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First draft: On the use of the method of collective marks
in queuing theory L

by J.Th. Runnenburg, University of Amsterdam 1)

The method of collective marks was introduced in Van
Dantzig (1947, 1948) and applied by him and his pupils to
derive generating functions by meahs of probabilistic inter-
pretations. In queuing problems the method has been used in
Kesten and Runnenburg (1957), Bloemena (1958) and Runnenburg
(1958). Because the method is only known to very few people,
it seems very desirable to use the present opportunity to in-
dicate what can be done with it. The main advantage of the
method is, that it supplies a simple approach to simple pro-
blems and gives some insight as to why different problems have
nearly the same answer, Moréover, one always knows what is hap-
pening from the probabilistic point of view,

In this paper a number of known results are again derived,
but here we use each time a suitable interpretation to get
quickly at the desired generating functions. In order to do
that we have to generalize the original problems somewhat. Two
methods are used to this end:

I. We put a mark on customers. Each customer has probability
1-X of being marked and probability X of remaining unmarked. X
may have any value in the interval [ 0,17] . Customers are marked
independently and the marking is independent of the (original)

process studied., With this marking we derive generating func-
tions with X as generating variable. By analytic continuatioh
our results can be extended to hold for complex X with les 1
as well, We say: a) "no Cy present at 2) En" to describe the

event that none of the customers present at time t 1is marked,
b) "no Cy in w," to describe the event that during the inter-

val of time the nth
th

customer is waiting no marked customers

arrive (the n customer himself is excluded).
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1) Report S 327 of the Statistical Department of the Mathe-
mati¢al centre.

2) Random variables are underlined,

s . s T ————



R

-0

II. We cohsiderwaniextra;POissqn process producing catastrophes.

This process has parameter % (sometimes two indeﬁendent Pois-
son processes with parameters ? and m are used at the same
time) and does not depend on the (original) process studied.
Here of necessity we have ? >0, but our results can be ex-
tended to hold for complex § with Re § » O by analytic contin-
uation. We say: '"no Csﬁin ﬂn" to describe the event, that

during the interval of time the nth

customer is waiting the
Poisson process does not produce a catastrophe.

We do not intend to give a theory, but show our point
of view by treating exampies, which can be confronted with

the existing literature.

Example 1: Infinitely many counters

At time O there are k customers present at infinitely
many counters., New customers arrive in a Poisson stream with
parameter A and all servicetimes are exponentially distri-
buted with parameter s . All arrivalintervals and service-
times are independent. We write pn(t) for the probability,
that exactly n customers are present at time t and ask for

@D
(1.1) p(t,X) = 2 p,(t)x"
n=0

~ Customers are conSidered marked in accordance with
method I. Hence each has probability X of belng unmarked,
Clearly p(t, X) is the probablllty, that there are no marked

-t g\t!

customers present at time t. With probability e
exactly n customers arrive in the timeinterval (O,t]. lhe
moments of arrival of these customers may be regarded as
1ndependent draw1ngs h. ,h

/]; 2,w-c
tribution over (0,t] under the condition that there are

’Dn from a rectangular dis-

exactly n. Hence each of these customers has probability
-t

(1.2) 1-(1-X)P{h+ts>t} = 1-(1-X) “LT"

of not being a marked customer present at time t. Here h
and s are independent with

(1.3) " P{ash} =2 for Oshet, P{ses} = 1-e™ for s50.



A customer present at time O is with probability
(1.4) -(1-X)Pfs>t} = 1-(1-x)e™M

not a marked’customer"bresent at time t. But then

(1.5)  o(t.%) Z e L) (1 (1x) 26 g (qx)eoRENK,

Example 2: Discrete éspeetSIOf M/G/1 queue

Customers arrive at a counter to be served in the order
of arrival. The waitingtime w, of the first customer has a

given distribution

(2.1) C, (w) = P{ﬂ1s\ﬂ},
the arrivalintervals}xq,ze,,.. between successive customers
satisfy ’
v =X
(2.2) Ply,sv} =177 (y30),

where A is a positive constant and the servicetimes 84s8ps..s
all have distribution

