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Ballot Problems

Summarz

In each of the sections 1 and 2 an extension is presented of a
well=known result on Ballots, the CHUNG=FELLER theorem.

In section 3 two recurrence relations are obtained for the
number of paths that do not overshoot a monotone but otherwise

arbitrary boundary function.

0. Preliminaries to sections 1 and 2.
In a ballot with two candidates A and B, let the total number

of votes for A be denoted by a, and the total for B by b. It will
a+b
b

always be assumed that each of the ( ) possible arrangements of the
a+b)—1

b o

Let am be the number of votes for A after m votes have been count-

votes has probability (

ed, and let bm=m-am°

The counting process can be completely described by a path in a
two-dimensional lattice of points (x,y) where x and y are non-negative
integers. To be explicit: the situation a =X, bm=y is represented by
the point (x,y). Consecutive points are joined by line segments, which
will be termed sides of the path.

In section 1 and 2 we will consider, roughly speaking, the distri-
bution of the number of steps above a given Line, which is either the
line x=y, or the line bx=ay. These lines will be denoted by L and D,
respectively. When a=b, L coincides with D, and for this case FELLER
and CHUNG [f] proved that the number of paths with exactly 2j sides
above L is equal to

— (B (§=0,...,a) (1)
independent of j. In section 1, the distribution of the number of sides
above L is derived for the case a>Db.

When, instead of L, the line D is considered,; we have the difficul-
ty - that a side of the path may be only partly above D. It will be
shown in section 2 that, when bla (and, of course, also when a\b), the

length of the path above D has a homogeneous distribution.
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1. First extension

The problem of determining the distribution of the number of sides
above L is mentiocned, in a slightly different formulation, in Eﬂo
It can be solved by a method, that has also been used by WHITWORTH l3l
for similar questions.

It can be assumed without restriction that a >b. Let Nj(a,b) be the
number of pathsthat have exactly 2J sides above L.

Consider all paths for which (i,i) is the last point in common with
L. Then, from (0,0) to (i,i) there are T%T %g) paths with exactly 2]
sides above L (provided j<i). From (i,i) to (a,b) there are

E%%§§T (a;EZ2i) paths that have no point in common with L, according
to a classical ballot formula. Finally, the total number of paths that
have exactly 2j sides above L is obtained by summing the product of the
two above-mentioned expressions over all admissible values of i, that

is: from j to b, inclusive. Hence

b : .
_ 1 21 a=b at+b=21
N, (a;b)= iZ. T i) et Cpeg ) (2)

J

Putting j=0 in (2), an alternative expression is obtained for the

number a;i?b (a;b) of paths with all sides below L, and we have the
identity

.ti 1 (2i) a=b (a+b=2i)= a+1=b (a.+b) (3)

520 i+1 "1 a+b=21 ° b-i at1 b *?

which will be of use in the next sub=-section.

1.1 Asymptotic properties of N.(a,b)
o
The probability pj(a,b) that a randomly chosen path has 2j sides

above L is is given by

pi(a,b)= N (a,0)- (%) (1)
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We will let a and b tend to infinity in such a way that %-tends
to a constant value A > 1, The corresponding limiting values of
pj(a,b) will be denoted by pj(A)°

From (2) and (3) it follows that

J=1 . .
. rati- -b +b=2 +b., =1
p.()\)= 1 {a 1 b 2 _’1;1_ 21 a (a b l) (a ) } =

i a+b-21 ' b-i b

_Azl Al JE 1 (2iy qqp a8l bt (a+b=2i)!
TR Ly THT (a-1)7 To-1)7 ~(a+b)? ’
whence
() A=1  A=1 J§1 1 (21) { A } i (5)
P- A)= —— - T e . e 5
J )\ +1 i=0 l+1 1 (>\+1)2

A slightly different formula for pj(k) may be obtained as follows.

