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1, Introduction

In many applications of regression theory it may be of interest
to reduce the set of independent variables to a smaller subset, If
we have m independent variables and we want to retain only k variables
in the regression equation (k<m), the problem arises how to select
these k variables. Here we consider different powers of a mathematical
variable as different independent variables. For notational conven=-
ience we define a k-subset as a subset of k independent variables, A
k-subset will be called better than an other k-subset, if the sum of
squares due to regression on the first subset is larger than the sum
of squares due to regression on the second subset. A k-subset is an
optimal k~subset, if no better k-subset exists. One would like to
have available a computationally easy method by which optimal k-
subsets are unfailingly desighated, but unfortunately such a method
is as yet not known. Of course the sums of squares due to regression
on all possible (i) k-subsets may be computed, but this is by no
means a quick method for large (i)o Computational labour is still more
formidable, because we usually compute the sums of squares due to
regression on ke-subsets for different k, and let k depend on the out=-
come.,

In an expository paper [j] H.C. HAMAKER describes two techniques,
called forward selection and backward elimination, which often lead
to optimal k-subsets. We give a brief outline of both methods., To fix
ideas, introduce m+1 vectors X1,X2,.99,Xm and Y of dimension n, where
X; denotes the vector of the n (non»random) observations on the ith
independent variable xi(i=1,ga.,m), and Y the vector of the correspond-
ing n observationson the dependent variable y.

The principle of forward selection, also called stepwise regres-
sion, is as follows. At each step of the procedure we add to the in=-
dependent variables already selected in the equation at former stages
that independent variable, which among all remaining variables gives
rise to the largest increase of the sum of squares due to regression.
Continuing this process until all independent variables are selected
in the equation, we successively find k-subsets to be included in the

regression equation for k=1,2,,..,m,



Applying the method of backward elimination we start with the
full equation containing all independent variables, and step by step
remove the independent variables from our equation in the order in
which the smallest decrease of the sum of squares due to regression
at each step is produced, until all independent variables are elim-
inated from the equation. In this way we also find k-subsets for k=m,
M1, 000,10 | o

For computational details and a number of worked examples see
[1]. Another discussion is given by P.G. MOORE in [2]0 We remark that
both methods are easy to apply; k-subsets are directly derived from
the matrix of crossproduct sums (forward selection) or its inverse
(backward elimination). Each method yields a sequence of the m in-
dependent variables, in the order in which they would be included in
the equation, and the correépohding sums 6f squares°

It is well known that neither of these methods necessarily leads
to optimal k-subsets, except in the trivial cases k=1 or k=m-1
respecti#elye Moreover, both methods may lead to different k-subsets.
In [1] HAMAKER raised the question, whether identity of the sequences
of the independent variables yielded by both methods is a sufficient
condition for the optimality of the produced k-subsets for all k. We
first present three fictitious numerical examples demonstrating that
this condition is not sufficien£; A more general example is treated

in the next section.

2. Some numerical examples

In the examples (see tables I, II and IIL) we have four inde-
pendent variables x1,x2,x3,xh and a dependent = variable y. The ten
observations on each of the variables average to zero, so no constant
term is needed in the regression.equations. In the tables the matrices
of crossproduct sums corresponding to the sets of observations are
given together with the sums of squares due to regression on all sub=
sets, the latter as fractions of the total sums of squares (rounded

off to four decimal places).



Observations

x, 0.T1 0

X, 0.1k 0.69
x3 0.42 0.27
X, 0,64 =0,13
b 0.57 -0.32

0.49
-0.07
-0.32

TABLE I Example 1

Matrix of Crossproduct Sums

Xy X5
x1 1,0082 0.1988
x2 0,991L
*3
Xy
J

Sums of Squares due to Regression on subsets of independent variables

in fractions of the total sum of

s8 {x,} = 0.6397
s {x,} = 0.5608
8s {x,} = 0.2528
88 {x;} = 0,0906

SS
SS
S
ss
SS
SS

0 0 -0.71 O 0
0 0 -0.14 -0.69 0
0 0 -0.b2 -0.27 =0.49
0.27 O -0.64 0.13 0.07
0.09 0.1 =0.57 0.32 0.32
x3 X), ¥
0.596k 0.9088 0.8094
0.4902 -0.0002 0.5046
0.9788 0.3988 0.3002
1.0086 0.758
1.0158

squares
{xz,xh} = 0.8138
{x1,x2} = 0,7627
{x,,x3} = 0,6899
{x1,gh} = 0.6439
{x3,xh} = 0,5608
{x2,x3} = 0,2563

