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1. Introduction 

In many applications of regression theory it may be of interest 

to reduce the set of independent variables to a smaller subset. If 

we have m independent variables and we want to retain only k variables 

in the regression equation (k < m), the problem arises how to select 

these k variables. Here we consider different powers of a mathematical 

variable as different independent variables. For notational conven­

ience we define a k-subset as a subset of k independent variables. A 

k-subset will be called better than an other k-subset, if the sum of 

squares due to regression on the first subset is larger than the sum 

of squares due to regression on the second subset. A k-subset is an 

optimal k-subset, if no better k-subset exists. One would like to 

have available a computationally easy method by which optimal k­

subsets are unfailingly designated, but unfortunately such a method 

is as yet not known. Of course the sums of squares due to regression 

on all possible(~) k-subsets may be computed, but this is by no 

means a quick method for large(:). Computational labour is still more 

formidable, because we usually compute the sums of squares due to 

regression on k-subsets for different k, and let k depend on the out­

come. 

In an expository paper [1] H.C. HAMAKER describes two techniques, 

called forward selection and backward elimination, which often lead 

to optimal k-subsets. We give a brief outline of both methods. To fix 

ideas, introduce m+1 vectors x1,x2 , ••• ,Xm and! of dimension n~ where 

X. denotes the vector of then (non-random) observations on the i th 
J. . 

independent variable x. ( i=1, ••• ,m), and Y the vector of the correspond-
J. -

ing n observationson the dependent variable z• 
The principle of forward se·lection, also called stepwise regres­

sion, is as follows. At each step of the procedure we add to the in­

dependent variables already selected in the equation at former stages 

that independent variable, which among all remaining variables gives 

rise to the largest increase of the sum of squares due to regression. 

Continuing this process until all independent variables are selected 

in the equation, we successively find k-subsets to be included in the 

regression equation for k=1 9 2, ••• ,m. 



2 

Applying the method of backward elimination we start with the 

full equation containing all independent variables, and step by step 

remove the independent variables from our equation in the order in 

which the smallest decrease of the sum of squares due to regression 

at each step is produced, until all independent variables are elim­

inated from the equationo In this way we also find k-subsets for k=mj 

m-1 , o o o , 1 o 

For computational details and a number of worked examples see 

[1] o Another discussion is given by PoG. MOORE in [2] o We remark that 

both methods are easy to apply; k-subsets are directly derived from 

the matrix of crossproduct sums (forward selection) or its inverse 

(backward elimination). Each method yie,lds a sequence of the m in­

dependent variables, in the order in which they would be included in 

the equation, and the corresponding sums of squares. 

It is well known that neither of these methods necessarily leads 

to optimal k-subsets, except in the trivial cases k=1 or k=m-1 

respectivelyo Moreover, both methods may lead to different k-subsetso 

In [1] HAMAKER raised the question, whether identity of the sequences 

of the independent variables yielded by both methods is a sufficient 

condition for the optimality of the produced k-subsets for all ko We 

first present three fictitious numerical examples demonstrating that 

this condition is not sufficient. A more general eiample is treated 

in the next sectiono 

2. Some numerical examples 

In the examples {see tables I 9 II and III) we have four inde­

pendent variables x 1,x2 ,x3 ,x4 and a dependent variable zo The ten 

observations on each of the variables average to zero, so no constant 

term is needed in the regression.equationso In the tables the matrices 

of crossproduct sums corresponding to the sets of observations are 

given together with the sums of squares due to regression on all sub­

sets, the latter as fractions of the total sums of squares (rounded 

off to four decimal places). 



(Y) 

