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1. Introduction. 

During the last dozen years several papers have been published 

each giving some information about the asymptotic behaviour of a two 

sample test based upon the integral of the squared difference of two 

empirical distribution functions. This preliminary report adds to the 

literature by providing mathematics necessary for the calculation of 

asymptotic relative efficiencies of the above test with respect to 

certain other tests both of parametric and nonparam·etric form. Comput­

ations of these asymptotic relative efficiencies are proposed and will 

be carried out by the authors. An observation pertaining to the powers 

of the two sided two sample test of Lehmann (1953) in comparison with 

that of the two sided Wilcoxon test is given. 

Although the methods used here are similar to those used by 

Anderson and Darling (1952), Rosenblatt (1952) and Blum, Kiefer and 

Rosenblatt (1961) for purposes of exposition we find it best to give 

them again in some detail. 

2. Asymptotic Distributions. 

Suppose F and Gare two continuous probability distribution 

functions for which corresponding independent random samples of size 

n are available. Let Xi,···,X~ be the independent random variables of 

the random sample from F and Y' •·· Y' corresponding from G. Consider 
1' ' n 

the test of H0 : F = G that rejects H0 whenever 

2.1 
«Ir l~ F (x)+G (x) 

Dn = L.m LF/x> Gn(x)J"' d n 2 n 

is found too large. Here F and G are the sample cumulative · n n 
distribution functions of the respective samples i.e. 

2.2 

on 

n F (x) = nwnber of X' < x n i- · 

An equivalent test which differs from D by a linear term is based 
n 
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2.3 D' = I [ (r.-i) 2 + (s.-i) 2 ] 
n i=l 1 1 

where ri and si are the ranks of i th largest Xi and the i th largest 

Y'. among the pooled sample of 2n observations. 
l. 

Rosenblatt (1952) has shown that under the null hypothesis nD /2 
n 

has the same limiting distribution as the von Mises' statistic nw2 

whose limit distribution was derived and tabulated by Anderson and 

Darling (1952). In order to set the stage for computations of asymp-

totic relative efficiency of 

native hypotheses {H} where 
n 

H the pair (F'.;' G(n)) is the 
n ' 

(2.1) we consider a sequence of alter­

H : G(n)(x) = F (x+a/n½) so that under 
n 

alternative to the pair (F,F) under H0 • 

Since Fis continuous we find it convenient to effect the probability 

integral transformation 

2.4 Y = F(Y'.), 
i l. 

with the result that the X's are independent and uniformly distributed 

on (0,1) and the Y's are independent and have the distribution 
-1 

function G F on (0,1). The statistic D can then be written as 
n 

2.5 J 11 J2 F (F-l(y))+G (n)(F-l(y?') 
Dn = 0 L Fn (F-l(y))-Gn (n) (F-l(y)~ d _n ____ 2_n ____ _ 

-1 (n) -1 
where FF and G F are the respective sample cumulative distribut-

n n . 
ions of the transformed samples. 

For each real number t e: [o, 1] consider the random variable 

2.6 

The family { V (t)}, t e: [0,1] defines a stochastic process with mean 
n 

function 

2.7 
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and 

2.8 a(v (s), V (t)) = ½ {min [s,t]-st 
n n 

+ min [o~n)(F-1(t}), G~n)(F-1 (s})] 

- G(n)(F-1 (t}) G(n)(F-1(s))}. 
n n 

If we assume that Fis differentiable we find that 

2.9 a [ -1 J lim EV (t) = - f2 F' F (t) , 
n-+-oo n 

and 

2.10 k (s,t) = lim O(V (s), V (t)) 
n -+- oo n n 

= min (s,t) - st; 

GQnsidering the above limiting covariance tunction as the kernel of 

an integral operator we can derive the corresponding eigenvalues and 

normalized eigenfunctions from the integral equation 

2.11 f(s) = A J / [min (s,t) - st] f(t)dt. 

They are Ak = l/w2k2 and fk(t) = (1/wk) sinwkt. Now lk(s,t)I !1 and 

so by theorem 2 (S.G.Mikhlin, 1960, p.140) the system of orthogonal 

functions {fk} is complete and any square integrable function on (0,1) 

has a generalized Fourier expansion in terms of {fk} that converges 

pointwise to··:the original function. If we further assume that 

2.12 

then we see that F'[F-1 (t}] is square integrable on (0,1) and hence 

possesses a convergent generalized Fourier expansion namely 

2.13 t e: [0,1]. 
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Following the construction given by Doob (1949) and Anderson and 

Darling (1952) we define an infinite sequence of independent random 

variables x1 ,x2 , ... where Xk has the N(µk,1) distribution with 

2.14 

Defining the stochastic process 

00 X fk(t) 
2.15 v(t) I k 

= 1Tk 
k=l 

one readily computes the mean function to be 

2.16 E v(t) = 
00 lJ f (t) 

k k 

k=l 

and the covariance function 

2.17 cr(v(s), v(t)) = min(s,t) - st. 