The series

(3h) xle(1-bx) "2

o8

is uniformly convergent when |x[§|£|<%, so it may be integrated term

by term:
o 3
1,24y i _ 1-(1-kx)
Lo (0) ¥ =—% (6)
0
. _ A . 1)
If we substitute x= —— into (6), we see that
(A+1)
T 1 28 A i A+
L7 () ==} =5, (7)
0 i+1 1 (A+1)2 A

(A1) 2O V(2=1)
2X

A > 1, and A+1 when O0< X <1, This explains the"contradiction" that,
for A=0, the left side of (7) is convergent, whereas the right hand
side is infinite.

. . A+
s which 1s =<s— when

1) Actually, the result is :



=l
2)

whence

p. (1) Ao

1 21y 1 A i
J A+1 7)) {_—_n-§} (8)

.1+l 1 (A+1)

=8
il e~18
[}

In order to determine the generating function of pj(A),

Plx,\)= § p.(A)xj (9)
j=o 7

first consider

()= (B 2

1
. s (10)
1 i+l "1 (A+1)2

The quickest way to find Q(x,A)= Zqi(k)xl is to replace x in (6) by
Ax

e .
()2 ()Y O1) P elax

Q(xs)‘)_
2\x

(11)

Using (8) and a derivation similar to that in [4], p.249, it fol-

lows from (11) and the relation between pj(l) and qj(k) that
TR

(A-1)v4x+1)2-hxxm(x-1)2
M (1-x)

P(x,A)= (12)

P(x,\) may be written as a power series in 1-x:

2 2 . . / .
P(x,\)=1= *(1“x; + 22 (1‘3) —eob(=1)? ?%T(%;) AA&:&% i
(x=1) (A=1) (2=1)
(13)
From (13) it follows that P"(1,))= A s 1.€. in the limiting
2
(x-1)

case, the average number of sides above L is

M(2)= —2A (1)

(A=1)2

2) I am indebted to Mr. W. van ZWET who pointed out an error in an
earlier version of the proof of (8), and suggested some ways of
improving it.



1.2 Some numerical results

For finite a and b, a> b, the average number of sides above L is

b . .
Ma,b)= | i(5) =252 (3T°2h) (107 (15)
1

as can be easily verified from (2).

With the aid of (15), M(2b,b) has been computed for some values
of b, The results are presented below. For b3 8, the X1 computer has
been used. It is seen that the convergence to the limiting value L

is very slow,

b [ M(2b,Db) b | M(2b,b)
10,6667 8 12,1680
2| 1,0667 9 | 2.2681
311.3571 10 | 2,3568
4 11,5838

51 1.7682 17 12,7805
6| 1.9224 25 | 3.0512
T 12,0534 Lo | 3.3259

Table 1

M(2b,b) for some values of b

2, Second extension.

As stated before, is this section we will consider the distrib=-
ution of 1, the length of the part above D of a randomly chosen path.
Let us first look into the values that can be taken on by 1 for

arbitrary integers a and b. It is easily shown that

k(a+b)

P[;éi] >0 implies 1= b

where [é,ﬁ] is the l.c.m. of a and b, and k is integer with
0gkg [a,b:[o Consider fig. 1.
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Figure 1

The part above D of any path may be divided in pieces that lie entirely

above D, except for their end-points. The length of such a piece equals

qRras=j- 2+ B - i = (avd)(d - 2),

where i and J are the coordinates of Q. Multiplication of the second

factor by E?;i] yields an integer, hence QR+QS can be written in the

form Ei&ig— , and the same is true for the sum of a number of these

[a,tﬂ

lengths.
It follows that in the special case b[a the possible values for
a+b a+b a+b .
lare O, =— , 2. == ;00058 = In this case, for a randomly chosen

path, each of these values has probability Z%T o The proof, an outline

of which will be given below, is along the same lines as that by
HODGES [5] of the CHUNG-FELLER theorem. Instead of 1 the variable k,
as defined above; will be used.

The basic idea is to prove the existence of a one-to-one mapping
of paths with k=k > 0 onto paths with k=k-1. Consider an arbitrary path
with k=k > 0. Let P be the first point (excluding the origin) on the
path which either lies on D, or has the property that the side starting

1)

at P has an intemior point in common with D . There are two cases to
be considered:
I The path has points above D between P and (a,b)

II Between P and (a,b) the path is entirely below D.

