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First flraft: On the use of the method of collective marks 

in queuing theory 

by J.Th. Runnenburg., University of Amsterdam 1 ) 

The method of collective marks was introduced in Van 
Dantzig (1947., 1948} and applied by him and his pupils to 
derive generating functions by means of probabilistic inter
pretations. In queuing problems the method has been used in 
Kesten and Runnenburg (1957}, Bloemena (1958} and Runnenburg 
(1958). Because the method is only known to very few people, 
it seems very desirable to use the present opportunity to in
dicate what can be done with it. The main advantage of the 
method is, that it supplies a simple approach to simple pro
blems and gives some insight as to why <:I~fferent problems have 
nearly the same answer. Moreover, one always knows what is hap
pening from the probabilistic point of view. 

In this paper a number of known results are again derived, 
but here we use each time a suitable interpretation to get 
quickly at the desired generating functions. In order to do 
that we have to generalize the original problems somewhat. Two 
methods are used to this end: 

I. We put a . .mark on customers. Each customer has probability 
1-X of being marked and probability X of remaining unmarked. X 
may have any value in the interval [ O, 1] . Customers are marked 
independently and the marking is independent of the (original) 
process st-udied. With this marking we derive generating func
tions with X as generating variable. By analytic continuation 
our results can be extended to hold for complex X with \ X l ~ 1 

as well. We say: a) "no CX present at 2 ) in" to describe the 
event that none of the customers present at time .in is marked, 
b) "no Cx in w" to describe the event that during the inter-

. --n th 
val of time then customer is waiting no marked customers 
arrive (the nth customer himself is excluded). 

1) Report S 327 of the Statistical Department of the Mathe
m9:tical centre. 

2) Random variables are underlined. 
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II. We consider-an~extra_Poisson process producing catastrophes. 

This process has parameter ~ (sometimes two independent Pois

son processes with parameters} and~ are used at the same 

time) and does not depend on the (original) process studied. 

Here of necessity we have ) ~ O, but our results can be ex

tended to hold for complex! with Re)~ 0 by analytic contin

uation. We say: "no C11 in w" to describe the event, that 
l -n 

during the interval of time the nth customer is waiting the 

Poisson process does not produce a catastrophe. 
We do not intend to give a theory, but show our point 

of view by treating examples, which can be confronted with 

the existing literature. 

Example 1: Infinitely many counters 

At time O there are k customers present at infinitely 

many counters. New customers arrive in a Poisson stream with 

parameter A and all servicetimes are exponentially distri

buted with parameterµ.. All arrivalintervals and service

times are independent. We write p (t) for the probability, n 
that exactly n customers are present at time t and ask for 

OJ 

p ( t, x ) = ~ p n ( t ) xn . 
n=O 

( 1. 1) 

Customers are considered marked in accordance with 

method I. Hence each has probability X of being unmarked. 
Clearly p(t,X) is the proba~ility, that there are no marked 

. )n 
customers present at time t. With probability e-~t (~f 
exactly n customers arrive in the timeinterval (O,t]. The 

moments of arrival of these customers may be regarded as 
' 

independent drawings h 1,h2 , .•• ,hn from a rectangular dis-
,tribution over ( O, t] under the condition that there are 

exactly n. Hence each of these customers has probability 

f } 1-e-µ.t 
( 1.2) 1-( 1-X)Plh+s>t = 1-( 1-X) JJ.t 

of not being a marked customer present at time t. Here h 

ands are independent with 

( 1. 3) 'P{h~h}=~forO~h~t, P{~~s}= -;J.S 1-e for s ~o. 
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A customer present at time O is with probaQi~ity. 

( 1. 4 ) ";-( 1-X) P { §. > t } = 1- ( 1-X) e::-,.u.t 

not a marked customer··present at time t. But then 

( 1. 5) 
-.ut 

1-;_t )n(1-( 1-X )e -pt )k. p(t.,X3 = f e-Xt {Xt~n ( 1-( 1-X) 
n=O n. 

: •. : <-"': :, 

Example 2: Discrete aspects of M/G/1 que,ue 

Customers arrive at a counter .to be. served in the order 

of arrival. The waitingtime ~ 1 of the first·customer has a 
given distribution 

(2.1) 

the arrivalintervals'.x1,x2 , ••• between successive customers 
satisfy 

(2.2) 

where A is a positive constant and the servicetimes 12.1,12.2 , ..• 
all have distribution 

. . 