(2.3) .~ B(s) = P{s ¢s}
with B(0- ) 0. The random variables Wq’lq:igx--°s51:sgs'-*

are independent The ntF customer arrives at time t at the
counter, where

o[ ETEe
=0
We write (€ = mathemetical expectation)
(2.5) Yal$) _geftn (Re § 3 0
and S S
o | b5,
(2.6) | ply) = ©(Re§ 2 0),

where W is the waitingtime of the nth customer and sv hlS

servicetime., : <
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Customers are considered marked with probability (1-X)
(method I). Clearly

® n
(2.7) Pfno Cy in w } = Z j. e ™AW LA%%— x" dP{w, s wh =

n=0 O
‘ = J,(AM1-X))
and
(2.8) P{no Cy in s } = (s(}(jfx))°
Hence . . R IO o
(2.9) l}h(A(ﬂ—X))p(K(ﬂ—X)) = P{no Cy in w +s } =
= P{no Cy in w _+s  and (n+1)5° marked | +
+ P{no"cX in w,*s, and (n+’l)St unmarked} =
= (1-x) Pfw, 4, = O} + X P{no Cy inw .} =
= (1-X) FLO0B(N) + X f O (1-%)).
- Now take
(2.10) (5.2) = = f5)2™ 7 (z] <)
‘ N§:2) =z [ul§)z 2] <1,

then from_(2,9) o . o :
(2.11) (1)) - X fa(1-X))-(1-X)p(N )z J(X,z)
X-Z[B(A(ﬂ—X)) ‘

or with § = (1-X)

2
(2.12) j’(%,z) _ p(M)z f(r,z) (3 1F4(5)

1 —k.3:5§ﬁitl

The equation in %

(2.13) g-x 1-zp(§)) =0
has a unigue solution J(O z) (Takdcs 1962) with Re 5(0,z)» O.
Hence 5(0 z) is a zero of the numerator and

(m— >/1(J(O:Z))‘(% -1 (%)

(2.14) (
1 Jl? 1 —A-iﬂ?lgil
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If pn,k is the probability, that the nth gustomer leaves

an empty counter, and

© |
p,(X) = 2 p X S (Ix]s ),
(2.15) k=0
p(X,z)= 3 p (X" (jz]=<1),
n="1 : o
then for 02X 1
(2.16) pn(X) = P{no.CX‘in En+§n} = }h(A(1—X))@(h(1-X)),

or

(2.17) p(X,z) = f(A(1-X),2z)p(A(1-X)).




- At t=0 a busy period starts with exactly one customer
;’present who only needs a service of duration 4. The length
of this busy period is z(s 1) If we take for 8, a random
variable sq w1th distribution B(s), we get the ordlnary busy
period with length Z. We write

_ g e-?_z_«'f

LAy -
(2.18) 1 (§ cpalen)

5, (3)

and wish to compute d (? and J n(§)’ which denote respect-

I

vively the probability: that.no C 1catastropheu(method II) oc-
curs during a busy period z in which exactly n customers are
served and the same with z replaced by z(s,). We follow
Takdes and make use of the fact that

E(S,})
Z
(2.19) z(sy) = s, + Zy s
h=1
where k(s 1) is the number of arrivals during 84 8nA Z5Z55 00052

are independent drawing of z, given k(sq) k. Hence

(2.20) qu(§,x Z I (5)x"

Sq08
satisfies (we use method I and II at the same time)

(2.21) 7, (§,X) = P{no C_ in z(s,), no marked customer served
1 in z(sq)}

in s,k arrivals in 81}3(3 X)

5
Z: X P{no C

k_

il

k=0 i N
cx 8T '(—fsc«i)—ﬂ?,X)k =
k=0 :
= X exp(§+k(1-5(?,x)))sq,
where
CO
(2.22) I(5,%) = ; 3 (5)x",

It follows from (2.21) that
o0

(2.23)  J(§,%) = O[ I (§,%X)dB(s) = X p(5+M(1-3(5,%)))

T ——




Takdcs has shown, that for given X with ‘Xﬂ € 1 and given 3
with Re § » O the equation for J

(2.24%) J = Xp(§ +A(1-7))

has exactly one solution J(%,X) with | JK?,X)IS 1. We have

I(5,1) =J(%).