Applying a theorem of Donsker (1952) we can assert that 

2.18 

The 

2.19 

lim 
n -+- "" 

random J 1 2 variable O (v(t)} dt 

C 
00 X fk(t) 

2 

I k 
nk 

k=l 

can be expressed as 

X 2 00 

dt I k 
= 22. 

k=l k 1T 

which is a weighted sum of non-central chi-square variables each 

with one degree of freedom. 

Finally we remark that 

2.20 
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in probability as n ~ 00 • 

This can be seen by a slight extension of a lemma of Kiefer (1959, 

section 2). For this extension we need a boundedness condition viz. 

2.21 I F(x)-G(n)(x) 

1/ni 
<K 

uniformly inn, for some positive constant K. Assuming this, the 

foregoing results are summarized in the following. 

Theorem 2.1. If the distribution function F possesses a density 

function F' which is uniformly continuous and bounded and such that 

J 
00 3 

-co (F' (x)) dx < co then under the sequence of hypotheses 

{F(x), F(x+a/n½)} (distribution functions of X' and Y' respectively), 

the statistic nD /2 has as limit distribution the distribution of 
n 

00 2 2 2 L Xk/~ k where x1 ,.x2 , ... ,Xk'''' are independent normally 
k=l 

distributed random variables with 

2.22 

Since the characteristic function of the noncentral chi-square 

distribution with one degree of freedom and noncentrality parameter 
,2 . 
11 1S 

2.23 e 

we have the 

2 
itA 

l-2it 

Under the hypotheses of the theorem 2.1, the 

characteristic function of the limiting distribution of the random 

variable nD /2 is 
n 



2.24 <t) = e 

2 
a 

2 

00 

I 
k=l 

6 

2 
itck 

l 2it 
2 2 

'IT k 
"" 
II 

k=l 

-½ 
(1- 2it)·· 

22 
1T k 

The possibility of inverting the above characteristic function in 

general seems to be rather remote. It might, however be possible in a 

few isolated cases. For instance suppose that 

2.25 , 

We then compute ,the generalized Fourier co¢Jficients as c 1 = 1, 

ck= O, for~ >1. It is quite possible .that the characteristic function 

in this case can be inverted using methods similar to those of Anderson 
•· 

and Darling (1952) since the characteristic function reduces to 

2 

2.26 1 <t> = e 

2it 
1- 2 

1T 00 

II 
k=l 

-½ 
(1-·2it) 

•. 2 2 
7T k 

In cases where an inversion is_ possible-' the authors propose to 

calculate sufficient ~umber of percentag_e points of the limit 

distribution to enable exact asymptotic efficiency computations relative 

to two sample tests for which the limiting distribution is known. In 

other cases lower bounds to the asymptotic relative efficienc;ies can 

be obtained by using percentage points of the first few terms of the 
"" , 2 2 2 

series l Xkl1r k. In those instances where the first few terms do 
k=l 

not yield specific conclusions we plan to carry out Monte Carlo 

estimates .of the desired percentage points. 

The above theory and the methodology can be extended to cover 

similar criteria used for other situations. We cite two examples here. 

First is the k-sample problem which was considered by Kiefer (1959). 
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The sequence of alternatives would be F.(x) = F(x+a./n½) and the 
1 1 

limiting distribution of the criteria under such a sequence of alter-

natives would be weighted sum of noncentral chi-square random 

variables with k degrees of freedom. 

The second example is that of the criteria considered by Blum, 

Kiefer and Rosenblatt (1961) for testing independence. Restricting 

to the case of bivariate distributions the test statistic:'.takes the 

form 

2.27 

where S (x,y) is the bivariate sample cumulative distribution function 
n 

and S (x) and S (y) corresponding to the marginals, all computed from 
n n 

the sample of (X1 ,Y1), ... ,(Xn,Yn). Blum, Kiefer and Rosenblatt (1961) 

point out that in the case of the sequence of alternatives F(~) where 

F(n) are the bivariate distribution functions and such that 

2.28 ½ I, (n) (n) (n) ] n LF (x,y) - E1 (x) F2 (y) ---) q(x,y) 

(finite and continuous) as n~ ~, the limiting distribution of B 
n 

is again a weighted sum of noncentral chi-square random variables. 