(2.3) B( s ) = P{ §. i s} 

with B(O-) = o. The .. :r;andom variables ~ 1,x1,x2 , •.• ,s 1.,§.2 , ••• 

are independent\ The n'th . customer arrives at time t . at the . .. ...... " ...... ,. " . . --:n . . '. 
counter, where 

(2.4) { !,, : X.1 + · • · + ;ir_,,_ -1 

"t.1 .,- o. 

(n > 1), 

We write ( '! = mathe!!'.atical expectation) 

( 2. 5) fn(~) = te-lwn (Rel:, 0) 

and 

( 2 .6) 
. -, s . 

p ( l ) = c e --n ; ~ ( Re ~ ~ O ) , 

where ~ is. ~he, wai ti.ngtime of the n th customer and l!n his 
i- -· 

servicetime.' • 
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Customers are considered marked with probability 

(method I). Clearly 

( 1-X) 

CD fro X 
( 2. 7) pS no ex in w } = L e - w 

l . --n n=O 0 
( i\ w ) n xn dPf w ~ w 2. = 

n ! --n" J 

=fn('>-.(1-X)) 
and 

( 2. 8) P{no ex in .§.n} = (3(). ( 1-X)). 

Hence 

= P{no ex in~+~ and (n+1) st marked}+ 

+ P{no ex in wn+~ and (n+1) 8t unmarked}= 

= ( 1-X) Pf ~+1 ·= o} + x P{ no ex in !'.!.n+1 } = 

Now take 

(2.10) (Jzl<1), 

then from (2.9) 

X [ 1()-,( 1-X))-( 1-X)f!(X)z J'(~,z) 
(2.11) f(X(1-X),z) = 

X-z fa (X ( 1-X)) 

or with 

(2.12) 

The equation i.n 1 

( 2. 13) 

has a unique solution J(o,z).'(Takads 1962) with Re c,(O,z):>·'o. 

Hence l(O,z) is a zero of the numerator and 

= ( er ( o; z ) - 1) /1 ( l ( o, z ) ) - ( 1 -1 ) f 1 ( ~ ) 
(2.14) {(l ,z) 

1-x 1-zr(~) 

r 
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If Pn,k is the probability, that the nth customer leaves 

an empty counter, and 

(2.15) 
(lz)<1)., 

then for O ~ X ~ 1 

(2.16) 

or 

(2.17) p(X.,z) = r(A(1-X),z)t3(}..(1-X)). 



At t=O a bu~y:_ :pericqd starts with exactly on_e customer 
present, who only needs a ser,rice of duration s 1 • The length 
of this busy period is ~(s 1 ). If we take for s 1 a random 

variable s1 ,i~~:distribution B(s)j we get the ordinary busy 
period with length~- We write 

· -. f: J'( l) = c e -)~-- __ 

l J8 ()) = c e -, ~( s 1) 
. 1 

( 2. 18) 

and ~ish to comp~t~ &0 ([) and ds 1,n(!L w~ich .denote respect
~vel;y_,, the probab1J;1- ty· tp:a ~-- no Cf catastrophe,'( method II) oc
curs during a busy period~ in which exactly n customers are 
served and the same with~ replaced by ~(s 1 ). We follow 
Takacs and make use of the.£act that 

. - "- . k(s 1 ) 

(2.19) ~(s 1) = s 1 + L ~, 
h=1 

where k(s 1 ) is the number of arrivals during s 1 and ~ 1,~2, .•. ,zk 

are independent drawing of~, given k(s 1 ) = k. Hence 
co 

(2.20) J <t ,x) = L ;J (~ )Xn 
s1 n=1 s1,n 

satisfies (we use method I and II at the same time) 

(2.21) 181 (f ,X) = P{no Ct in ~(s 1), no marked customer served 

co in ~( s 1 )} = 

= L X P{no Cr in s 1,k arrivals in s 1 }J(~ ,X)k= 
k=O l k 

= X f e -! s 1 e -As 1 (>,, s 1) d ( t-, X) k = 

k=O k! 2 

= X exp(l +A( 1-o(~ ,X)) )s 1, 

where 

(2.22) 

It follows from (2.21) that 
00 

( 2 • 2 3 ) J' ( l , x ) = 01 J s ( 1 ., x ) ctB ( s ) = x /3 ( I +). ( 1-i ( ! , x ) ) ) . 
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Takacs has shown, that for given X with j X j, 1 and given ) 
with Re}~ 0 the equation for l 

{2.24) rJ = Xf3(~ +,\( 1-~)) 

has exactly one solution J(f ,X) with f c1(t,x)I ~ 1. We have 
)(1,1) =J(~). 