x1 

X 2 
x3 

X4 
y 

x, 
x2 

X3 

X4 
y 

TABLE I Example 1 
Observations 

Oo71 0 0 0 0 -Oo71 0 0 0 

Oo 14 Oo69 0 0 0 -Oo 14 -Oo69 0 0 

Oo42 Oo27 Oo49 0 0 -Oo42 -Oa27 -Oo49 0 

Oo64 -Oa 13 -Oo07 Oo27 0 -Oo64 Oo 13 Oo07 -Oo27 

Oo57 -Oo32 -Oo32 Oo09 Oo 1 -Oo57 0032 Oo32 -Oa09 

Matrix of Crossproduct Sums 

x1 x2 X3 X4 y 

100082 Oo 1988 005964 009088 0.8094 

009914 004902 -000002 005046 

009788 003988 003002 

1 .0086 00758 

100158 

Sums of Squares due to Regression on subsets of independent variables 

in fractions of the total sum of squares 

SS {x1} = 006397 SS {x2 ,x4} = 008138 SS {x1,x2,x3} = 009644 

SS {x4} = 005608 SS {x1,x2} = 007627 SS {x2,x3 ,x4} = Oa9194 

SS {x2} = 002528 SS {x1,x3} = 006899 SS {x1,x2,x4} = 008179 

SS {x3} = 000906 SS {x1 ,x4} = Oa6439 SS {x1,x3 ,x4} = 006906 

SS {x3,~4} = 005608 

ss {x2,x3} = 002563 

0 

0 

0 

0 

-Oo 1 



TABLE II Example 2 

Observations 

x, 0071 0 0 0 0 -0071 0 0 0 0 

x2 0 Oo71 0 0 0 0 -0071 0 0 0 

X3 0035 0049 Oo36 0 0 -0035 -0049 -Oo36 0 0 

X4 0028 Oo21 -0057 0.13 0 -0028 -0021 0057 -0013 0 

y 0057 Oo35 -0021 0001 0005 -0057 -Oo35 Oo21 -Oo01 -Oo05 

Matrix of Crossproduct Sums 

x, x2 x3 X4 y 

x, 100082 0 00497 0.3976 0.8094 

...:t x2 1 .0082 0.6958 0.2982 o.497 

X3 0.9844 -Oo0086 005908 

X4 0.9286 007082 

y 0.9882 

Sums of Squares due tc Regression on subsets of independent variables in 

fractions of the total sum of squares 

SS {X1} = 006576 SS {x3,x4} = 009134 SS {x1,x2,x3} = 009947 

SS {X4} = 005466 SS {x11x2} = 0.9055 SS {x1,x2,x4} = 0,9922 

SS {x3} = 003588 SS {x1,x4} = 0.8560 SS {x1,x3,x4} = 0 1 9844 

SS {x2} = 002479 SS {x1,x3} = 0.7079 SS {x21x3,x4} = 0.9713 

SS {x2,x4} = 0.6272 

SS {x2.x3} = 0.3712 



TABLE III Example 3 
Observations 

x, 0.71 0 0 0 0 -0.71 0 0 0 0 

x2 o. 18 o.68 0 0 0 -0. 18 -0.68 0 0 0 

X3 o.42 o.47 0.31 0 0 -0.42 -0.47 -0.31 0 0 

X4 o.46 -0. 12 -0.39 0.36 0 -o.46 0.12 0.39 -0.36 0 

y 0.57 0.29 -0.26 0.07 o. 15 ... 0.57 -0.29 0.26 -0.07 -0.15 

Matrix of Crossproduct Sums 

x, x2 x3 X4 y 

x, 1 .0082 0.2556 0.5964 0.6532 0.8094 

If\ x2 0.9896 0.7904 0.0024 0.5996 

X3 0.9868 0.0318 0.5902 

X4 1.0154 0.708 

y 1 .008 

Sums of Squares due to Regression on subsets of independent variables in 

fractior:sof the total sum of squares 

ss {x1} = o.6446 ss {x2,x4} = o.8482 SS {x1,x2,x3} = 0.9456 

ss {x4} = o.4897 ss {x3,x4} = o.8144 SS {x1,x2 ,x4} = 0.9244 

SS {x2} = 0.3604 ss x1 ,x2} = o.8115 SS {x2,x3,x4} = 0.8711 

SS {x3} = 0.3502 SS {x1,x4} = 0.7011 SS {x1,x3,x4} = o.8164 

ss {x1,x3} = o.6641 

SS {x2,x3} = 0.3950 
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Applying forward selection to the first example we successively 

select x1ix2,x3 ,x4 in the regression equation, and using backward 

elimination we eliminate x4,x3,x2 ,x1 in this order, as may be seen 

from the sums of squares in table Io Both methods thus lead to the 

sequence x 1 ,x2 ,x3,x4, and the 2~subset yielded is {x1,x2}o The 

optimal 2-subset however is {x2 ,x4}o 

In the second example, application of both methods leads to the 

sequence x1 ,x2 ,x3,x4, as again may be seen from the sums of squares 

in table IIo As a 2-subset they yield {x1,x2}; the optimal 2=subset 

contains in this case the other two variables x3,x4o This example 

has another interesting propertyo It might be hoped, that repeatedly 

substituting some variables of a k-subset for some other variables 

in such a way that the resulting k-subset is a better one, would lead 

to an optimal k-subseto This example shows that this is not true, 

because {x 1,x2 } is the best 2-subset that contains either x1 or x2 o 

In the third example both methods lead to the sequence 

x1,x2 ,x3,x4, see table III, and yield {x1,x2} as a 2-subseto Now 

{x2 ,x4} and {x3,x4} are both better 2-subsetso 

3o A general example 

We conclude with an example of a more general natureo We do not 

underline random variables in this section, because all consider­

ations are in terms of fixed values of the observationso 

Let k and m be fixed integers, 1< k< m-1, and let 

Y1,Y2 ,ooo,Ym+ 1 be m+1 orthogonal unit vectors in then-dimensional 

euclidean space (n > m+1) o Define the vectors 

(j=k+2~ooo_,m), 
I 

where n,0,{~ .. } and {w.} are sets of real numbers satisfying 
J.J ]. 