The above mentioned authors discuss general properties of the power 

of the test; however, specific cases are not available. Here we 

consider two types of alternatives to independence. 

X = (1 - 6n -¼) zl + en-¼ z3 
2.29 

y = (1 - 6n -¼) z3 + 6n-¼ z3. 

where z1 , z2 , z3 are independent random variables. Such alternatives 

were considered by Bhuchongkul (1964) and are useful when there is a 

suspicion that the independence is disrupted by some contaminating 

random variable. With these alternatives it can be verified that the 

joint distribution of (X,Y) is 



2.30 F (x,y) 
n =f oo Fl (x 

-·00 1 

8 

-¼ 
- en_ z) 

en 4 

where F1 ,F2 ,F3 are the distribution functions of z1 , z2 and z3 

respectively. It can be seen that 

2.31 

It will be possible to compare the test based on (2.27) and the 

bivariate analogue of normal scores test considered by Bhuchongkul 

(1964). Another type of alternatives for which a class of nonpara­

metric tests was considered by Jogdeo (1962) is the following. 

2.32 Y =a+ Sn-½ X + Z, 

where X ·.and Z are independent random variables. With this sequence 

of regression alternatives 

2.33 

and again this leads to the possibility of comparison with various 

nonparametric tests. 

3. Remarks on Lehmann's Tests. 

Lehmann (1951) considers a two sample test 

quadruples chosen from the samples (X:1,·· · ,X ), , m 

m n based on ( 2)(2) 

(Y ,···;Y ). 
1 n 

Wegner (1956) has shown that this test is equivalent to the two 

sample test based on D of section 2. Hence the discussion regarding 
n 

the asymptotic efficiency of the test based on D directly applies to 
n 

Lehmann's test. 

Further, Lehmann (1953) considers problem of testing H0 : F0 = G0 , 
2 

against the alternative hypothesis H1 : F0 = F, G0 = qF + pF or 
2 

F0 = qF + pF , G0 = F where F0 and G0 are the distribution functions 
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of X and Y respectively and p + q = 1. He shows that the locally most 

powerful rank test for the above problem is (for equal sample sizes) 

to reject when 

3.1 L' 
n 

n 
, n(2n+l) 
l Si - 2 

i=l 
] 

2 +[ i r. 
i=l 1. 

n 

+ I (s.-i) 2 + 
1. 

i=l 

_ n(2~+1) T 
n 

I 
i=l 

. 2 
(r.-1.) 

1. 

th .th 
is too large. (Here r. ands. are the ranks of i largest X and 1. 1. l 

largest Yin the pooled sample of (X1 ,··· ,Xn' Y1 ,· · · ,Yn)). An 

equivalent test statistic which is linearly related to (3.1) canLbe 

written as 

[ n 
n(n+l) r [ n 

n(2n+l) r 3.2 L = I s - + I r. - 2 + n 
i=l 

1. 2 
i=l 

1. 

+ n
3u (F -G )., d ~ 9 F +G l 

n n 2 

We will make two remarks regarding the above test statistic, First, 

although the test statistic is not equivalent to two sided Wilcoxon 

test, under proper normalization (division by n3) under the sequence 

of hypotheses {G(n)} the term with the integral sign goes to zero and 

as far as the asymptotic relative efficiency is concerned the two 

sided Wilcoxon test and the L -test are equivalent. The second remark, 
n 

which follows, is of more interest because d>f its applications. 

As seen above, under the hypothesis, the limiting distribution of n D 
n 

is of the same form as that of a van Mises statistic and hence it can 

be seen that 

3.3 in probability, as n---+oo. 

However under a fixed alternative F -;t G the statistic D 

form mf a Hoeffding's nonstationary U-statistic and n½ ~ 
n 

limiting normal distribution. Similarly for large n 

is of the 

has a 
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3.4 Dn~ 0 for F = G and ni I (F-G) 2dlF > 0 for F :f. G 

and an addition of D to a test statistic may result in considerable 
n 

increase in power with a neglible change ~n the probability of the 

error mf the first kind. Especially in situatio~ where the alternative 

is not very close to the null hypothesis and n is not small (for very 

large n any consistent test will have power close to unity and the 

addition of D is not meaningful). The authors plan to investigate 
n 

applications of this property. 
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