Let €n(§,X) be the probability, that in a busy period
z at least n customers are served, no C, happens during the
first n servicetimes and no C |
the nth

tomers afe»served, the (n+1)5? is unmarked, no C. happens

X remains at the counter at

departure. The probability, that at least n+1 cus-

during the first n+1 servicetimes and no CX remains at the
counter at the (n+’|)St departure is clearly Xsh+1(§,x) and
is equal to the probability, that at the n°l
least one but no marked customer remaing and no C? has oc-

departure at

curred till then and that in the next servicetime Sp4q 1O

CX arrives and no 05 occurs. This shoiws, that for n> 0

(2.25) X e ,(5.%) ={¢ (5.%)- £ _(5,0)} pls (1-X)).
Because
(2.26) £4(5,%) = pl§ +\(1-X)),
(2.25) is also true for n=0 if we define so(g,x) = X,
If now
L n--1
(2.27) e(5.%,2) = ; e (5,X)z 7 (lz]<1),

then by (2.25)

(2.28)  e(y,%,z) = 228a0E) (s x(1-x)).
X-z p(§ +2(1-X))

Because X = J(§,z) is a zero of the denominator, it is also a

zero of the numerator and therefore

: _ X-J(?_?Z) ) )Y _ .
(2.29) el x2) - 22D p (1))

Howéver, here the theory of analytic functions 1s not needed.
For En(?,o) is the probability, that during z exactly n cus-

T — S S
S 7 G G )
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tomers ‘are served and no C? occurs and so
(€}

n
(2'»30) Zé(},O,Z) = Z En(s,O)Z
L =
is just the probability, that during z no C, occurs and no CZ
is served (method I with z instead of X) or '

(2.31) za(?,O,z) = J(?,z).

Note that e _.(§,X)-& _,(§,0) is the probability, that
at the (n- 1)3 departure (ny 1) at least one customer but no

C., remains and till then no C? occurred. We have

X

) ,
: ) -y X=d(%)
(2.32) rE; { n-1(§:%) En-1(?’o)} * X-p(§ +A(1-X))

Next consider the probability, that the nth customer
finds upon arrival k >0 customers waiting (including the one
being served) and that during the remaining servicetime of
the one being served no C '

? happens. Thus we wish to compute
for n3»2 and 1k sn-1 ’

(2.33)  Plu, < ¥ppt s g% Mg By e < gt - Tt T

where all random variables are independent and
(2.3%4) . P{xsx} = 1-e X (x»0).

For fixed n and different k we must consider different

Wk’ which means that a double generating function with respect

to n and k must be introduced to handle these probabilities. It

is easier to consider
(2.35) pn,k(%) - P{En< Lntee o T W8y < Tn™e e Ty *E
for n 21 and k 2 1, because then

o2 k-1
(2.36)  p(5.X) = é@% Py (5%

has a 51mple 1nterpretat10n For (1-X) % X) is just the pro-

bablllty, that 1ndependent tosses with a coin with probability
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th

toss, that
customer n+k arrives during 5, and that during the part of 5,

1-X for success lead to a first success at the k

remaining after the n+§th arrival no C, occurs. Equivalently
we can consider‘a statibﬁary Poisson process with parameter
"M 1-X) and ask for the probability, that the first event from
this process after the nth arrival occurs during 8, and that
during the remainder of 8, no C? occurs. Hence -

(2.37) o, (¥,X) = P{no CK(ﬂ-X) in'ﬂn}P{zg<§n,no C% in §h;z}=

Il

fa (M (1-x)) éq>£SA(1-X)e'h(1'x)ve“?(s'v)dv'dB(s)=

= A=) (A (1-X) ) (p(5)-p(A (1-X) ) )
A1-X)- ¥

5.

where .85, and the Poisson process with parameter ? are inde-
pendent and
A(1-X)v