Let €n( 2,x) be the proba.bility, that in a busy period 
~ at least n customers are serv~d, rio c, happens during the 
first n servicetimes and no CX remains at the counter at 
the nth departure. The probability, that at least n+1 cus

tomers are served, the ( n+1) st is unmarked, no Ct happens 
during the first n+1 servicetimes and no CX remains at the 
counter at the (n+1) st departure is clearly Xtn+1(;,x) and 
is equal to the probability, that at the nth departure at 

least one but no marked customer remains and no C~ has oc
curred till then and, that in the next servicetime 1:!n+1 no 

CX arrives and n~ c~ occurs. This shows, that for n> 0 

( 2. 25) 

Because 

( 2. 26) 

( 2. 25) is also true for n=0 if we define E0 (),X) = x. 
If now 

00 n-1 (2.27) ·f() ,X,z) = L En ( f , X )z (lzjs;1), 
n=1 

then by (2.25) 

( 2. 28) E(~,X,z) = X-zill,O,z) 
X-z 13(} +A( 1-X)) 

~ () +).( 1-X)). 

Because X = J(t,z) is a zero of the denominator, it is also a 
zero of the numerator and therefore 

(2.29) f(~,X,z) = x-J"(Lz) PO+X(1-x)). 
X-zr- (~ +>-( 1-x)) 

However, here the theory of analytic functions is not needed. 
For en(~,O,) is the probability, that during z exactly n cus-
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tamers are served and no c, occurs and so 

(2.30) z f( f , 0, z ) = 
co n L. En ( ~, 0 )z 

n=1 

is just the probabil~ty, that during~ no c, occurs and no C2 

is served (method I with z instead of X) or 

(2.31) za(t,O,z) = J(~,z). 

Note that €n_ 1(~,X)-~n_ 1(),0) is the probability, that 
at the (n-1) st departure (n ~ 1) at least one customer but no 

CX remains and till then no C~ occurred. We have 

(2.32) 

Next consider the probability, that the n th customer 

finds upon arrival k > O customers waiting ( including the one 

being served) and that during the remaining servicetime of 

the one being served no c, happens. Thus we wish to compute 
for n ~ 2 and 1 ~ k !!- n-1 · · 

(2.33) pf w k < v k+ ... +v 1 <. w k+s k < v k+ ... +v 1+x } , 1-n- "'-11- ~n- -n- -n- ~n- ~n- -

where all random variables are independent and 

(2.34) (x~O). 

For fixed n and different k we must consider different 

wn-k' which means that a double genera ting function with ~.espec t 
ton and k must be introduced to handle these probabilities. It 
is easier to consider 

for n ?- 1 and k ? 1, because then 

CD 

pn(Y ,X) = L Pn k(})xk-1 
k=1 ' 

( 2. 36) 

has a sili:ple interpretation. F'or ( 1-X)pn(} ,X) is Just the pro
bability, that independent tosses with a coin with probability 
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th· 1-X for success lead to a first success at the k toss, that 

customer n+k arrives during s and that during the part of s - -n -n 
remaining after the n+kth arrival .no c¥ occurs. Equivalently 
we can consider a stati:onary Poisson process with parameter 

~(1-X) and ask for the probability, that the first event from 
th this process after then arrival occurs during s and that -n 

during the remainder of .§.n no Cl occurs. Hence 

(2.37) Pn(} ,X) = P{no CA( 1-X) in ~}P{v < .§.n,no Cl in .§.n:..v}= 

=· v (A(1-x)) J00 fsA(1-X)e- 11 ( 1-X)ve-y(s-v)dv, dB(s)= 
on o o 

= A ( 1-X )(0 Pd 1-X ) )( f3 ( } ) -_/3 (>d 1-X ) ) ) , 

A( 1-X)-} 

where .Y.,.§.n and the Poisson process with parameter~ are inde
pendent and 

( 2. 38) P{ V ~ V} = 1-e -11.( 1-X)v (v~O). 