k+1 
I 

i=1 
m 

I 
i=1 

2 2 
£; • • +11 =1 
1J 

2 w.=1o 
). 

1 

(j=k+2,ooo 9m) ( 1) 

(2) 

The vector Y is to be interpreted as the vector of observations on 

the dependent variable Yt and the vectors X1 ,x2 ,ooo,Xm as the vectors 

of observations on the independent variables x1 ,x2 ,ooo 9 xm. 

We introduce the following condition in the above model: all 

vectors Xj-nYj(j=k+2,ooo 9m) are coplanar with the vectors Xk+ 1 and 

w1Y1+w2Y2+oaa+wk+ 1Yk+ 1 , and all these m-k+1 vectors have different 

directionsa Or 

£; • • =Y.w. and ~k 1 .=Y.wk 1+o. 
1J J). + ,J J + J 

(3) 

where {y.} and {o.} are sets of non-zero real numbers satisfying 
J J 

(cfo (1)) 

k 

I 
i=1 

2 y. 2 1 2 
w • + ( ...d w + 1 ) = · -"." n 

1 oj k+1 0 _2 
J 

(4) 

and Ys/o ~ Yt/o for all s~to 
s t 

We now state a theorem for this model, which will permit us to 

draw some pertinent conclusionso 

Theorem~ Let {c. li=1,ooo,k} and {d.lj=k+2,ooo,m} be given sets of 
1 J 

different real numbers satisfying the relations 

k , 
( t c2.)-2 c 1 > c2>.oo>ck > 1 and O< dJ. < 1+ l for all j. 

i=1 1 

(5) 

Let e: and z:.; be arbitrarily small positive numbers { 0 < e:;,z:.; < 1). 



8 

Then it is always possible to find an n > 0 and sets of coefficients 

{w.li=1,ooo,m}, {y.lj=k+2,oom} and {o.lj=k+2,ooo,m} such, that 
i J J 

simultaneously (independent of the value of e ) 

(i) 
w. 

--2::_ = c.(i=1,ooo,k) 
wk+1 i 

M . 
and ~ = d. (j=k+2,o o o ~m), 

u. J 
J 

(ii) forward selection and backward elimination both yield the 

sequence of the independent variables x 1 ,x2 ,ooo,xm in this 

ordert 

(iii) 

(iv) 

the sum of squares 

variables from the 

the sum of squares 

k+1 
I 

i=1 

2 w. > 1-1'; 0 

i 

due to regression on any pair of 

set {xlll=k+1,ooo,m} is larger than 

due to regression on the variables 

We introduce some notationo The scalar product of two vectors 

P and Q is denoted by (P.Q),the space spanned by the vectors 

P1 ,P2 ,ooo,P1 is denoted by [P 1 ,P2 ,ooo,P_;)o For the squared length of 

the projection of a vector Yon some space we write the Solopo of Yo 

Before proving the theorem it is convenient to have the fol­

lowing lemma 1 so 

Lemma 1: Let P,Q,R and S be unit vectors inn-space, and let the 

vector Z be defined by Z=µ(P-nR)+v(Q-nS), where µ,v and n are non­

zero real numberso If (P,R) = (Q,S) = n and (P,S) = (Q,R) = (R,S) =O~ 

then the s cl.Po of Z on the space [P ,~] is larger than 

(Z,Z)-n2 ( /+}) o 

Proof: It is well known, that the Solopo of Z on [P,Q.] is given by 

1 2 { (P, µ( P-nR)+v( Q-ns) )2 +( Q, µ(P-nR)+v( Q-ns)) 2+ 
1-(P,Q) 

-2(P,Q)o(P,µ(P-nR)+v(Q-nS)). (Q,µ(P-nR)+v(Q-nS))} 
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= 

-2(P,Q).{µ+v(P,Q)-µn 2 ).(v+µ{P,Q)-vn2)} 

4 
=µ 2+v2+2µv(P,Q)-2n2(µ2+v2 )+ n {µ2+v2~2µv(P,Q)}. 