(2.38) szan} = J-e’ (v 20).
For
& n-"1
(2.39) p(§,X,2) = Z1 p,(§,X)z (lz]<1)
n= _
we find in this way . ‘ ‘
(2.40)  p(g,z) = AILREQAUIN y0(1-0), ).
Wishart has computed L. ,
® g © @ 3 /
(2.41) TT(?:Q;X) = 2 X f / fe % M54 P{E(X)=k,§(x)ss}dx,
k=1 0O O

where at t=0 we have an empty counter, k(x) denotes the number
of customers present at time x (including the one being served)
and s(x) the at time x remaining servicetime of the one being
served. Hence he found the probability, that at time x (for
which (2.34) applies) at least one customer is present, that
no CX is present at that time and that no C happens during
g(x). The probability, that at time x the counter is not empty
is




R

™s

(2.52) T(5,0,1) =

+Z ..ot +z _+...+tu_+ =
P{u,+z, U < X<, t2Z, u +z, b

Il

n="1,

- -J
X%? ((5) f%%) 1(1‘5(3)) = ;g1(1£3%;)) ’

]
i Ma

where XU 2 are independent, the a4, have the arrival-

/l’.n.
interval distribution and the zZ, the busy-period distribution.
To findfﬂK%,n,X) we have to replace the simple factor

PL§<.2} = 1-3(3) of (2.42) by the more complicated

(2.43) ~ P{x *z,no C, at x,no ¢, during s(x)},

X

where X and z start at time O, Write n for the number of cus-

tomers served in z and Eﬁ for the time of departure of the nth

0). Then (2.43) is equal to

It

customer (n 21, t!

@
(2.44) n; P{ty_q< X<y 4¥8,,m0 Cy at x,n0 G in Er'l_qfén_zc_} =
m -
= ;E% P{nyn,no Cy at t!_ ,+,no C; in Eﬁ_q}-
- P{x¢s,no Cy in x,no QQ in §75}A=
@

Il

n=1 (E’n_q(%sx)_sn_q(.s:’o))"\»

e "/,CO /',_S ?e—%xe_h( 1_x)xe_vz(s—X)d§X dB(S),
0O O

where we have used the notation of (2.32). But then

(2.45) (5 ,7,%) = —  X(X-9(5))

L5l L )=p(seNA=x))
£ +N1-X)-m

Example 3: Continuous aspects of queues

First consider the M/G/1 queue again. In Mathematical
Reviews 22 (1961) 524-525 D,G. Kendall asked for a simple
derivation of a formula due to BeneS. This was given by
Takdcs and generalized by Benes (cf. Benes (1963), page 27).
The present method leads to the following derivation,




-10-

We consider the virtual'waitihgtime w(t), which is the
length of time needed at time t to finish work on the cus-
tomers then present. Assume that

(3.1) w(0) = s,

is given, where S 4 is the (remaining) servicetime of the first
customer, that at 14 the second customer arrives, etc. Then

we have a first busy period z(s ), followed by an idle period
of length u Yy, @ busy period Z4 an idle period Uss etc., where
z(s4),44,245Uy, ... are independent random variables and the u_
have the arrivalinterval distribution. We want to find

(3.2) éoo; eTi% P{y_(x)=0‘_w_(0) = s,}}dx

or the probability, that at time x (where (2.3%4) applies), not
depending on the waitingtime process, the counter turns out to
be empty. But then we wish to compute (cf. (2.18))

(3.3) i) Plz(sq) + k‘./n; (uetz, )« x<z(s,) + Z (9 tzy) 1y gh =
n= =
L ?J (%)
8] : S :
_ __’\__ P i
81(3) E A (%) ‘ “% A+E-2I(5)

The "superfluous" § in (3.2) (and henc¢e in (3.3)) was added for
the interpretation.

In Runnénburg (1958) a formula due to Takdcs and connecting

(3.4) [T o, pu(e) e u}
and
(3.5) P{u(x) = 0}

was derived by interpretation. We reproduce this interpretation
here in order to show that it contains the basic idea for more
general results, which we derive afterwards.