For 
m 

( ) n-1 ( 2. 39) p(~,X,~) = L Pn ',X z (!zl~1) 
n=1 

we find in this way 

( 2. 40) / ( X ( 1-X ) , z ) . 

Wishart has computed 
m co co 

(2.41) 1r(~,"[,X) = L Xk f / ,e-~xe-11sds P{k(x)=k,.§.(x)~s}dx, 
l k=1 O 0 

where at t=O we have.an empty counter, k(x) denotes the number 

of customers present at time x (including the one being served) 

and .§.(x) the at time x remaining servicetime of the one being 

served. Hence he found the probability., that at time 3. (for 

which (2.34) applies) at least one customer is present, that 

no CX is present at that time and that no C happens during 
. , 

.§.(x). The probability, that at time x the counter is not empty 

is 
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co 
(2.42) lf(},0,1) = L P{u1+z 1+ ... +u <X<u1+z 1+ ..• +u +z} = n=1 - - -n - - - -n -n 

co 
= L 

n=1 

where ~,£1,~1, ... are independent., the un have the arrival

interval distribution and the ~n the busy-period distribution. 

To find lT( f, "ft, X) we have to replace the simple factor 

P{2S. < ~} = 1-d(}) of {2.42) by the more complicated 

(2.43) P{! ~~,no CX at ~,no C~ during §_(x)}, 

where x and ~· start at time O. Write n for the number of cus

tomers served in z and t 1 for the time of departure of the n th 
-n 

customer (n ~ 1, t 1 = 0). Then (2.43) is equal to . -o 

co 
(2.44) L 

n=1 
Q) 

= L 
n=1 

P{ D:,'>n, no ex at t~_ 1+,no er in t I } • -n-1 

.. P{ ~< F'>, no ex in 3-, no e, in §_-~} 
co 

= r: 
n=1 

where we have used the notation of (2.32). But then 

( 2. 45) Tf (~ ,-~_,X) = "?,. __ • X( X-ci(ll) __ 
·. . .. i+>--(1-t(i)) X-~q+A(1-X)) 

. ~-V _( ) - 13( ? + A( 1-X ) ) ) • 

~ + A( 1-X ) - '11 

Example 3: Co_ntJnuo_~s asp~_C~§ of q~eues 

= 

First consider the M/G/1 queue agai11. In Mathematical 

Reviews 22 (1961) 524-525 D.G. Kendall asked for a simple 

derivation of a formula due to Benes. This was given by 

Tak~cs and generalized by Bene; (cf. Bene~ (1963), page 27). 

The ptesent method leads to the following derivation. 
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We consider the virtual-waitingtime ~(t), which is the 

length of time needed at time t to finish work on the cus

tomers then present. Assume that 

( 3. 1) 

is given, where s 1 is the (remaining) servicetime of the first 

customer, that at y 1 the second customer arrives, etc. Then 

we have a first busy period A(s 1 ), followed by ~n idle period 

of length Q.1, a busy period ~ 1, an idle period u2, etc., where 

~(s 1 ),u1,A1,Q.2 , ... are independent random variables and the un 
have the arrivalinterval distribution. We want to find 

(3.2) 
(X) 

j re-fx P{w(x)=Ol!'L_(O) = s1fdx 
0 

or the probability, that at time x (where (2.34) applies), not 

depending on the waitingtime process, the counter turns out to 

be empty. But then we wish to compute (cf. (2.18)) 

( 3. 3) 

The "superfluous"~ in (3.2) (and hence in (3.3)) was added for 
the interpretation. 

In Runnenburg (1958) a formula due to Tak~cs and connecting 
(X) 

( 3 • 4 ) J e - f w dw P { li ( t ) ~ w } 
0 

and 

( 3. 5) P{ li( X) = 0 } 

was derived by interpretation, We reproduce this interpretation 

here in order to show that it contains the basic idea for more 

general results, which we derive afterwards. 