1-(P,Q)2 

As (Z 9 Z)=µ 2+v2+2µv{P,Q)-n2Cl+v2), and -1 < (P,Q) < 1, the· desired 

result follows immediately. 

~=~~-~: In the above model, disregarding the relations (3), the 

conditions necessary and sufficient to obtain the sequence of 

independent variables x1 ,x2 , ••• ,xm with both forward selection and 

backward elimination are 

(6) 

(7) 

[w.-
1 

1 

I 
j=k+2 

~ij ] 2 w. 0 [1+ 
n J 

1 
I 

j=k+2 
( ~ij) 2-t -1 > 11)2 

n J l 

(i=1, ••• ,k+1;l=k+2, ••• ,m) (8) 

(j=k+2, ••• ,m;l=0,1 1 ••• ,k). (9) 

Proof: A. Backward elimination 

To obtain the sequence x1,x2 , ••• ,xm we must at each step in the 

process of backward elimination delete the variable with the highest 

index. Suppose at a certain stage we have arrived at the subset 

{x1 ,x2 , ••• ,x1 }. The condition for deleting x1 is, that the s.l.p. of 

Y on l}c1 ,x2 , ••• ,x1_,J is larger than the s.l.p. of Y on the space 

spanned by the vectors {X.lj=1,2 •• ,l;j~i} for every integer i<l-1. 
J -
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1-1 
The Solopo of y on. [x1.x2.00 0 .xl-1] is equal to l i .. because this 

j=1 J 
space is identical with [Y1,Y29 ooo 9Y1_1]o 

We derive the solopo of Yon the second space 9 denoted by v2(i 9l)i 

and discuss three caseso 

A1 o 
2 l 2 2 

Let l~k+1o Then v (i,l)= l w.-w. follows imn.ediatelyo 
j=1 J 1 

A2o 
2 • l 2 2 

Let k+1 < i !,1-1. Then clearly v (1 91)= l w.-w. o 
j=1 J 1 

A3o Let i!, k+1 < lo Without loss of generality we take i=1 o Then 

v2(i 1 l)=(solopo of Yon_ [x2 ,x3,.oo,~+1])+(s.lopo of Yon 

[~ 1 j Y 1 + Y j I j=k+2 • o o o ,l] ) o The first term of the right hand member is 

k+1 
equal to l 

j=2 

2 
W • 0 

J 

To compute the second term we define U=n1Y1+nk+2Yk+2+ooo+n1Y1 as a 

vector orthogonal to the se~ond space onto which Y is projectedo The 

orthogonality relations are n1~1j+njn=O (j=k+2 9 ooo 9m), from which the 

direction cosines of U may be computedo It follows that the distance 

from the endpoint of the vector w1Y1+w~+2Yk+2+ooo+w1Y1 to the space 

It is now an easy matter to obtain the second term, and adding the 

first term we get 

v2(1,l)= r w~- [w,- r .:1.J. wJ 2 • O+ r c.:.11.}2.J-\ 
j=1 J j=k+2 n J j=k+2 n 

2 2 · 2 
The formulas for v (2,1),ooo 9V (k+1 11) are direct analogues of v 

(1,l)o As consequences of A1 1 A2 and A3 combined with the solopo of 

Y on [x1 ,x2 , o. o ,x1_ ,J we find the necessary and sufficient conditions 

( 6 ) 9 ( 7 ) and ( 8 ) • 
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Bo Forward selection 

Suppose at a certain step in the process of forward selection we 

have arrived at the subset {x1 ,x2 , •• o9x1}. To obtain the sequence 

x1 ,x2 ,oooiXm we must now select x1+1 in the regression equation. 

The condition is that the s.l.p. of Y on [:x: 1 ,x2 , ••• ,X1 ,x1+1] is 

larger than the soLPo of Yon [x1,x2 ,.o.,X1 ,x.J for every integer 
1+1 J 

j>l+1o The first quantity is equal to l w~, the second, which we 
. 1 l. 

denote by w2(j,l), we now compute. 
1.= 

B1. Let O _.:: l < k+1 < j, where l=O means that no variable has been 

selected yeto Then w2 (j,l)=(s.lop. of Yon [xpx2 ,ooo 9X1] )+(solopo 

of Yon the vector t1+,,jYl+1+ ••• +tk+,,jYk+l+nYj)= 

l 2 k+ 1 t . . . 2 k+ 1 
= I w. + [w.+ l ...2l.w.] 0 [1+ l 

i=1 1 J i=l+1 n J i=l+1 

B2o Let 1 .:5_ 1+1 < j ~k+1. Then w2{j 91)= 
l 

I 
i=1 

B3. Let k+1 ~ 1 < j-L Then clearly ,/(j 91)= 

2 2 
w .+w .• 

l. J 

1 

I 
i=1 

2 2 
w. +w •• 

l. J 

We see that B2 and B3 do not lead to new conditions other than (6) 
or (7). As a consequence of B1 we obtain condition (9). 

