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Summary 

This report consists of two parts. In the first part a com

binatorial proof by HODGES of the symmetric version of the CHUNG

FELLER theorem will be used to extend this symmetric case in such a 

way that the homogeneity of the distribution concerned is preserved. 

In the second part some relations are given for the number of 

paths below an increasing but otherwise arbitrary function. If this 

function is linear, a result is 

a formula by POLYA for the sum 

obtained that is 
00 
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closely related to 
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1. In a ballot with two candidates A and B, let the total number of 

votes for A be denoted by a, and the total for B by bo It will always 

. (a+b) f t be assumed that each of the b possible arrangements o the voes 

has probability (a+b) -l 
b 

Let 

counted, 

The 

a be the number of votes for A after m votes have been 
m 

and let b =m-a o 
m m 

situation (a , b) may be represented by a point in a two-
. m m 

dimensional lattice of points with integer-valued non-negative co

ordinates. A lattice point that corresponds to a situation occurrigg 

during the counting will be called a vertexo Consecutive vertices may 

be joined by line segments (sides) to form a path from the origin to 

(a,b) representing the countingo The line y=cx will .be denoted by 

L(c) o It will be assumed that a~ b o 

CHUNG and FELLER [1] have determined the distribution of~. 

the number of sides above L(l) of a path chosen at randomo In our 
1) 

notation their result is: if a} b, then 

b 
(1) [ 

i=j 

and if a=b, then 

(2) 

1 (2~) a-b 
i+l i a+b-2i 

(j=0, o •• , b) 

(j=0, o o o , b) 

The original proof by CHUIIG and FELLER, which is rather complicated, 

has been simplified considerably by HODGES [2] who gave a combinatorial 

proof of (2)" Once (2) is known, it is not difficult to find (1), 

hence an elementary proof of (1) can be given. 

In the next section it will be shown that (2) can be extended in 

such a way that the homogeneous distribution is prese:irvedto· .. 

1) The restriction "a+b even",, made by CHUNG and FELLER presumably to 

keep their formulae simpler, has no influence on the form of (1) 

in the present notation, and can be droppedo 



3 

1.1 Instead of L(l), we will now consider the line L(bta)=D. There 

are several ways of generalizing the variable "number of sides above 

L(l)" to a quantity that can be used in the present case. We choose 

the length it above D of the path. 

Let us first look into the values that can be taken on by k for 

arbitrary integers a and b. The part above D of any path may be 

divided in pieces that lie entirely above D, except for their end

points. The length of such a piece (cf. fig. 1) equals 

QR+ QS = y - b: + a~ - x = (a+b)(t - ~) 

where x and y are the coordinates of Q. Multiplication of the 

y 

X 

Figure 1. 

second factor by[a,b]•(the least common multiple of 

an integer, hence QR+ QS can be written in the form 

is an integer, and the same is true for the sum of a 

a and b) yields 
j (a+b) . 

Gi,, bJ where J 

number of these 

lengths. By considering the extreme values of the length above D of 

a path one then sees that 

implies j(a+b) . ·c J 
k = [a, b] , 0 ~ J l, a, b . 

From now on, we will confine ourselves to the case where a is a 

multiple of b. The possible values fork are now restricted to 0, 
a+b a+b a+b 

a 2 a''"' a. a 
In this case, for a path chosen at random, each of these values has 

1 
the probability a+l . The proof, an outline of which will be given 

below, is based on that by HODGES for the symmetric case of the 

CHUNG-FELLER theorem. Instead of k the variable 1, as defined above, 

will be used. 
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. 1) 
The basic idea is to prove the existence of a one-to-one mapping 

of paths with 1 = j) 0 onto paths with 1 = j-1. Consider an arbitrary 

path with 1 = j > 0. 

Let Sand R be vertices of this path such that 

(a) Sis the last vertex above D, 

(b) R is the last vertex preceding S that lies on or below D, 

The existence of Sis ensured by j) O, the existence of R is trivial. 

Let P1 be the path from the origin to R, P2 the path from R to S, 

and P3 the path from S to (a,b). The mapping then changes P=P1 P2P3 in

to P'=P1P3P2 , as exemplified by fig. 2. 

P2 
/ 

V 
..,,,. V 

V 
V' 

pl / 

V 
V P3 

Original, j_=5 Image, j_=4 

Fig. 2. 

It remains to be shown that the length of a path is always 

diminished by 1 (in terms of j), and that the inverse image exists and 

is unique. 

The first assertion can easily be verified by considering the 

first sides F 2 and F 3 of P2 and P3 , respectively. F2 is a vertical side, 

and the length of its part above Dis diminished by an amount~ by the 
a 

mapping. F3 is a horizontal side above D, and its image lies below D, 

After verifying that the points of P2 not belonging to F 2 remain 

1) Thanks are due to Dr. W.R. van ZWET who observed that in my 

adaptation of HODGES' proof, the inductive definition of the mapping 

could be simplified to the present one. 
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above D, one concludes that k is diminished by 1 + E., and hence j by 1. 
a 

The proof of the existence and uniqueness of the inverse mapping 

is easy , but tedious, and will be omitted. 