Ss {x1,x2,x3}
Ss {x2,x3,xh}

ss {x1,x2,xh} =
= 0,6906

ss {x1,x3,xh}

0

0

0
-0,.27
-0.09

= 0,96hk
= 0.9194

0.8179

o O o

-001



S8
SS
58
S8

Observations
0,71 0
0 0,71
0.35 0,49
0,28 0.21
0,57 0,35

TABLE II

0
0
0.36

=0,57
e"‘0021

0
0
0

0.
0.

Matrix of Crossproduct Sums

X1 X2 x3
1,0082 0 0,497
1,0082 0,6958
0,984

Example 2
O "0071
0 0
0 -0.35
13 O —0928
01 0,05 =0,5T
xh N
10,3976 ~ 0.809k4
0.2982 0,497

-0,
0,

0086 . 0.5908
9286 0.7082
0,9882

0
~0.71
-0.49
-0,21
-0.35

0

-0,36

0,57
0,21

0

=0,13
=0,01 =0,05

Sums of Squares due tc¢ Regression on subsets of independent variables in

fractions of the total sum of squares

{x4}
{x),}
{x5}
{x,}

1}

0,6576
0,5466
0.3588
0,2479

S8
S8
Ss
S5
58
55

{x3ixh}

{x19x2}

0,913k

= 0,9055

{xy5%)} =
{x1,x3} =

{x2,xh}
{xg,x3}

0.8560

0.7079
0.6272

= 0.3712

SS {x1,x2,x

3}
S8 {xj,xz,xh}
S8 {x19x3,xh}
Ss {x25x3,xh}

= 0,9947
= 0,9922
= 0,98L4k4
= 0,9713



S8
SS
S8
Ss

Observations
0,71 0
0.18 0.68
0.k42 0.k4T
0.46 =0.12
0.57 0.29

TABLE III Example 3

Matrix of Crossproduct Sums

X

X

1,0082 0.2556

0,9896

0 0 0
0 0 0
0,31 0 0
-0.39 0.36 0

-0,26 0.07 0.15
x3 xh

0.5964 0.6532
0,790k 0,002
0.9868 0.0318

1.0154

=0,71
-0.18
-0.h42
-0.46
-0.57

y

0.8094
0.5996
0,5902
0.708
1.008

0
-0,68
-0, 47

0,12

- =0,29

Sums of Squares due to Regression on subsets of independent

fractions of the total sum of squares

{x1}
{xh}
{x2}
{x3}

0.6446
0.4897
0,360k

= 0,3502

Ss {x2,xh} = 0,8L482
Ss {x3,xh} = 0,814
88 (x,s%,} = 0.8115
88 {x,,%} = 0,701
Ss {x1,x3} = 0,66M41
Ss {x2,x3} = 0,3950

SS {xl,x

ps%3)

Ss {xi,xz,xh}
SS {xz,x3,xh}
SS {x19x3,xh}

0 0
0 0
=0,.31 0
0.39 -0.36

0026 -OQOT

variables in

0,9L456
0.92k4Y
0.8711
0.8164

o O ©

0
-0,15



Applying forward selection to the first example we successively
select x19xé;x3,xh in the regression equation, and using backward
elimination we eliminate X), sX35Xp5X, in this order, as may be seen
from the sums of squares in table I. Both methods thus lead to the
sequence X,;X;sX3sX) s and the 2<subset yielded is {x1,x2}n The
optimal 2-subset however is {xa,xh}o

In the second example, application of both methods leads to the
sequence x1,x2,x3,xh, as again may be seen from the sums of squares
in table II. As a 2-subset they yield {x1,x2}; the optimal 2-subset
contains in this case the other two variables X39X) o0 This example
has another interesting property. It might be hoped, that repeatedly
substituting some variables of a k-subset for some other variables
in such a way that the resulting k-subset is a better one, would lead
to an optimal k-subset. This example shows that this is not true,
because {x1,x2} is the best 2-subset that contains either X, Or X,e

In the third example both methods lead to the sequence
XysX5sXg5X) 5 S€€ table III, and yield {x1,x2} as a 2-subset. Now
{xg,xh} and {x3,xh} are both better 2-subsets.