0 < n<(1+max d.)= 1o min {£3/e min ld.-d,I, _3e: mind.lo (10) 
j J i~j l. J j J 

w. 
Next choose a set of ratio's {.......J.... lj=k+2, ••• ,m} satisfying 

wk+1 

1 < wj+1 
wk+1 wk+1 

(j=k+2 9 ooo 1m-1) and 
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w. r ~ ~-
o < ~ < min l . , -----~-~--•-. -} ( j=k+2, o. o ,m) • 

k+1 lm-k-~ 2(m-k}.r1+2/k 
( 11) 

Taking w1 > 0 and using (i) and (2) we find a set of values 

{w.ji=1,oaa,m}, all larger than zero. Taking ally. <O and using (i) 
1 J 

and ( 4) we find sets of values { y. I j=k +2, ••• ,m} and { o. I j=k+2, ••• ,m}. 
J J 

Thus property (i) is satisfied. We will show that the model with 

these coefficients also has the properties (ii), (iii) and (iv). 

a). First we exhibit property (ii). We have to demonstrate that the 

inequalities (6) ,(7) ,(8) and (9) of lenma 2 are satisfied. The in­

equalities (6) and (7) are evident. 

Consider the set of inequalities (9). Inserting (3) in (9) we 

find after some calculations, that (9) is equivalent to 

k+1 2 2 2 2 2 w. 2 
n +y. 1 w.+6.+2y.o.wk 1 > n (__J__) +2no. 

J i=l+1 1 J J J + wl+1 J 

+ 2ny. 
J 

+ 2y.o. 
J J 

w. 
_J_ 

2 
wl+1 

wk+1 
2 

w 
1+1 

We note that 

k+1 2 y. 2 k+1 
1 w. + <~) < 1 

i=l+1 1 

k+1 
1 

i=l+1 

2 
w. + 

]. 

1+1 i=l+1 

2 2 w.) + 
1 

w.wk 1 J + + 
2 

wl+1 

w. 
if --!L... <min {..1... , _n_} 

wk+1 /2 46. 
J 

and 
2 k+ 1 2 y. 2 k+ 1 2 2 

y. }: w. + 2yJ. 6J.wk+ 1 ~ (_;__J_) ( }: w.) + 
J i=l+1 1 wl+1 i=l+1 1 

k+1 
+ 2y.6. 

J J 1 
i=l+1 

2 
w. 

]. 

I y. I 
if lf1 < 2wk+1 ; 

J 

if both conditions are satisfied then (9) holds. 
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w. 1 
Because (11) implies __,il__ < ~-- (j=k+2,o •• ,m), and hencei using 

wk+ 1 ✓ro-k-1 

k+ 1 2 k+1 
( i ) , l w i > k+2 , we find 

i=1 

2)-; 
C. 

l. 

Thus the second condition is satisfied. 

On the other hand (4) and (11) imply 

(12) 

2 2 y. 2 k 2 y. 2 1 k+2 y. 2 1 2 
o. =(1-n ).[(~) I w.+(~ w,+ 1 +1) ]- <-k (~)- = - 2 (1-f-k).(13) 

J u. . 1 1. u. K , u. d 
J 1.= j J . 

J 

w. nd. 
Then we deduce from (11) and (13) -L.< -~:=~= < _!L.. 

wk+1 4/1+27k 4o. 
J 

and the first condition is also satisfied. 

We now turn to the set of inequalities (8). Inserting (3) in (8) 
we see, that the inequalities (8) certainly ho]d for i=1, ••• ,k. For 

i=k+1 they are equivalent to 

2 2 ~ 2 2 2 2 l 2 
n wk+,+(. l (yJ.wk+1+oJ.)w.) > Tl wl+wl l (y.wk ,+o.) + 

J=k+2 J j=k+2 J + J 

1 
+2nwk+ 1 l (y.wk+1+o.)w .• 

j=k+2 J J J 

I I 2 .rm 
Since from (12) yj wk+ 1 < ojwk+,V k+1 <ojt the inequalities are 

satisfied if 

(l=k+2, ••• ,m). 