1) From bjla it follows that P is necessarily below D in the latter

caseo.
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In case I the mapping is as follows: between the origin and P the
path is left as it is; on the part between P and (a,b) the mapping
is again applied . This inductive definition may cause difficulties
only when P is strictly below D, as in fig 2. In a situation like
this the mapping be applied as if D had a pit near P, as indicated
in fig 2.

Figure 2

In case II the first side of the path can only be vertical,
and the side that has P as its end-point must be horizontal. Also,
P lies on D in this$ case. Hence, using a self-explanatory notation,

the path is of the form vW_ hW_, where P separates h and W,. The mapping

changes this into hwszﬁo ;t iemains to be shown that eviry path
with k >0 has a uniquely determined image, that the length is always
diminished by 1 (in terms of k), and that the inverse image exists
and is unique. We will not enter into the details, except for noting
that an additional complication, as compared to the case a=b, is to
prove that when II applies, W, has no points below D after being inter=-

changed with W

1
5

When neither of a and b divides the other, the distribution of
k is no longer homogeneous (in general), and very little more can be
said. It is to be expected from GROSSMAN's formula R (cf [6]) for the
number of paths that have no ﬁoint above D, that the answer will be
complicated. In the case: a 1s odd, b=2, the distribution is a mixture

of "triangular" distributions, as exemplified by fig 3. This can be

1) Proved by BIZLEY [7].
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K> Fig. 3 P[k=k] for a=T, b=2
shown by considering k as a function of the places of the (two)

vertical sides of the path.

3. Two recurrence relations

Let fo,fi,oo; be a non-decreasing sequence of positive integers,
and let N be the number of paths from (0,0) to (rgfr) with the
property that (rsfr) is the first point (i’fi) on the path. Such

paths will be called permitted paths to (rgfr)o For r+fr the

abbreviation hr is used.,

Theorem 1, N satisfies the recurrence

e e r
h\ = hruh;>
Nr \r ) izo r-i Ni (16)

h
Proof. The number of all paths to (r,f ) is( rr> . The non-

permitted paths may be distinguished by the first point (igfi) on it,
hy=h: ,
r ;) , and the theorem follows.

The number of such paths is Ni times
Perhaps less trivial is the following

Theorem 2, N satisfies the recurrence

r

r . f.

y (_‘z)lni rii =0 (r>0) (17)
i=0



9=

Proof. Consider the right hand end points of the horizontal
steps of a path. These points constitute a non-decreasing function
Vs defined on {1,..0,r} Yo is defined as 0,

For a function corresponding to a permitted path we have

y. <f. i=13000,T (18)

i 1=-1°2

We now define a more general type of functions, viz. functions

that satisfying (18) and

V€Y, Sooo <Y (19)

Y52 Vspq 700>y (20)

for some value of j. These functions will be termed j-sequences.
Let Aj be the number of j-sequences (r is fixed). As y0=0 cannot
0 .
Now both the j-sequences and the (j+1)-sequences have properties

(18),(19), and

exceed Yqs we have A =0, Also,Ar=Nre

Ysu1 >yj+2’>ooo Y. (21)
Conversely, a function satisfying (18),(19) and (21) must be either
a j-sequence or a (j+1)-sequence. The number of functions having

. . f.
properties (18),(19) and (21) is equal to Nj J'> , the second factor
r-j

being the number of ways in which the r-J values yj+1,ooo,yr can be

chosen to satisfy (21) and Vs =<fJo Hence

(T_J> Asth., (22)

From (22) it follows that

J Nd(fi)= rf‘ (=1)3(a 4, =0T =(-1)"" v (23)
r"J J'=O J J+1 r r
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and theorem 2 is proved.

Application:
The classical ballot problem of "weak sense lead throughout”
is equivalent to the case fi=min(i+1,b+1) where b is the number

of votes obtained by the loser. If both candidates obtain the same
1 2i
number of votes, N.= == (<)

i s Whence the identity
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