Consider the M/G/1 queue and start with an empty counter
at t=0, The probability, that no C? occurs (method II) during
the time the counter is busy with work due to customers ar-

riving in [0,t ], is equal to




R s

R

R

(3.6) . ==v§;)e'5t QO ()" = exp-at(1-a(5 ),

because during each servicetime the counter has to work with
probability p(%) no C, occurs. Now the probability, that no
Cs occurs in [O,t+y(t§] is

(3.7) T, = e ¥t fabe'gw d, P{w(t)s w} .
, 0- ,

Then W%-Ié is the probability, that no C% occurs during
the time the counter is working on customers arriving in [0,t]
and that the first catastrophe of the Poisson process with
pafameter ? happens before t at a time x (and hence at a
moment the counter is idle), while during the work originating

in[x,t] no C,

;
(3.8) = [ peT p{u(x)=0} exp-A(£-x) (1-8(3) )ax

occurs, But’then

and Takdcs result has been obtained.

We get a much more complicated problem (Takdcs (1962),
page 36, equation (13)) if we assume, that the M/G/1 queue is
replacé&?by.this variant: arrivals occur as before in a Pois-
son stream with parameter A and service is in. the order of
arrival, but now batches of size m are served simultaneously.
Hence servicing only starts when at least i customers are
present. The nth batch has servicetime 5, with distribution
B(s) and Xq:iq:lg$§2:°°- are again independent random varia-
bles. Let w(t) be the length of time the last customer of the
last complete batch present at time t will remain at the coun-
ter after time t (for v-iting and servicing). Let r(t) be the
number of customers present at time t, who do not yet make a

complete batch (hence Osr(t)< m). Let

(3.9) P{w(0) ¢ w, r(0) = r}

"n

be given for Osr<m and all real w. We wish to derive Takdcs

reldtion for

(3.10) jooe'?t- éle{gq(t)s w, o(t) =r} .

O =

s ——
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As the probability, that no C? odCurs during'thé time
the counter is working on complete batches of customers pre-
sent at time s (with Og¢ s< t) or arriving during (s,t] and
that there is no CX in the final incomplete batch present at
time t, under the condition w(s) = x, r(s) = j and exactly
mn-j+r (with n3 0 and Oz« r<m) customers arrive in (s,t],

is equal to o
(3.11) e I* p(5)" 17,

we find for the unconditional probability, ;hat no C, occurs
during. the time the counter is working on complete batches
present at time s or arriving during (s,t] and that no Cy is
present at time t in the last incomplete batch

m--1 ©® m-1

(3.12) m(s,t) = 2 2 2 p(%)nxre—x(t—s)
s

3 I (A(g-g))ymtr @ §x ) _.
(ax(t-s) ) (mnir) d{ € dy P{ﬂ(8)~x,£(8) J}
or
m-]
(3.13) T (s,t) = j‘:o Py e-slEsX)f(5,8),
where '
Gy . © y
e (5,8) f e ! d, P{u(s)s x,r(s) = J} s
(3.14) 0= |
pj t—S( :X) = % Xm_s"‘iz

Here we have written ¢

h
CO mn-+r m-1 £E. 7
(3.15) e %_ 5 . r o h )

n=0 (mn+r)! h=0

which holds for all complex z and integer r and m with Os r< m,

The probability, th-t the first C, occurs after t+w(t) and
that there 1s no CX in the f’'nal incomplete batch present at
time t, is

s,




S
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m=1 X fq)e-;w d,P{u(t)s W,E(t)=r} -

(3.16) m,(t) = e it
r=0 O-

m-1
DA AR o
r=0 -

Finally the prqbability, that the first catastrophe
from the Poisson process with parameter ? occurs before t while
the counter is unoccupied and no C? happens after that moment
during the time the counter is working on complete batches of
customers arriving before t and that there is no CX in the
final incomplete batch present at time t, is

m-"]
(3.17) w5(¢) =;=£O ‘f ;e"?u P{ .Or'( J}pj,t_u(g,x)du.

From the definition of Wa(s,t), nz(t) and né(t) it is
clear that

(3.18) | W,}(O,t) =7c2(t) +7c3(t)
Hence we have 1ndeed connected E: /% (? t) and
m-"1 .