3. A general example

We conclude with an example of a more general nature. We do not
underline random variables in this section, because all consider-
ations are in terms of fixed values of the observations.

Let k and m be fixed integers, 1< k< m=1, and let

AR AN
euclidean space (n>m+1). Define the vectors

be m+1 orthogonal unit vectors in the n-dimensional

Xy = Y X=T500000X % s

= 000 s » .=+ 000
xj g1jy1+§2jY2+ +£k+1,JYk+1+nYJ (j=k+2, i,m),

= +°00+ +
Y m1Y1+m2Y2 mem er+1’

where n,e,{Eij} and {mi} are sets of real numbers satisfying



k+1
2 2 . ,

1 ogggtn= (j=k+2,c0. om) (1)
1=

m

T wl=t, (2)
N 1

1=1

The vector Y is to be interpreted as the vector of observations on

the dependent variable y, and the vectors X,,X.,.00,% as the vectors
1 m

2
of observations on the independent variables X.,X.gco03X o
1972°% m

We introduce the following condition in the above model: all

vectors Xj-an(j=k+2,ooo,m) are coplanar with the vectors Xk+1 and

w1Y1+w2Y2+oco+wk+1Yk+1, and all these m=k+1 vectors have different

directions. Or

..=Y.w. an =Y, +8,
513 YJml and Ek+1,J Yawk+1 GJ

(3)

(i=1’coogk; j=k+2,0009m),

where {Yj} and {65} are sets of non-zero real numbers satisfying

(efe (1))

Y. k Y. i 2

332 W2 4 (=L 2_ 1=n_

(55) iZ1 bp * (aj et 2 ()
J

¥
and YS/GS # t/6 for all s#t.

t
We now state a theorem for this model, which will permit us to

draw some pertinent conclusions.

Theorem: Let {Ci|i=1’ooo,k} and {dj|j=k+2,oao,m} be given sets of

different real numbers satisfying the relations

k 1
¢ > e 000>, > 1 and O< dj~<(1+ iZf?)"§ for all j.
(5)

Let € and ¢ be arbitrarily small positive numbers (0< e,z <1),



Then it is always possible to find an n> 0 and sets of coefficients
{wi|i=1,°°°,m}, {Yj|j=k+2,o°m} and {6j|j=k+2,aoo,m} such, that

simultaneously (independent of the value of 6 )

w, ly.‘ :
(1) —==c (i=1,0..,k) and —gdl = 45 (342,000 ,m),
k+1 J
(ii) forward selection and backward elimination both yield the

sequence of the independent variables XysXpsoeosX in this

2
order,

(iii) the sum of squares due to regression on any pair of
variables from the set {xl|l=k+1,oaa,m} is larger than

the sum of squares due to regression on the variables

XysXgse0csXy o Winus €,

k+1 5

(iv) Y WS >1-z .
. i
1=1

We introduce. some notation. The scalar product of two vectors
P and Q is denoted by (P,Q),the space spanned by the vectors
PysPyse0,P) is denoted by [P1,P2,000,Pi]° For the squared length of
the projection of a vector Y on some space we write the s.l.p. of Y.
Before proving the theorem it is convenient to have the fol=-

lowing lemma's,

Lemma 1: Let P,Q,R and S be unit vectcrs in n=-space, and let the
vector Z be defined by Z=u(P-nR)+v(Q-nS), where u,v and n are non-
zero real numbers. If (P,R) = (Q,S) = n and (P,S) = (Q,R) = (R,S) =0,
then the s.l.p. of Z on the space EP,Q] is larger than
(2,2)-n" (Wev®) o
Proof: It is well known, that the s.l.p. of Z on [P,Q] is given by

1

——— {(P,u(P-nR)+v(a-n8))%+(Q, u(P-nR) +v(Q-ns) )+
1-(P,Q)

-2(P,Q) o (Pyu(P=-nR)+v(Q=nS)). (Q,u(P=-nR)+v(Q-ns))}



= {(u+v(P,Q)-un2) 2+ (vHu(P,Q) ~vn2) 2+

1-(P,Q)%
~2(P,Q)+ (1+v(P,Q)=un?) . (v+u(P,Q)=vn’) }

Y
— {1B+vZ-2uv(P,Q) }-

1-(P,Q)

=u2+v2+2uv(P,Q)-2n2(u2+v2)+

As (Z,Z)=u2+v2+2uv(P,Q)~n2(u2+v2), and =1<(P,Q) < 1, the desired

result follows immediately.

