ) 
P[!£1 ~ m] ~ (~) e - n-m • 

By making the change of variable !1l = n-i[Vn, we find 

n n-yfn4 -yifn -y2 
P[iL ~ Y]~ (n-yi/fl) e .~ e , 

provided y/{n tends to zero when n tends to infinity. 
To ensure that all approximations made are valid, it is 
sufficient to restrict the range of y by 

_;1 1 
'4 . - ◄ 

n ~ y~ n 
~ i 1 

Indeed: n-m=yVn~ n4 ; m=n-yVn~ n-n41 ; y/Vn ~ n4 • 

Finally, by making the change of variable ~2=z, we conclude 
(n-!!!1) 

that the asymptotic distribution of n is exponential 
(with mean 1). 

7. Persons that are not chosen 

Katz [ 3] gives the following formula for the distribution 
of the number £o of persons that are not chosen (arbitrary 
k) 

For k=1, r=O this expression reduces to 

A second formula for this probability can be found using 
(17). For, though £o is generally less then~, we still 
have 

~ = 0#!!!1 = o, 
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as is easily seen. Therefore, 

P [!.o=o] = P[m1=o] = Dn (n-1 )-n., 

and we have the identity 

n-2 j n . n-. 
~ ( -1 ) ( j )( n - j ) J ( n - j -1 ) J =D , . o n J= 

which can also be proved in more direct way by using 
Dn= nDn_1+(-1)n and Abels generalized binomial formula. 

Katz & Powell [4]have also considered a more general 
case (where the number of choices made by the i-th person 
is a given number depending on i)., and give some very 
complicated formulae for this case. 

8. Some numerical results 
Table 1 shows the distribution of the number of mutual 
choices for k=1 and some values of n. The distribution 
for n=3,4,5,6,7 was calculated with formula 20, section_9. 
For n=20., formula (7) was used. Of course, n= = corres­

ponds to the Poisson distribution of the limiting case. 

n m2-

3 
4 

5 
6 

7 
20 
00 

0 

.250 

.370 

.434 

.471 

.495 

.574 

.607 

1 

.750 

.593 

.508 

.459 

.428 

.337 

.303 

2 3 4 
- - -

.037 - -

.059 - -

.069 .001 -

.074 .002 -

.079 .009 .001 

.076 .013 .002 
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Table 2 gives the distribution of the number of mutual 
choices for n=5,6, 7 ,,xi, and k=2. The computations were 

done using formulae (2),(3) and (4). As we have said 
before, these computations are complicated by the fact 
that not all non-zero p's are equal for k) 1. " 
For low values of n, the distribution has a very small 
variance. 

m2---=-
n 0 1 2 3 4 5 6 7 

i 5 .003 .089 .401 .421 .085 .002 

6 .014 .144 .386 .347 .101 .008 .000 

7 .027 .176 .368 .308 .106 .014 .001 .000 

00 .1_35 .271 .271 .180 .090 .036 .012 .003 

Table 2. p [m2=m2] , k=2. 

Table 3 shows the distribution of the number of persons 
who do not belong to a cycle, for n=3,4,5,6,7 and k=1. 
In spite of the fact that all rows in table 3 are 

increasing, the distribution has, for large values of n, 

its mode at approximately n-\ln". 

m1---
n ·o 1 2 3 4 5 

J 3 .250 .750 
4 .111 .296 .593 

5 .043 .176 .293 .488 

6 .017 .084 .207 .276 .415 

7 .007 .040 .116 .221 .257 .360 

Table 3. P[!!½=m~ , k=1. 
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9. A different formula for the distribution of~ (k=1) 

Suppose n persons choose in such a way that m. cycles 
l. 

of length i result ( i), 2), and that m1 persons do not 
belong to any cycle. Using lemma 1 (section 6) it is 
easily seen that the n~mber of ways in which this can 
be done, is given by 

m1 m1 -1 
n! (n - m1 . n ) 

f(7)= m m 
(1 12 2 ... )(m1!m2! ... ) 

Hence 

P [~=W J = ) -~ f (ii ) . ( n-1) -n 

nt;~~) I 

(19) 

By collecting terms that correspond to the same value of 
m1 , (19) can be reduced to 

~-n-! ---l-~-,-(_n ___ v_) n_v ___ 1_T_(_n--v-_-2_w_
4
, l 

I Pl~=wJ= (n-1 )n2ww! v v! (n-v-2w). I 
------------------------j 

(20) 

y ~it ______ 1 ______ _ 
where T(j) = j. ~-- m m 

( 3 3 4 4 • . . ) ( m3 ! m 4 ! . . . ) 
(21) 

-it 

The summation 2._. in (21) is over all partitions of j for 
which m1=m2=0. 
According to (21), T(j) can be interpreted as the number 
of permutations of j in which no cycles of lengths 1 or 2 
occur. Applying the principle of inclusion and exclusion 
to the permutations of n without cycles of length 1, it 
can be shown that 

-~ 1 i 
T(n) - n' )_, (--) - • ~~. 2 

l. 
i ! (n-21) ! 
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The first few non-trivial 1 ) values T(n) 

T(6) = 160, T{7) = 1140, T(8) = 89880 
are~ 

This approach, however, seems to be even less promising 
than the one chosen in section 2, when results for k :» 1 
are desired. 

Acknowledgemento I thank W. van Zwet, J. Kriens and 
F.Wo Steutel for many helpful discussions and constructive 
remarks. 

1 ) If n~ 5, T(n)=D, because the exclusion of the partitions n . 
with 1-cycles., or 2-cycles, or both, excludes all but the 
permutation consisting of one cycle of length n. 
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