Hence it is sufficient to show, that 

2 2 2 2 
n ~+1 > n w1 + 2nwk+i 

1 

I 
j=k+2 
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2 1 2 From (11) we have w1 <iii=k wk+1, and from (11) and (13) 

l w. 1 2 1 l 1 
l o. __L < Hm-k)- ( 1+ k)-2 n l d.o. < Hm-k)- (m-k-1 )no 

j=k+2 J wk+i j=k+2 J J 

l 1 2 2 m-k-1 2 2 2 2 r .:_,_,,... 
.,-A,T,c;. 

o.w. <--;- n wk+l+ k J J m-K m- n ~+1=n W:k+1 , 

and the inequalities (8) are satisfied. 

This proves property (ii)o 

b)o To verify property (iii) we apply lemma 1o 

Consider a pair of vectors X ,X , where p,q ~k+2 and p;&qo Inserting p q 
P=Xp, Q=Xq, R=Yp, S=Yq and Z=w1Y1+ ••• +wk+iyk+l in the lemma, it is 

1 y y 1. 1Y y 1 
not difficult to show that µ= T <r -r>- and \I= r(r -r>- O 

p p q q q p 

As the conditions of the lemma are satisfied, we find that the 

Solopo of w1Y1+w2Y2+ooo+wk+lyk+l on [xp,x;i is larger than 

k+l 2 2 2 2 l w.-n {µ +v ). We investigate the last term. From (4) and (10) it 
i=1 1 

is found that 

2 2 y. 2 k 2 y. 2, 1 15 y. 2 LJl. 1 
oj=(1-n )[("t") ) 1wi+(,t»k+ 1+1) J- > Tb[("t") +2 o. +1]- ~ 

J i= J J J 

15 (· )-2 ~1b 1+~xdj • 
J 

(14) 

Using (14) and (10) we have 

n2(µ 2+})=n2(..l. + ...!..)(2i_ - !_g,)-2 <~ n2 [1+ max d;] 2 • 
02 02 o o 15 J. J 
p q p q 

0 [ min ( d . -d . >2.J -1 < £ • 
i;&j l. J 

Hence the s.l.p. of w1Y1+w2Y2+ ••• ~+1~ 1on[Xp,xq] is larger than 
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k+1 
1 2 

w. - e:. 
l. 

A forteriori this inequality holds for the s.l.p. of Y 
i=1 

on [xp,x;i, and property (iii) is proved for every pair of variables 

from the set {xlll=k+2,ooo,m}. 

Now consider the pair of vectors ~+1,x1 , where l> k+1. Then the 

s.lop. of Y on [~+1,x1] is equal to 

k 

1 
i=1 

2;1 -1 t. = 
l. 

=w!+1+G1 
k 

2 ~2 [i 2 2 
k 

;J-1 1 wi+nw • _n +y1 1 w = 
i=1 i=1 l: 

k+1 k k 2 [n2 
k 2 2 2 ~ [ 2 2 ;J-1 = 1 w.- l w.+2n I Y1lw1 r wi-n w1 • n +y1 1 w > 

i=1 l. i=1 1 i=1 i=1 l: 

k+1 
> 1 

i=1 

But from (i), (14) and (10) we have 

2 
, and thus T 

Y1 

Using these inequalities we find, that the s.l.p. of Yon [~+1,x1] 

k+1 
is larger than l 

i=1 

2 w.- e:. This completes the proof of property (iii). 
l. 

c). Property (iv) is almost trivial. From (11) we have 

m k+1 2 
w.<✓in-'-1 wk+1 (j=k+2, ••• ,m), hence . l w~ <r,;, and so l w. > 1-r,;. 

J J=k+2 J i=1 1 

Remark: The orthogonality of the vectcrs x 1 ,x2 , ••• ,xk+l is not an 

essential feature of the general examfle, and was only introduced to 

get tractable inequalities. 
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From the theorem we derive, that for suitable values of the 

coefficients in the model both forward selection and backward 

elimination lead to the sequence of independent variables 

x 1,x2 ,ooo,xm, while at the same time all k-subsets containing at 

least two variables from th~ set {x1 1l=k+1,ooo,m} are better 

k-subsets than {x1 ,x2 ,ooo,~}, since their sums of squares due 

k+1 2 k 
to regression are larger than I w.-E> I w~ (for a value of 

i=1 1 i=1 1 

k 
£ smaller than ( 1-~)o(1+ I 

i=1 

there are at least 

2)-1) c. o It follows that in this case 
J. 

k-subsets better than the k-subset yielded by forward selection and 

backward eliminationo If m=10 and k=3, this means that from the 

totality of ( 1i)=120 3-subsets there are at least 98 3-subsets better 

than {x 1 ,'x2 ,x3 }. 