Lemma 2: In the above model, disregarding the relations (3), the
conditions necessary and sufficient to obtain the sequence of
independent variables X sXps000 9% with both forward selection and

backward elimination are

2 2 2

WS W e ooy (6)
2 2 2

wk+2> wk+3>ooa>wm (1)

1 .. 1 E..
2 -1 2
[wi- 2 —%]-41 wj] o E1+ 2 (-TlTil) 2:] > w;

J=k+2 J=k+2
(114000 ,k+131=k42, 000 ym) (8)
k+1 E.. . k+1  &..
Gl I Sted® De 1D
J =141 i=1+1

(J=k+25000,m31=041,000,k)0 (9)

Proof: A. Backward elimination

To obtain the sequence X sXps0009X, We must at each step in the
process of backward elimination delete the variable with the highest
index. Suppose at a certain stage we have arrived at the subset

1 is, that the s.l.p. of
Y on [31,X2,009,X1_;] is larger than the s.l.p. of Y on the space
spanned by the vectors {Xj|j=1,2°°,l;j#i} for every integer i<l-1,

{x1,x2,“o,xl}° The condition for deleting x
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l=1

The s.lop. of Y on.[k19X2,eoc,X ] is equal to .z w?, because this
J=1

space is identical with [& 2,000, 1- 1]

We derive the s.l.p. of Y on the second space, denoted by Vv (1 s1),

and discuss three cases.

1

Al, Let 1< k+1. Then v2(i,l)= ) m f follows immediately.
j=17

A2, Let k+1<1i<1-1, Then clearly Vv (1 1)= me-mio

J=1

A3o Let i< k+1 <1, Without loss of generallty we take i=1, Then
v (1 1)=(s.l.p. of Y on EXQ.X3,000,Xk+1])+(s°lopo of Y on

[€1JY1+ Y. —k+2,°°o,1]) The first term of the rlght hand member is
k+1 2

equal to 2 W,
j=2 3°

To compute the second term we define U—"1Y1+"k+2yk+2+°°°+“1Yl as a

vector orthogonal to the second space onto which Y is projected. The
orthogonality relations are n1§1j+njn=0 (j=k+2,000,m), from which the
direction cosines of U may be computed. It follows that the distance

from the endpoint of the vector N1Y1+wk+2Yk+2+ooo+lel to the space

=

\ s 1 .4 2
[, ¥ 4nt, =ke2ye00l] s [w= ] —oofi+ ] (—-;]-4-)2] 3
J J j=k+2 J j=k+2
It is now an easy mstter to obtain the second term, and adding the
first term we get
1 1 £, 1 &

2 2 1 2 1 -1
vo(1,1)= ij- [w1- ) —;‘le] . O+ ) (—-ﬁi)e_] o
j=1 j=k+2 j=k+2

2 2 ‘ . 2
The formulas for v°(2,1),0..,v (k+1,1) are direct analogues of v
(1,1). As consequences of Al, A2 and A3 combined with the s.l.p. of

Y on [k1,x2’ooo,xl_4] we find the necessary and sufficient conditions

(6)9 (7) and (8)0
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B, Forward selection

Suppose at a certain step in the process of forward selection we

have arrived at the subset {x1,x .oaogxl}c To obtain the sequence

2

Xy3Xps0003X We must now select x in the regression equation.

The iondition is that the s.l.p. i;1Y on [X1,X2,OQO,X1,X1+1] is
larger than the s.l.p. of Y on EX1‘X2,11;,X1,X51 for every integer
j>1+1, The first quantity is equal to -2 Wy the second, which we
denote by wg(j,l), we now computes. =

B1. Let 0<1<k+1<j, where 1=0 means that no variable has been

selected yet. Then wg(j,l)=(solop° of Y on [X1,X2,000,X1J)+(solopo

of Y on the vector €l+1,le+1+oao+Ek+1,ij+1+an)=
1 k+1 £, k+1  E..
S R S N
i=1 Joq=141 N I i=1+1
2 T 2.2
B2, Let 1<1+1<j<k+l, Then w°(j,1)= } wy+uso
. i=1
: 2. T o2 02
B3. Let k+1<1<j=1, Then clearly w (j,1)= 2 wi+wj°
i=1

We see that B2 and B3 do not lead to new conditions other than (6)

or (7). As a consequence of Bl we obtain condition (9).