When neither of a and b divides the other, the distribution of 1 
is no longer homogeneous (in general), and very little more can be 

said. It is to be expected from GROSSMAN's formula l) (cf [3]) for 

the number of paths that have no point above D, that the answer will be 

complicated: In the cases: a is odd, b=2, the distribution is a mixture 

of "triangular" distributions, as exemplified by fig. 3. 

* ...... / -- ' 
.,, 

' 
/ -...... .,, ,,, 

' it 
/ 

..... ..... ' 
.,, 

-...,.,, .,, ..... ,,, 

P[l=j]: 
;x. 

..... / 
.._ 

, / .... .,, 

() I fl "3 4 5" 6 7 fi 9 lo I/ 1.2 13 JI/ 

j - Fig. 3 

P[l = j] for a = 7, b = 2. 

1.2 It may be noted here that one of the distributions that TAKACS has 

determined in his article [s] is also a homogeneous distribution. His 

result is as follows. 

Suppose a = .,,M- b + 1, where fo is a positive integer, and let P. be 
J 

the probability that the inequality a )/4 b holds for exactly j values 
r r 

among r = 1, ... ,a+b. Then 

1 
pj = a+b ' j = 1, ... , a+b 

1) Proved by BIZLEY [4]. 
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2. Let f 0 , f 1 , ... be a non-decreasing sequence of positive integers, 

and let N be the number of paths from (0,0) to (m,f) with the property 
m m 

that (m,f) is the first 
m 

point (i,f.) on the path. Such paths will be 
l. 

called permitted paths to (m,f ). Form+ f the abbreviation h is 
m m m 

used. 

Theorem 

(3) 

N satisfies the recurrence 
m 

m 

[ 
i=O 

(f.) N ... 1 . = 0, 
i m-1. . 

(m ) 0) 

Proof. Consider the right hand end points of the horizontal steps 

of a path. These points constitute a non-decreasing sequence of non

negative integers y. (i=l, ... ,m). 
l. 

For a sequence corresponding to a permitted path we have 

(4) y. < f. 1' l. 1.-
i = 1, ... ,m 

We now define a more general type of sequences, viz. sequences of 

non-negative integers that satisfy (4), y0 = 0, and 

(5) 

(6) 

Yo~ Y1 t· 
yj ) Yj+l) 

for some value of j. These sequences will be termed j-sequences. 

Let·A be the number of j-sequences (mis fixed). As y = O cannot j . 0 

exceed y1 , we have A0 = O. Also, 4 = N. 
,m m 

Now both the j-sequences and 1 the (j+l)-$~quences have properties 

(4), (5), and 

(7) Y-1)Y-2) ... )y J+ J+ m 

Conversely, a sequence of non-negative integers with y = 0, satisfying 
0 

(4), (5) and (7) must be either a j-sequence or a (j+l)-sequence. The 

number of sequences of non-negative integers with y = 0 having 

properties (4), (5) and (7) is equal to N.(fj .), th~ second factor be
J m-J 

ing the number of ways in which the m-j values y, 1 , ... ,Y can be 
J+ m 

chosen 'to satisfy (7) and y, 1 < f .. Hence 
J+ J 
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From (8) it follows that 

m-1 m-1 
[ I 

j=O j=O 

and the theorem is proved. 
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( -l)j (A A ) .+ . 1 
J .J+ 

= (-l)m-1 A 
m 

= (-l)m-1 N' 
m 

2 .1 As an application consider the classical ballot problem of "weak 

sense lead throughout". This is equivalent to the case f. = 
1 

= min (i+l, b+l) where bis the number of votes obtained by the loser. 

If both candidates obtain the same number of votes, N. is equal to 
1 

1 
(~i)' and have the identity 

i+l 
we 

1 

r (-l)i (2~)(i+~) t ~ = 0 (r > 0) 
i=O 

1 r-1 

2.2 N also satisfies the relation 
m 

N = \hm) 
m.:.1 

em - ~i) (9) - [ N. 
m m 

i=O 
m 1 1 

The proof is immediate: the number of all paths to (m, fm) is (h:). 

The non-permitted paths may be distinguished by the first point (i, f.) 

(h - h·) 1 
on it. The number of such paths is Ni times : _ i 1 , and (9) follows. 

2.3 By induction it can be proved that 

(10) N = 
m 

[ 
,J:;(m) 

., .... 

where the sum is over all compositions (ordered partitions) J::, (m) of m; 

c 1 , c 2 , ... are the parts of the composition, k(.t) is the number of 

parts. 

Defining 

00 

(11)' Jrct> = [ 
m=O 
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