In practice it is not only important how many k-subsets may 

exist which are better than the k-subset we choose, but also how much 

better they may be. We define the amount, by which a k-subset 1s bet­

ter than another k-subset, as the difference between the sums of 

squares due to regression on the first and the second subset, divided 

by the total sum of squareso In the numerical examples discussed in 

section 2, the amount by which other 2-subsets were superior to 

{x 1 ,x2 } was not very substantial. The following corollaries to our 

theorem show, that the situation may te much worseo 

Corollary_1: For appropriate values of the coefficients in the 

general example, all (~)-k(m-k)-1 k-subsets, which contain at least 

two variables from the set {x.lj=k+1jo,.,m}i are better than the 
J 

k-subset {x1,x2 , ••• ,~} yielded by forward selection and backward 

elimination by an amount arbitrarily clos7 k:, • 

Proof: In the theorem choose c~=1+ 2: E(i=1,.o.,k), so 
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k+1 
1 

= ..,.(-k+__,1 )...,(,...1_+_e:...,) I 
2 1 , _, 

w >-•-i k+1 1+e: • From (iii) we have, that the 
i=l 

amount, by which the (m)-k(m-k)-1 k-subsets containing at least two 
k 

variables from the set {x1 I l=k+1, ••• ,m} are better than {x 1 ,x2 , o •• ,~}, 

2 
wk+1-e: 

is larger than ,.., >- C 

1+6c. k+1 

Because e,e: and , may be taken arbitra.rily small, the corollary 

follOWSo 

Corollary_g~ For appropriate values of the coefficients in the general 

example, all (:)-(m-1~ (k:l )-(!) k-subsets, which contain at least 

two variables from the set {x -1 j=l+1, ••• ,m}, are better than the k-sub­
J 

set {x1 ,x2 , ••• ,xk} yielded by both forward selection and backward 
· · · · . l-k+1 ( ) elimination by an amount arbitrarily clcse to l+ 1 k~l<m-1 • 

Proof: Apply the theorem with 1 instead of k. Define 

cf=1+ 2; 
2 1 

1+1 2 1 ,_, 
e: Ci=1, •• o,l), so wl+1 =- I w. >-. 0 

(H1)(1+e:) i=1 i 1+1 1+e: 

Then we have from (iii), that all 2-subsets contained in the set 

{x.lj=l+1, •• o,ml are associated with sums of squares due to regression 
J 

larger than 

1+1 
I 

i=1 

2 
w.-

i 

k 
e:> I 

i=1 

2 l-k+1 
w. + ---

i 1+1 

,_, 
• - - e:, and the corollary followso 

1 +e: 

Corollary_3: For appropriate values of the coefficients in the 

general example forward selection and backward elimination, though 

identical, do not produce one optimal subset, except for the trivial 

cases of the 1-subset and (m-1)- subset. 

Proof: Apply the theorem with k=m-2 and sufficiently small e:. 

We illustrate the corollaries with two:numerical examples for the 

case m=10 and k=3. 
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From corollary 1 we know, that for suitable values of the 

coefficients 98 3-subsets exist better than {x1 ,x2 ,x3 } by an a.mount 

close to 1/40 In table IV a matrix of crossproduct sums is given 

with these propertieso We only give the sums of squares, divided by 

the total sum of squares, due to regression on the 21 2-subsets 

present in the set {x.lj=4,.o.,10} because the 3-subsets containing 
J , 

such 2-subsets can only have larger sums of squareso 

In table Va numerical example is presented illustrating 

corollaries 2 and 3o Note that the optimal 2-subset {x9 ,x 10 } is 

better than the 2-subset {x 1 ,x2 } yielded by forward selection and 

backward elimination by an amount 0?7513. The only optimal subsets 

yielded by both methods are {x1} and {x 1,x2 , ••• ,x9 }. Applying forward 

selection or backward elimination one would have to include 8 or 9 

independent variables in the regressicn equation to get a good fit 

of the data, although the subset {x9 ,x10 } does the job as well. 

4. Conclusion 

Reviewing the results, we see that a class of examples can be 

constructed where forward selection and backward elimination do not 

lead to optimal k-subsets, even if both methods yield identical 

sequences of the independent variables. The k-subset they produce can 

be a bed one in a quantitive sense, that is, there are many better k­

subsets, as well as in a qualitive sense, that is, there exists at 

least one k-subset that is very much better. Furthermore it is possible 

that both methods, though identical, do not lead to optimal k-subsets 

for any k except k=1 and k=m-1 o In son::e cases it is possible to 

detect such anomalies by inspection of the correlation matrix~ a 

highly intercorrelated subset of indeiendent variables which appear 

in the regression equation only at a later stage, may be a sign of 

misbehaviour. 