Consider the M/G/1 queue and start with an empty counter 

at t=O. The probability, that no C~ occurs (method II) during 

the tim~ the counter is busy with work due to customers ar

riving in ( O, t J , is equal to 



co 

( 3. 6) 7'C = 1 L 
n=0 

because during each servicetime the counter has to work with 

probability ~( 1) no c1 occurs. Now the probability, that no 

C~ occurs in [0,t+w(t)] is 

co 
( 3 . 7 ) 7t 2 = e - ft f e - f w dw Pf ~ ( t ) ~ w } • 

0-

Then 1C'1-r2 is the probability, that no Cf occurs during 

the time the .counter is working on customers arriving in [O, t] 

and that the first catastrophe of the Poissort process with 

parameter l happens before tat a time~ (and hence at a 

moment the counter is idle), while during the work originating 

in [ ~, t J no C! occurs. But then 
t . 

(3.8) 7r1- 7C"2 = J 1e-7x P{~(x)=0}exp-X(t-x)(1-f3O))dx 
0 

and Takacs result has been obtained. 

We get a much more con~licated problem (Takacs (1962), 

page 36,._.~qua~ion (1J)) if we assullle, that the M/G/1 queue is 

replaced hy this variant: arrivals occur as before in a Pois

son stream with parameter~ and service is in. the order of 

arrival, but now batches of size mare served simultaneously.· 

Hence servicing only starts when at least rn customers are 

present. The n th batch has servicetime s with distribution -n 
B(s) and y 1,~1,y2,~2 , ... are again independent random varia-

bles. Let ~(t) be the length of time the last customer of the 

last con~lete batch present at time twill remain at the coun

ter after time t (for v-~ i_ ting and servicing). Let r( t) be the 

number of customers present at time t, who do not yet make a 

complete bat0h (hence 0.sr(t)< m). Let 

(3.9} Pf~(O)~ w, r(O) = r} 

be given for 0 ~ r < m and all real w. We wish to derive Takacs 
relation for 

( 3. 10) 

--~,, 
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-As the probability, that no Cf occurs during the time 
the counter is working on complete batches of customers pre
sent at time s (with 0~ s < t) or arriving during (s,t] and 
that there is no CX in the final, incomplete batch present at 
time t, under the condition w(s) = x, r(s) = j and exactly 
mn-j+r (with n~ O and a~ r< m) customers arrive in (s,t], 
is equal to 

(3.11) 

we find for the unconditional probability, ~hat no Cl occurs 
during the time the c9unter:1s working on complete batches 
present at times or arriving during (s.,t] and that no CX is 
present at time t in the· last incomplete batch 

m-1 CD m-1 ( ) 
(3.12) 7C1(s.,t) =. L . r.-· L 13(1 )nxre-A t-s . 

j=O n=O r=O 

or 

(3.13) 

where 

( 3. 15) 

. ( l · ·)· J {)\( t-s) )m_n+r ·f CD ~ } - - - - e - l ,c dx p { ~ ( s ) ~ X., !. ( s ) = j 
d X ( t-s) ( mn +r) ! ·· 0- .. · ·. · 

m-1 
= .L pJ. t-s() .,X)fj·\, ,s)., 

J=O ' 

oo mn+r L __,;z;;;___ 
n=O (mn+r) ! 

which holds for all complex z and integer r and m with O ~ r < m, 

The probability, th~_t the first Cl occurs after t+w( t) and 
that there is no CX in the f~nal incomplete batch present at 
time t., is 



( 3. 16) 7C2(t) = e-rt 11 xr 
r=O 
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Q) 

J e -f w dwP{ ~( t) ~ w, r.( t) =r} = 
o-

m-1 
== e - t t I. Ir* ( I , t ) Xr . 

r=O 

Finally the probability, that the first catastrophe 

from the Poisson pr6cess with parameter t occurs before t while 

the counter is unoccupied and no c, happens after that moment 

during the time the counter is working on complete batches of 

customers arriving before t and that there is no CX in the 

final incomplete batch present at time t, is 
m-1 t 

(3.17) 1r3(t) = L 0f ~e-~u P{~(u)=O,r.(u)=j}PJ·,t-u(t,X)du. 
j=O 

From the definition of 7t'1(s,t), ~ 2(t) and 7t'3(t) it is 
clear that 

(3.18) ir1(0,t) = 7C2(t) + 7C"3(t). 
m-1 

Hence we have indeed connected ~ // ( f, t )Xr and 
m-1 . r=O -
-~ P{~(u) = O,r(u) = j}xJ as we set out ,to do. 
J=O 

The idea of the foregoing proofs of this example is in 

iact sufficient to derive a general formula due to Bene;. Sup~ 

pose that k(t) is an ordinary nondecreasing stepfunction (con

tinuous from the right); which has a finite number of jumps 

of finite height in any interval [ o, t] with O < t < oo. :i;.,et 

k(t) for each t> 0 describe the total servicetime needed to 

serve all customers arriving in the interval [o,t] for a 

first- come, first served queue at one counter. Hence at each 

jump of k(t) a customer arrives at the counter, who needs a 
service of length denoted by the height of that particular jump. 