Proof of Theorem: Choose an n satisfying

0 < n<(1+max d.,)=10 nin {5/ min |d.=d.|, = min d.}. (10)
j dJ 3 i#3 1] 3 j J

w,
Next choose a set of ratio's {E—l_ | j=k+2,00.,m} satisfying

k+1

w. (.Uo+1
:’_-L (Tuﬂl-—- (j=k+2,ooo’m-1) and
k+1 k+1



w. /E ndj
0<'u';'i"<min { 3 _mm} (j=k+2,ooo’m)o (11)
1 /a1 2{m-k) 42/

Taking w, >0 and using (i) and (2) we find a set of values
{wi|i=1,ooc,m}, all larger than zero. Taking all Y <0 and using (i)
and (4) we find sets of values {lej=k+2,oeo,m} and {6J.lj=k+2,ooo,m}o
Thus property (i) is satisfied. We will show that the model with
these coefficients also has the properties (ii), (iii) and (iv).
a). First we exhibit property (ii). We have to demonstrate that the
inequalities (6),(7),(8) and (9) of lemma 2 are satisfied. The in-
€equalities (6) and (7) are evident.

Consider the set of inequalities (9). Inserting (3) in (9) we

find after some calculations, that (9) is equivalent to

k+1 w. w.Ww.
n2+yg 2 w?+6%+2y.6.w > n2(-l—)2+2n6. —J k1 +
Jg=lar 14 IR ey P
. 1+1
w. k+1 Y. k+1
2 2,2
+2ny. — Toowl+ (=0 WD) s
w1+1 1=1+1 1+1 1=1+1
w. k+1
+2y.8, — T ooud e 6222
I I i=1+1 J 149
1+1
for j=k+2,.00.,m and 1=041,0003ko
We note that
w. w . w.
n® > n?(—)2s 2né gwk” if - d.<min {4, Do
-4 1 /
1+1 wl+1 K+ Ve l&sj
and
k+1 Y. k+1
Y? 2 w? + 2y.6.wk+1> (ZTJL-)Q ( 2 w?)a +
J i=1+1 JJ 141 i=1+1
w k+1 1y.
roys, =L 7 W2 e <2w .. ;
JJ w2 j=1+1 1 P k+1
1+1 J

if both conditions are satisfied then (9) holds.
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W,

Because (11) implies m J o] (j=k+2,..0,m), and hence, using
k+1 V=K1
k+1
. 2 _k+1 .
(i), .Z wy >55 , we find
i=1
Y. 4 k+1 1
151 2 2,-3 k42
8 =9 <(1+iz1 cl) (lz wp) T o ¥ T (12)

Thus the second condition is satisfied.

On the other hand (4) and (11) imply

k Y. Y.
2 _ _i 2 2, .J 29=1 _k+2  jy=2_ _1 2
2 =(1-n2). [0 T uleigd o, #0)27T <K2 () L)1)
J i= J J .
dJ
w. nd.
Then we deduce from (11) and (13) —d—< h| < oD

Yot W/I¥2/K héj

and the first condition is also satisfied.
We now turn to the set of inequalities (8). Inserting (3) in (8)
we see, that the inequalities (8) certainly hold for i=1,...,k. For

i=k+1 they are equivalent to

1 1
22 22 2 2
nw +(2(Y +6)w)>nux+w Y (v, +6.)7+
k+1 5=k+2 k+1 11 5=k42 k+1 Jj
%
+2nw (y.w, . +8.)w.o.
+
k+1 =k+p 9 k+1 73773
. 2 x +2 . s
Since from (12) |y, |un£+1 GJ wr1V T T \Gj’ the 1nequalities are
satisfied if
22 22 :
N g N w2y -=E+n(yjmk+1+dj)wj (1=k+2, 000 5m).