However, in our opinion a better and yet not too troublesome 

method will be hard to find, because such a method should essentially 

use the correlations between all variables at every stage of the 

process. 



0\ .-

TABLE IV Example 4 
Matrix of Crossproduct Sums 

x1 x2 x3 X4 x5 x6 x7 x8 x9 x10 y 

x1 1 0 0 0 -00493122 -00437261 -00370512 -00109394 -00289304 -00 199584 00501498 
x2 1 0 0 -00491649 -00435955 -00369406 -00109067 -00288440 -0o19898c 005 
X3 1 0 -00491158 -0.435519 -00369036 -0o 108958 -00288151 -00198789 00499500 
X4 1 00523055 00654814 00767974 00981823 0.865902 00938490 00498989 
x5 1 0.986372 00947273 00674630 0.878915 00784771 -0.477433 
x6 1 00986656 00785746 00944747 00875133 -00328035 
x7 1 0.875045 0.985070 00941552 -Oo 171614 
x8 1 00944666 00986627 0.326121 
x9 1 00985058 -0.001142 
x,o 1 0.169433 
y 1o01 

Sum of squares due to Regression on the 3-subset yielded by forward selection and backward 
elimination as a fraction of the total sum of squares 1.01~ 

SS {x 1 ,x2 ,x3 } = 0.74356, 

Sums of Squares due to Regression on 21 different 2-subsets in fractions of the total sum 
of squares~ 

SS {x4 ,x5} = 0,98974 SS {x6 ,x8 } = 0.98874 SS {x5 ,x7 } = 0098520 SS {x5 ,x6} = 0097248 

SS {x4,x6 } = 0098966 SS {x4,x 10 }= 0.98820 ss {x7 ,x10 }= 0.98516 ss {x9,x,o}= 0097105 

SS {x4 ,x7 } = 0098950 SS {x5 ,x9 }= 0.98782 SS {x8 ,x9 }= 0.98507 SS {x7 ,x9 }= 0,97104 

SS {x5 ,x8 } = 0.98920 SS {x7 ,x8 }= 0098780 SS {x6,x9 }= 0098501 ss {x8,x,o}= 0097004 

SS {x4 ,x9 } = 0.98917 SS {x6 ,x 10 }= 0.98778 SS {x4 ,x8 }= 0.98393 SS {X69X7 }= 0,96993 

SS {x5,x10 }= 0098876 
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x, 
x2 
x3 
X4 
x5 
x6 
X7 
x" 8 
X9 
xrn 
y 

TABLE V Example 5 

Matrix of Crossproduct Sums 

x, x2 X3 X4 x5 x6 x7 XB x9 x10 y 

1 0 0 0 0 0 0 0 0 -00209081 00343511 
1 0 0 0 0 0 0 0 -00207302 00340588 

1 0 a 0 0 0 0 -0.205507 00337639 
1 0 0 0 0 0 -00203696 0.334664 

1 0 0 0 0 -00201869 00331662 
1 0 0 0 -00200950 00330151 

1 0 0 -00200026 0.328634 ' 
1 0 -0. 199097 00327109 " 

1 0.816275 00325563 I 

1 -0.278242 
'1.01 

Sum of squares due to Regression on the 2-subset {x9 ,x10 } as a fraction of the 
total sum of squares 1 • 01 ~ 

ss {x9 ,x10 } = 0.98298. 

Sums of squares due to Regression on the subsets yielded by forward selection 
and backward elimination in fractions of the total sum of squares: 

SS {x 1 } =0.11683 SS {x 1 ,x2 ,x3,x4.x5} = 0.56436 

SS {x 1 ,x2} = 0.23168 SS {x 1 ,x2 ,x3,x4ix5,x6} = 0067228 

SS {x 1 ,x2 ,x3 } = 0034455 SS {x1,x2 ,x3 ,x4,x5,x6,x7} = 0.77921 

SS {x 1 ,x2 ,x3,x4} = o.45545 

SS {x 1 ,x2 ,x3,x4,x5,x6,x7,x8} = 0088515 

SS {x1 ,x2 ,x3,x4,x5,x6,x7,x8,x9} = 0099009 

SS {x 1,x2 ,x3,x4,x5,x6,x7,x8,x9,x 10 } = 0o9901C 
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