From such a nonstochastic k(t) we can construct the virtual 

waitingtime w(t), which is also a well defined nonstochastic 

function oft. Let p(x,O) be '.1 if w(x) = 0 and O otherwise. 

Then-the probability, that no c~ occurs during the time in 

which the server is busy with customers entering in (O,t), is 

( 3. '.19) 
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The probability, that no catastrophe occurs before 

t+w(t)., is 

(3.20) e-)(t+w(t)) 

and the probability, that the first catastrophe occurs at 
some time 3£. ~ t at which the counter is idle, while after 
that no C) occurs•during the time the counter is busy with 

customers arriving in[,!., t] , is 
t 

(3.21) f l e-}x p(x,O)e-J(k(t)-k(x))dx. 
0 

Hence 

(3.22) 

or Theorem 3.1 from Benes (1963), page 38 has been obtained. 

Example 4: The Bloemena-Le Gall queue 

Customers arrive in a Poisson_ stream with parameter>. at 
a counter., the first one arriving at t=O at an empty counter. 
They are ~erved 1.n the· nrder in_ wh:i.ch they arrive in batches 
of size m. However, if at the end of a servicetime less than 
m customers are present but at least one or if a customer 
finds an empty counter, the incomplete batch does not h· veto 
wait till it becomes complete, but it is served at once as if 

it were complete. The arrival-intervals z1,.z.2 , ..• and the 
service~imes ~ 1,s2 , •.. are again independent random variables, 
the latter having distribution function B(s) with Laplace
Stieltjes transform ~()). The nth customer arrives at 

!ri = z1+ ..• +zn_ 1 (with 1,1=0). This queue was considered in 
the stationary situation in Bloemena (1958) and for general 
arrivalinterval distribution in Le Gall (1962), page 267. 

If Pn,k is the probability, that at the nth departure of 
a batch exactly k customers remain at the counter, then 

( 4. 1) 
CD k 

Pn(X) = k~O Pn,kx 

is the probability, that no ex remains at the nth departure 
(method I), where 
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(4.2) 

As 

(4.3) 
m-1 co 
~ P . + L P k xk 

j=O n,J k=O n,m+ 

is the probability, that no ex are waiting immediately after 

the (n+1) st service has started, while ~(~(1-X)) is the pro

bability, that during the (n+1) st service no ex arrives, we 

have for n ~ 1 
m-1 oo 

(4.4) Pn+1(x) =( .L Pn J. + L Pn m+kxk)~(t\(1-X)). 
J=O ' k=O ' 

Now with 

( 4. 5) 

co n-1 

{ 
pj(z) = L p .z (\z\<1), 

n=1 n,J 
co 

pn(X)zn-1 p(X,z) = L (lzl<1) 
n=1 

we find from (4.4) with (4m?~ . 

(4.6) 
xm+z -~o (xm-xJ)pj(z) 

p ( X, z) = -----;-------
X -z,1(A(1-X)) 

(3(}.(1-X)). 

As the equation in X 

(4.7) 

has exactly m roots X0 (z),x1(z), ... ,Xm_ 1(z) ~1th I Xj(z)I < 1, 

we can determine the p.(z) from the condition that the X.(z) 
J . J 

are also roots of the numerator. 

If we multiply both sides of (4,6) with 1-z and take 

z t 1, we obtain (3.6) from Bloemena ( 1953). 