> {ﬂ(u) = O,r(u) = J}XJ as we set out to do.
j=0

The idea of the foregoing proofs of this example is in
iract sufficient to derive a general formula due to BenesS. Sup-
pose that k(t) is an ordinary nondecreasing stepfunction (con-
tinuous from the right), which has a finite number of jumps
of finite height in any interval [0,t] with O< t< oco. Let
k(t) for each t> 0 describe the total servicetime needed to
serve all customers arriving in the interval Lo,t] for a
first éomé, first served queue at one counter. Hence at each

Jump of k(t) a customer arrives at the counter, who needs a

service of length denoted by the height of that particular Jjump.

From such a nonstochastic k(t) we can construct the virtual
waitingtime w(t), which is also a well defined nonstochastic
function of t. Let p(x,0) be 1 if w(x) = 0 and O otherwise,
Then -the probability, that no C? occurs during the time in

~which the server is busy with customers entering in (0,t), is

(3.19) - oik(t)




.

The probability, that no catastrophe occurs before
t+w(t), is
and the probability, that the first catastrophe occurs at
some time x ¢ t at which the counter is idle, while after

that no C, occurs during the time the counter is busy with

customers arriving in[x,t] , is

(3.21) (56 1% o, 090 F (R(B)-0x)) gy

Hence S ©

(3.02) o BK(E) L o (En(e))y [Ty oy 0)em8 (e(8)-K(x)) g
0 .

or Theorem 3.1 from Benes (1963), page 38 has been obtained.

Example 4: The Bloemena-Le Gall gueue

Customers arrive in a Poisson stream with parameter A at
a counter, the first one arriving at t=0 at an empty counter,
They are served 1n the order in‘which they arrive in batches
of size m. However, if ét the end of a servicetime less than
m customers are present but at least one or if a customer
finds an empty counter, the incomplete batch does not h ve to
wait till it becomes complete, but it is served at once as if
it were complete, The arrival-intervals TqsLpseee and the
servicetimes 54s855... aT€ again independent random variables,
the latter having distribution function B(s) with Laplace-
Stieltjes transform ﬁ(?). The nth customer arrives at
En = 11+...f1n_1 (with £1=O), This queue was considered 1n
the stationary situation in Bloemena (1953) and for general
arrivalinterval distribution in Le Gall (1962), page 267.

If pn’k is the probability, that at the nth departure of
a batch exactly k customers remain at the counter, then

= K
(4.1) p,(X) = kz__:o P, KX

th departure

is the probability, that no C. remains at the n
(method I), where

X

,,,,,, S—— — ——————— . ; HH——G—_———————
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(¥.2) p,(X) = p(A(1-X)).
As

m=-"1
(4.3) izg Py, 5

2: k
+ o) X
k=0 n,m+k

is the probability, that no CX are waiting immediately after
the (n+1)%% service has started, while A(A(1-X)) is the pro-

bability, that during the (n+’1)St service no CX arrives, we

have for n 3 1

m-"1 o) K ,
(4.4) Pa(X) =( % Pa,g * 2 Pamed) BN,
Now with :
- L n-1
py(z) = Z% Py, 32 (Jz|<1),
n:

(435) (I)
o(X,2) = 2 p ()27 (lz]< 1)

we find from (4.4) with (4.2
, m- M oj\—
Kz 3 (X7-x7)p4(2)

4.6) ,z) = =0 X)),
(1.6) Pe) = Ty PO

As the equation in X
(%.7) | Xm—zp(A(ﬂ-X)) = 0

has exactly m roots Xo(z),Xq(z),.,.,Xm_ﬂ(z)‘with ]Xj(z)|< 1,
we can determine the Bj(z) from the condition that the Xj(z)
are also roots of the numerator. , _

If we multiply both sides of (4.6) with 1-z and take
z 41, we obtain (3.6) from Bloemena (1953).