Hence it is sufficient to show, that

1
2 2 2 2
n wk+1> n ml + 2nwk+1 -—E+2 GJ J



1L

From (11) we have 02 < , and from (11) and (13)

2
1 ok Yk+1

a1

1 w. -1 2 2l -1
18, Tu_g_ < 3(m=k)” (14 -}-_:) “n 4.8, < 3(m=k)”  (m=k=1)n.
j=k+2 K+ 1 jeke2 99

. 2ra % o<l 22  mk-l 22 _22
MWprr . L %% "mx " Yket” "ok " YketT Bget o

am=l- N
JEEvc

22
Thus n wl

and the inequalities (8) are satiéfiedo
This proves property (ii).
| b). To verify property (iii) we apply lemma 1,
Consider a pair of vectors Xp,Xq, where p,q > k+2 and p#q. Inserting

P=Xp, Q=Xq, R=Yp, S=Yq and Z=w1Y1+°“+w in the lemma, 1t 1s

k+1Yk+1
Y Y Y Y

not difficult to show that u= -é]— (- ) ! and v= -51-(-53 - 2) 1
Y Y q qa q Y
As the conditions of the lemma are satisfied, we find that the

Sol.p. of w1Y1+w2Y2+°o°+wk+1Yk+1 on Eip,Xéj 1s larger than

k¥l 2 2 2 2
) w;=n (u1“+v°). We investigate the last term. From (L) and (10) it
i=1

is found that

Y. k Y. - Y. Y. _
5?:(1—:12)[(-6-’;-)2 iz1m§+(-6-§-wkﬂ+1)2j 1, %%[(-é-j-)ee JTs'j'J' +1] LS

;-}% (1+ max dj)"2o ~ (14)
J

Using (14) and (10) we have
Y Yo oo
n2(p2+v2)=n2(-1—2 + -1-2-)(32 - E-g-) 2 <% n? [1+ max 4] 2.
8 6, P a i
b q
o [ min (di-d.)z_]"1 <€,
i#] !

4 < o +DO° i
Hence the s.l.p. of w,Y +uw,Y, +ﬂyq¥g4°nﬁxp’xéj is larger than
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k+1
z w? - €, A forteriori this inequality holds for the s.l.p. of Y
i=1
on [X ,X |, and property (iii) is proved for every pair of variables
from the set {xl|l=k+2,ooo,m}o

Now consider the pair of vectors Xk+1’xl’ where 1> k+1. Then the

S.l.p. of Y on [X Xi] is equal to

k+1°

K
2 -1
“ke1” [iz1 €5 p0ne]” < s Z e

i=1

k k
2 2 =1
=, +F, ) wimlj rn +Y . mfj

1=1 i=1

k+1

2 w - [ﬁz 2 w2+2n| Yllw ' =T waj [n +y
i=1 i=1 : -1

llbv1W
€
WJP

2 n n
> ) Wi == - .
i=1 1 2|7

But from (i), (14) and (10) we have

n n 1 16 n € n2 €2 £
= — ¢ o=— <} — ¢ —— (1+max d.)< = , and thus < <= o
1] d, 8 15 d) [ 2 Yi T "2

Using these inequalities we find, that the s.l.p. of Y on EXk+1,Xi]

k+1
is larger than ) W= €o This completes the proof of property (iii).
i=1

c¢). Property (iv) is almost trivial. From (11) we have

7 m 5 k+1 5
o S ———— .=+ o0 o . . =(o
wg<}/m-k-1 Wy (j=k+2,...,m), hence j=£+2 W <z, and so 121 wy > 1=g

Remark: The orthogonality of the vectcrs X1,X is not an

2,000’Xk+1
essential feature of the general examrle, and was only introduced to

get tractable inequalities.
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From the theorem we derive, that for suitable values of the
coefficients in the model both forward selection and backward
elimination lead to the sequence of independent variables

X X WX s while at the same time all k-subsets containing at

29600
least two variables from thg set {xl|l=k+1,ooo,m} are better
k-subsets than {x1,x2,ooo,xk}, since their sums of squares due
k+1 5 k 5
to regression are larger than z w,=€> 2 ws (for a value of
2,