Let r k be the probability, that the nth customer is n, 
the last one of a batch and that at his departure exactly k 

customers remain at the counter. Then for n ~ 1 

00 

r (X) = L r kxk 
n k=O n, 

(4. 8) 

is the probability, that the n th customer is the last oi a 
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batch and that during his stayingtime no ex arrives. The pro

bability, that this event happens and moreover the (n+1) st 

customer is marked, is equal to the probability, that the n th 

customer is the last of a batdh, that the (n+1) st customer is 

marked and that the (n+1) st customer does not arrive in the 
waitingtime of the n th customer. Hence this probability is 

(4.9) (1-X)r O. n, 

Now r (X)-(1-X)r O is the probability, that the nth customer 
n n, st 

is the last of a batch, that the (n+1) customer is unmarked 

and that during the stayingtime of the n th customer no ex ar

rives. But this is just the probability, that the (n+1) st 

customer is unmarked, that he is the first customer of a batch 

and that during his waitingtime no CX arr~vrs. Let qn,k be the 
probability, that the n th customer is the first one of a batch 

and that during his wattingtime exactly k c~stom~rs arrive. 

Then 

(4.10) 

where 

(4.11) 

with 

( 4. 12) 

We also have for n ~ 1 

(4.13)' r ( X) = ( mz= q . . + f qn-m+1 kxk-m~1) ~ (A ( 1-X)-), 
n j=O nTJ,J k=m , 

because with orobability qn-jjj the nth customer is the last 
one of a batch of j+1 and no customers arrive during his waiting

time (for 0~ j<m) and with probability qn-m+'1 k he is the last , ,· 

one of a batch of m and exactly k-m+1 customers arrive du~ing 

his wai tingtime ( for k ~ m), In particular we find ( take X=O in 

(4.13)) 

(4,14)' 
m-1 

rn,O = ~(A) L qn_J.,J., 
j=O 
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and ( by combining ( 4. 10) and ( 4. 13 )) for n ~ 1 
m-1 

(4.15) x qn+1(x) = L q -j . f f!("-(1-x))-(1-x)~(x)} + 
j=O n , J 1 

~ k-m+1 · 
+ L. qn-m+1 k X ,g(A( 1-X)). 

k=m ' 

This could have been deduced by interpretation and is left as 
an exercise for the reader. If now we introduce 

( 4. 16) 

co n-1 
q . ( z ) = ~ qn, J' z 

J · n=1 
Co n 1 

q(X,z)= ~ qn(X)z ~ 
n=1 

(lzj<1), 

Uzi< 1), 

we find from ( 4. 15) ( using q11 , j = O for n < 1 and ( 4. 12) ) 

(4.17) q(X,z)(1-(X- 1z)mp(X(1-X))) = 
. m-1 

= 1+X- 1 { t3(11( 1-X))-( 1-X)(3(>-.)}z ~ qj(z)zj+• 
J=O 

· . m-1 
- (x-\i)m(3(X(1-X)) L q.(z)Xj. 

j=O J 

Again the q 4 ( z) with O :s j < m can be found by using the m roots 
X0 (zm),x1(z ), ..• ,Xm_ 1(zm) with ·1xj(zm)I < 1 of the equation in 
X 

( 4. 18) 

From q(X,z) the rn(X) may be found. 
th Now write J'n, 1(~) for the probability, thdt then 

customer is the first of a batch and that during his waiting-

time no CX arrives ( take f = " ( 1-X)). Because 

( 4. 19) 

we have found the relation 

(4.20) 

for 

(4.21), 

··1--l 
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Next consider 

(4.22) 

where w is the waitingtime of the n th customer. Clearly -n 

(4.23) ( 
m-1 

f n (A ( 1-X)) - .L 
J=O 

CD 
"""" Xk-m+1) qn-j j+ L qn-m+1,k 

' k==m 

is the probability, that the n th customer is not the last one 

of a batch and that during his waitingtime no CX arrives at 

the counter. This is equal to the probability, that the (n+1) 8t 

customer is unmarked, that he is not the first of a batch and 

that during his waitingtime no CX arrives. For this last pro

bability we may write 

(4.24) 

We introduce further 

(4.25) 

and note that [ 1(1) = 1. 

We may combine (4~10), (4.13), (4.23) and (4.24) for n?> 1 
to 

(4.26) /n<t)-Xfn+1<P =(?(;} -1) rn(X)+(1-X)rn(O). 

This equation is the analogue of equation (4.9) in Bloemena 

(1958), where only the stationary situation is considered. 
Finally 

(4.27) (z-X) f(i,z) = X { (x- 1z)m-1} q(X,z) + 

m-1 . 1 m-1 _ j 
+ z L q.(z)zJ-x(x- z)m L q ,(z)X . 

j==O J j=O J 
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