Let L be the probability, that the nth customer is
k)
the last one of a batch and that at his departure exactly k
customers remain at the counter. Then for n 31

(4.8) r (X) = r
0

k=
th . - ;
customer is the last of &

is the probability, that the n
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batch and that during his stayingtime no CX arrives. The pro-
bability, that this event happens and moreover the (n+’l)St

customer is marked, is equal to the probability, that the n
customer is the last of a batch, that the (n+1)5% customer is
marked and that the (ﬁ%ﬂ)St
th customer. ‘Hence this probability is

th

customer does not arrive in the

waitingtime of the n’

(4.9) ' (1-X)r, o -

th customer

Now r (X) -(1-X)r n,0 is the probability, that the n
is the last of a batch, that the (n+1) customer is unmarked
and that during the stayingtime of the nth customer no CX ar-
rives. But this is just the probability, that the (n+1)st
customer is unmarkéd,‘that he is the first customer of a batch
and that during his waitingtime no CX arrlves.;Let a, K be the
probability, that the nth customer is the first one of a batch
and that during his waitingtime exactly k customers arrive.

Then

(4.10) .~ .;- rn(x)b= (1-X)rn,O+X qn+1(x)’
where
(4.11) (x) = % k
.11 q.(X) = q X,
- k=0 oK
with
(4.12) a,(x) = 1.

We also have for n 31

_ m-" 0] _ o

because with probability 9, 343 the nth customer is the last

one of a batch of j+1 and no customers arrive during his waiting-
time (for O0<¢ j<m) and with probability qn_m+1’k he is the last
one of a batch of m and exactly k-m+1 customers arrive during

his waitingtime (for k»m). In particular we find (take X=0 in

(4.13))
(4.14) BRSPS IC B S
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and (by combining (4.10) and (4.13)) for n 2 1

m=1
(h.15) X a4 - fzg Gnoy, 31 AR -(10)8 00} +
J:
Y oA X (%)),
K=m 7 2 :

This could have been deduced by interpretation and is left as
an exercise for the reader. If now we introduce

_ © iy

a,(z) = 2:1qn’J 2" (Jz]<1),
(4.16) n= : |

a(z)= a0 (z] <),

we find from (4.15) (using.qn ; = 0 for n< 1 and (4.12))
3 .

(4.17)  a(X,2)(1-(x"Y2)8(r(1-X))) =
= ’I+X'1{p(h(’l-x))-(ﬂ-x)ﬁ(){)}z n.l-; E{J.(z)zj+'
. J=
. m-="1 .
- (x7"2)"B (M (X)) T (2)xd
j=0

Again the as(z) with O¢ j< m can be found by using the m roots
X (27),X(2M), ., X (2™) with‘{Xj(zm)|< 1 of the equation in
X

(4.18) xM-z"g(A (1-X)) = O.

m~-1

From q(X,z) the r (X) may be found. A
Now write !n 1(%) for the probability, that the n

, .
customer is the first of a batch and that during his waiting-

th

time no C, arrives (take § =A(1-X)). Because

(4.19) Yo, 1(5) = fn, 1A(1-0)) = a,(x),
we have found the relation

(4.20) - /46 ,2) = a(X,z)

for ) |

v &R n--1
(4.21) B 1S ZE-2 NN N RIS LA
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Next congider

o “iu,
(4.22) Jal§) =Ce °77,
where W, is the waitingtime of the nth customer. Clearly
e m-1 '
k-m+1
(4.23) fn(M(1-X)) —<'j§% In-j,3" E; U -m+1, k5 )

th customer is not the last one

ig-‘the probability, that the n
of a batch and that during his waitingtime no C arrives at

the counter. This is equal to the probability, that the (n+’t)st
~customer is unmarked, that he is not the first of a batch and
that during his waitingtime no CX arrives. For this last pro-

bability we may write

(4.24) X faqOI-0)) = X a4 (0.

We introduce further

5 /n(3>z“ 1

n="1

(4.25) S plsae) =

and note that )% ? = 1,

We may combine (4,10), (4. 43) (4.23)‘énd (4.24) for n3» 1
to

(4.26) AGIE AN <—-%—)1) r_(X)+(1-X)r_(0).
This equation is the analogue of equation (4.9) in Bloemena
(1958), where only the stationary situation is considered.
Finally

(4.27) (2-%) p(§.2) = X {(x""2)"1}a(x,2) +
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