=

1= 1=
¥ 2
€ smaller than (1-g).(1+ ) ci) ). It follows that in this case
i=1

there are at least
(1) = k(m-k)-1
k-subsets better than the k-subset yielded by forward selection and
backward elimination. If m=10 and k=3,‘this means that from the
totality of (1§)=120 3-subsets there sre at least 98 3-subsets better
than {x1,X2,x3}a

In practice it is not only important how many k-subsets may
exist which are better than the k-subset we choose, but also how much
better they may be. We define the amount, by which a k-subset is bet-
ter than another k-subset, as the difference between the sums of
squares due to regression on the first and the second subset, divided
by the total sum of squares. In the numerical examples discussed in
section 2, the amount by which other 2-subsets were superior to
{x1,x2} was not very substantial. The following corollaries to our

theorem show, that the situation may te much worse.

Corollary 1: For appropriate values of the coefficients in the

general example, all (i

two variables from the set {xj|j=k+19“o,m}g are better than the

)=k(m=k)=~1 k-subsets, which contain at least

k-subset {x1,x2,°°n,xk} yielded by forward selection and backward
elimination by an amount arbitrarily close E%q-o
2i

Proof: In the theorem choose c§=ﬁ+ 1?~e(i=1,ggu,k), S0



2 1 L U B
w1 = TR ) W >yrTcTye o From (iii) we have, that the

amount, by which the (E)-k(m—k)~1 k-subsets containing at least two
variables from the set {xlll=k+1,ooo’m} are better than {x1,x2,°°°9xk},

2
W, =€
is larger than k+1n > . 1-% E

146° k+1 (1+62)(1+e) 140

2 °

Because 6,e and ¢ may be taken arbitrarily small, the corollary
follows.,

Corollary 2: For appropriate values cf the coefficients in the general
example, all (E)—(m—l: (ki1

two variables from the set {xj|j=l+1,°oo,m}, are better than the k-sub-

)—(i) k-subsets, which contain at least

set {x1,x2,ooa,xk} yielded by both forward selection and backward

elimination by an amount arbitrarily clcse to ;§§%l (kgl<m=1),

Proof: Apply the theorem with 1 instead of k. Define

1+1

C§=1+%]'.' € (5.:1900091)’ SO wi+1= S L — w? > ! ° “J“.:’C' o
(1+41)(1+e) i=1 > 141 14e

Then we have from (iii), that all 2-subsets contained in the set
{xj|j=l+1,e°o,m} are associated with sums of squares due to regression
larger than

1+1 k
2 wi- €> 2 w? P AR L €, and the corcllary follows,
i=1 i=1 141 1+e

Corollary 3: For appropriate values of the coefficients in the
general example forward selection and backward elimination, though
identical, do not produce one optimal subset, except for the trivial
cases of the l-subset and (m-1)= subset.

Proof: Apply the theorem with k=n-2 and sufficiently small .

We illustrate the corollaries with two%numerical examples for the

case m=10 and k=3;
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From corollary 1 we know, that for'suitable values of the
coefficients 98 3-subsets exist better than {x1,x2,x3} by an amount
close to 1/b. In table IV a matrix of crossproduct sums is given
with these properties. We only give the sums'of squares, divided by
the total sum of squares, due to regression‘on the 21 2-subsets
present in the set {xj|j=h,oaf,10} because the 3-subsets containing
such 2-subsets can only have larger sums of squares.

In table V a numerical example is presented illustrating
corollaries 2 and 3. Note that the optimal 2-subset {xg,x10} is
better than the 2-subset {x1,x2} yielded by forward selection and
backward elimination by an amount 0.7513. The only optimal subsets
yielded by both methods are {x1} and {x1,x2,ae°,x9}u Applying forward
selection or backward elimination one would have to include 8 or 9
independent variables in the regressicn equation to get a good fit

of the data, although the subset {x9,x10} does the job as well.
4. Conclusion

Reviewing the results, we see that a class of examples can be
constructed where forward selection and backward elimination do not
lead to optimal k-subsets, even if both methods yield identical
sequences of the independent variables. The k-subset they produce can
be a bed one in a quantitive sense, that is, there are many better k-
subsets, as well as in a qualitive sense, that is, there exists at
least one k-subset that is very much better. Furthermore it is possible
that both methods, though identical, do not lead to optimal k-subsets
for any k except k=1 and k=m-1, In sore cases it is possible to
detect such anomalies by inspection of the correlation matrix: a
highly intercorrelated subset of independent variables which appear
in the regression equation only at a later stage, may be a sign of
misbehaviour,

However, in our opinion a better and yet not too troublesome
method will be hard to find, because such a method should essentially
use the correlations between all variables at every stage of the

process.
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TABLE

Matrix of Crossproduct Sums

HoM MMM

e allel

el
=0 O O\ EWN =

< W

Xy X, X3 X
1 0 O
1 0 O

1 0

1

5
—Ooh93122
—O°h916h9
—Ooh91158

0.523055
1

IV Example

X6
-0.,437261
-0,435955
-0.435519

0.654814
0,986372
1

L

*7
-0,370512
-0,369406
-0.369036

0,767974
0.947273
0.986656
1

*8
-0,109394
-0, 109067
-0. 108958

0.981823
0.674630
0.785746
0,.8750L45
1

-0
-0
-0
0
0
0
0
0
1

X

X

9 10
.289304 -0, 199584
.288L40 -0.19898¢
,288151 -0.198789
865902 0.938490
878915  0.78L4771
S9LLT7LT 0.875133
.985070  0.941552
.9LL666  0.986627

0.985058

1

y

0,501498
)005
0.499500
0.498989
-0.47T7L33
-0.328035
-0.,171614
0.326121
-0.001142
0.169433
1,01

Sum of squares due to Regression on the 3-subset yielded by forward selection and backward
elimination as a fraction of the total sum of squares 1.01:

Ss {x1,x2,x3} = 0,TW356.

Sums of Squares due to Regression on 21 different 2-subsets in fractions of the total sum
of =quares:

S8
Ss
S8
S8
S8
S8

{xh’XS} = 0,9897h
{xh,xé} = 0,9896€6
{xh,xT} = 0,98950
{XS,XB} = 0,98920
{xh,xg} = 0,98917

0.98876

{XS’X10}=

{x

x)sx,4 )=
52%9
{xT’XB }=
{xgox o=

{x6,x8} = 0,988TL

0.98820
}= 0.98782
0,98780
0.98778

ss {xs,x

S8

{x7,x10}=
S {x8,x9 }=
{x6,x9 }=
{x),xg }=

7} = 0,98520

0.98516
0.98507
0,98501
0,98393

{XS’X6} =
§ {xgex;o )=
7’x9 }=
(xgo% 1o}
(xgsx, 1=

{x

0.97248
0.97105
0.9710L
0.97004
0.96993
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TABLE V Example 5

Matrix of Crossproduct Sums

X, X, X3 X xS Xg x7 Xg x9 X4 N

X, 1 0 0 0 0 0 0 0 -0,209081 0.343511
X, 1 0 0 0 0 0 0 C -0,207302 0,340588
x3 1 0 0 0 o 0 0 -0,205507 0,337639
X}, 1 0 0 0 0 0 ~0,203696 0.33L66L
x5 1 0 0 0 c -0.201869 0,331662
Xg 1 0 0 0 -0,200950 0,330151
Xo 1 0 0 -0,200026 0.328634
Xg 1 C =0, 199097 0.327109
Xq 1 0.816275 0.325563
X730 1 -0.278242
Yy 1.01

Sum of squares due to Regression on the 2-subset {x_,x,.} as a fraction of the

9’710
total sum of squares 1.01:
DS {X9,X1O} = Oo98298e

Sums of squares due to Regression on the subsets yielded by forward selection

and backward elimination in fractions of the total sum of squares:
88 {x, } = 0,11683 SS {x1,x2,x3,xh,x5} = 0.56436
88 {x,,%,) = 0,23168 Ss {xi’x29x3’xh9x5’x6} = 0.67228
8S {x1,x2,x3 } = 0.3L4L55 SS {x1,x2,x3,xh,x5,x6,x7}‘= 0.77921

SS {xl,xg,x3,xh} = Ooh55h5
Ss {xI,xz,x3,xh,x5,x6,x7,x8}
SS {x1,x2,x3°xh,x5,x6,x7,x8,x9} = 0,9900¢

0.88515

Ss {x1,x2,x3,xh,x5,x6,x7,x8,x9,x10} = 0,9901C
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